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Abstract
The application of elliptic curves in the field of cryptography has signifi-
cantly improved the possibilities of security, encryption, and real-world
applications. In this paper, we want to give a short introduction to
Elliptic Curve Cryptosystems (ECC). The paper will start with some
motivation behind the study of elliptic curves, followed by some essen-
tial concepts and background material. We will then discuss the discrete
logarithm problem using elliptic curves, followed by a brief description
of different cryptosystems, and we will finally conclude with a basic
application of elliptic curves using PARI.

1 Motivation behind elliptic curves

We begin this section by describing the motivation behind the study of elliptic
curves. Elliptic curves have been studied for quite a long time in Number
Theory, but the application of elliptic curves to the field of cryptography is a
recent phenomenon.

The reason elliptic curves are interesting mathematical objects is because
the solutions form an Abelian group. This means that we can “add” two points
on the curve and get another point on the curve. This addition is associative,
commutative, and has an identity and inverses.

Elliptic curves sometimes arise in the study of Diophantine Equations,
which means that given an equation, we want to find all integer, or all ratio-
nal, solutions. There are methods for solving this kind of problem on elliptic
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curves, but no algorithm is known that will demostrably solve all these equa-
tions.

There are related algorithms for testing and verifying that a large number
is prime using elliptic curves. What is special about elliptic curves is that there
are cryptographic schemes that work on elliptic curves that are more secure
and more efficient than similar codes that only use regular modular arithmetic.

Faced with an infinite variety of elliptic curves to choose from, extensive re-
search has been placed on how different cryptosystems using different elliptic
curves perform. In this paper, we turn our attention to a major computa-
tionally hard problem in Number Theory: the so-called Discrete Logarithm
Problem. Basically, we want to understand how can we efficiently compute
logg b? No efficient classical algorithm for computing the general discrete log-
arithm is known.

2 Introduction and Background Material

2.1 Basics of Elliptic Curves

We now introduce the notion of elliptic curves. Let K be a field. In this paper,
K will be either the field R of real numbers, the field Q of rational numbers,
the field C of complex numbers, or the finite field Fq of q = pr elements. The
following definition is taken from [Ko].

Definition. Let K be a field of characteristic ≠ 2,3 and let x3 + ax + b,
where a, b ∈K, be a cubic polynomial with no multiple roots. Then, an Elliptic
Curve over K, noted as E(K), is defined to be the set of points (x, y) with
x, y ∈K, satisfying the equation1:

y2 = x3 + ax + b (1)

together with a single element denoted O called the “point at infinity”.

• If K is a field of characteristic 2, then an elliptic curve over K is the set
of points satisfying an equation of the following type:

y2 + cy = x3 + ax + b y2 + xy = x3 + ax2 + b (2)

1This type of equation is called a “Weierstrass equation”.
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(where the cubic on the right has no multiple roots) together with O
• If K is a field of characteristic 3, then an elliptic curve over K is the set
of points satisfying the equation

y2 = x3 + ax2 + bx + c (3)

We now procede to discuss examples of elliptic curves over various fields:

Elliptic curves over R.

We introduce a centrally important fact about the set of points on an el-
liptic curve: they form an Abelian group!

The following definition comes from [Si].

Definition. Let E be an elliptic curve over the real numbers, and let P and Q
be two points on E. We define the negative of P and the sum P +Q according
to the following rules:

1. If P is the point at O, then we define −P to be O and P +Q to be Q;
i.e., O serves as the additive indentity, or zero element, of the group of
points.

2. The negative −P is the point with the same x-coordinate but negative
y-coordinate of P . That is, −(x, y) = (x,−y). It follows from (1) that(x,−y) is on the curve whenever (x, y) is also on the curve.

3. If P and Q have different x-coordinates, then it is not hard to see that
the line l = PQ intersects the curve in exactly one more point R (unless
that line is tangent to the curve at P , in which case we take R = P , or at
Q, in which case we take R = Q). Then, define P +Q to be −R, the mirror
image (with respect to the x-axis) of the third point of intersection.

4. If Q = −P , then we define P +Q = O
5. If P = Q, then let l be the tangent line to the curve at P , let R be the only

other point of intersection of l with the curve, and define P +Q = −R.
(R is taken to be P if the tanget line has a “double tangency” at P , i.e.,
if P is a point of inflection.)
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Figure 1: A graphic representation of an elliptic curve addition over R.

Elliptic curves over C.

The algebraic formulas (4) and (5) for adding points on an elliptic curve
over the reals actually make sense over any field. It can be shown that these
formulas give an abelian group law on an elliptic curve over any field2.

Let E be an elliptic curve defined over C. We have that E is the set of
pairs (x, y) of complex numbers satisfying: y2 = x3 + ax + b, together with the
point at infinity O. Although E is a “curve”, it is two-dimensional, i.e., it is
a surface in the 4-real-dimensional space whose coordinates are the real and
imaginary part of x and y. [Ko]

We now describe how E can be visualized as a surface:

The following definition is taken from [Si].

Definition. Let L be a lattice in the complex plane. This means that L is
the abelian group of all integer combinations of two complex numbers ω1 and
ω2, where ω1 and ω2 span the plane. Then,

L = Zω1 +Zω2

For example, if ω1 = 1 and ω2 = ı, then L is the Gaussian integers, the

2Not shown in this paper. The only hard part is to show associativity

4



square grid of all complex numbers with integer real and imaginary parts.

To vizualize this, folding over one side of the parallelogram to meet the
opposite side and then folding over again and gluing the opposite circles, we
see that we obtaine a donut-like shape we call a “torus.”

Elliptic curves over Fq.

Let K be the finite field Fq of q = pr elements. Let E be an elliptic curve
defined over Fq. If p = 2,3, then E is given by an equation of the form (2) or (3).

It is easy to see that an elliptic curve can have at most 2q + 1 Fq points,
i.e., the point at infinity along with 2q pairs (x, y) with x, y ∈ Fq which satisfy
(1), or (2) if p = 2 or (3) if p = 3. Namely, for each of the q possible x’s there
are at most 2 y’s which satisfy (1).

But since only half of the elements of F×q have square roots, one would ex-
pect (if x3+ax+b were random elements of the field) that there would be only
about half of that number of Fq points. More precisely, let χ be the quadratic
character of Fq. This is a map which takes x ∈ F ×q to ±1 depending on whether
or not x has a square root in Fq (and we take χ(0) = 0) [Si].

For example, if q = p is a prime, then χ(x) = (xp) is the Legendre symbol.

[Ko]. Thus, in call cases the number of solutions y ∈ Fq to the equation y2 = u
is equal to 1+χ(u), and so the number of solutions to (1), counting the point
at infinity, is given by

1 + ∑
x∈Fq

(1 + χ(x3 + ax + b)) = q + 1 + ∑
x∈Fq

χ(x3 + ax + b)
We would expect that χ(x3+ax+b) would be equally likely to be +1 and −1.[Ko]

There are many analogies between the group of Fq points on an elliptic
curve and the multiplicative group (Fq)×. For example, they have approxi-
mately the same number of elements by Hasse’s Theorem which provides an
estimate of the number of points on an elliptic curve over a finite field, bound-
ing the value both above and below.

∣N − (q + 1)∣ ≤ 2√q
Where N is the number of points on the elliptic curve E over a finite field
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with q elements. The fact that the sum of character values is at most
√
2 is a

remarkable result.

The construction of an abelian group has a major advantage that explains
its usefulness in cryptography: for a single (large) q there are many different
elliptic curves and many different N , the number of Fq points on an elliptic
curve defined over Fq, that one case choose from. Elliptic curves offer a rich
source of “natural occurring” finite abelian groups. [Si]

2.2 Basics of the the Discrete Logarithm

Definition: Let G be a finite cyclic group with n elements, let g be a generator
of G, and let Zn denote the ring of integers modulo n. The discrete logarithm
function of base g is defined as

logg ∶ G!→ Zn

This function is a group isomorphism, with the following property:

If c is another generator of G, then it follows that logc(b) = logc(g) ⋅ logg(b)
For some group G, suppose that a, b ∈ G. Solving for an integer x such that

ax = b is called the Discrete Logarithm Problem which is considered difficult
(or intractible) if p has at least 150 digits and p−1 has at least one large prime
factor, as close to p as possible. [Gru]

3 The Discrete Logarithm Problem for
Elliptic Curves

Problem: Given that there is some integer k such that kP = Q, where P and
Q are points on the curve E(Fq) with q = pn for some prime p, find k (given
that k exists).

In this problem, E(Fq) is the set of points on E whose coordinates lie
in Fq = Fpn . We will write E(Fq) with coefficients in Fq. kP is defined as
P +P +⋯+P , k-times, with standard addition of points on elliptic curves. [As]

Numerous cryptosystems base their security on the difficulty of solving the
Discrete Logarithm Problem. We will now proceed to discuss some of them.
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3.1 Discrete Log Cryptosystems

In this section, we will describe two cryptographic methods based on the dif-
ficulty of the discrete log problem for elliptic curves. Many other methods are
used as well, but we do not have room to give all of them here. These methods
are generally also available for multiplicative groups of finite fields, but give
more security per bit of data if elliptic curves are used instead.

3.1.1 Diffie-Hellman Key Exchange Protocol

The Diffie-Hellman Key Exchange Protocol allows two parties, Alice and Bob,
to establish a secret key through an exchange of public messages which works
by the algorithm taken from [As]:

1. Alice and Bob publicly agree on E(Fq), chosen so that the discrete log
problem is hard. They also agree on a point P ∈ E(Fq) of high (usually
prime) order.

2. Alice chooses a secret a ∈ Z, computes aP , and sends it to Bob.

3. Bob chooses a secret b ∈ Z, computes bP , and sends it to Alice.

4. Alice computes a(bP ) = abP .

5. Bob computes b(aP ) = abP .

6. Alice and Bob now have the same point abP . They use a publicly agreed
on method to extract a key.

In order to obtain the key, Eve needs to find abP from the publicly avail-
able P, aP, bP ∈ E(Fq). This is known as the “Diffie-Hellman Problem”. If
Eve could solve the discrete log problem on E(Fq), she could solve kP = (aP )
to obtain a. and then multiply bP by a to get abP . It is not known whether
Eve could compute abP in some other way that does not require solving the
discrete log problem. [As]

The Decision Diffie-Hellman Problem asks if given P, aP, bP,Q ∈ E(Fq) Eve
can determine whether or not Q = abP . The security of the Diffie-Hellman
key agreement protocol is based on the apparent intractability of the discrete
logarithm problem in F×q .
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3.1.2 Massey-Omura Encryption

Now consider the situation in which Alice wants to send Bob a message Eve
will be unable to read. Alice and Bob have not communicated privately to set
up a key.

Consider the following analogy, Alice sends Bob a box with her lock on it.
Bob adds his own lock and sends the box back. Alice removes her lock and
sends the box on to Bob. Bob removes his lock and reads the message. This
method can be implemented using elliptic curves by following the algorithm
taken from [As]:

1. Alice and Bob agree on a prime p, on an elliptic curve E(Fq), and on a
point Q on E(Fq)

2. Alice represents her message as a point Q ∈ E(Fq).
3. Alice chooses a secret a ∈ Z such that gcd(a,N) = 1, computes aQ, and

sends it to Bob.

4. Bob chooses a secret b ∈ Z such that gcd(b,N) = 1, computes b(aQ) =
baQ, and sends it to Alice.

5. Alice finds a−1 ∈ ZN , computes a−1(baQ) = a−1baQ, and sends it to Bob.

6. Bob finds b−1 ∈ ZN , computes b−1(a−1baQ) = b−1a−1baQ, and takes the
result to be the message.

3.1.3 Analogue of ElGamal Cryptosystem

This algorithm is take from [Gru]. Bob chooses a prime p, an elliptic curve
E(Fq), a point P on E(Fq), and integer x. To send a message m we have

1. Bob computes Q = xP , and makes E(Fq), P , and Q public while keeping
x secret

2. Alice expresses m as a point X on E(Fq)
3. Alice chooses r, at random

4. Alice computes A = rP and B = X + rQ and sends the pair (A,B) to
Bob

5. Bob decrypts by calculating X = B − xA
8



Since ElGamal protocol can be generalized to work in an arbitrary finite
cyclic group, the analogue implemented on an elliptic curve over Fq can be de-
scribed on an elliptic curve E(Fq) and a base point P ∈ E, published publicly.
Each user of the system chooses an integer, at random, call it ax, which will
be the secret key, then computes and publishes the point axP .

Suppose Alice wishes to send a message m to Bob. First, she imbeds the
valuem onto the ellitic curve E by representing m as a point on Pm ∈ E. Then,
she encrypts Pm. Let aB denote Bob’s secret key (so, aBP will be publicly
known). Alice first chooses a random integer k and sends Bob a pair of points
on E:

(C1, C2) = (kP,Pm + k(aBP ))
To decrypt, Bob computes

C2 − aB(C1) = Pm + k(aBP ) − aB(kP ) = Pm

3.2 Attacks

Definition: An attack is a method of solving a problem on which an encryp-
tion algorithm depends.

There are very few known attacks that can break the cryptosystems: each
is effective only on a particular class of elliptic curves and even the best al-
gorithms require exponential time. Hence, some cryptosystems are generally
more secure than others.

3.2.1 The MOV Reduction

Introduced by Menezes, Okamoto, and Vanstone in 1991. Basically, it is a
method for reducing the elliptic curve logarithm problem in E(Fq) to the
discrete logarithm problem in F ×q for some k ∈ Z. It is the first subexponential
algorithm for solving the discrete logarithm problem for elliptic curves when k
is small. However, its effectiveness is limited to a special class of elliptic curves
called supersingular curves. For most other curves (nonsupersingular curves),
k is too large for the MOV reduction to apply.
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3.2.2 Other Attacks

One of the most popular attacks prior to the MOV Reduction was Shanks’
“Baby-step, Giant-step method” which works in exponential time (log#E),
and a modified version of the “Pohlig-Hellman method”, whose running time
is proportional to the square root of the largest prime factor of #E. Another
known attack is the “Pollard ρ-method.”

Various other attacks have proven to be ineffective against elliptic curve
cryptosystems. For instance, the are no known adaptations of the “Index Cal-
culus attack”.

4 Elliptic Curves in PARI

4.1 Initializing Elliptic Curves

We are interested in curves of the form y2 = x3 + ax + b, where a and b either
rational numbers or elements of a finite field Z/pZ, with p ≠ 2,3

E is either a 5-component vector [a1, a2, a3, a4, a6] defining the elliptic curve
with Weierstrass equation y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, or a string.

Suppose a, b ∈ Q, we initialize an elliptic curve, E, in PARI as follows:

? E = ellinit([0,0,0,a,b]);

To consider a, b ∈ Z/pZ, type the command

? E = ellinit([0,0,0,a,b]*Mod(1,p));

Most elliptic curves functions in PARI take as their first argument the
output of ellinit. For example, the function ellisoncurve(E,P) takes the
output of ellinit as its first argument and a point P=[x,y], and returns 1 if
P lies on E and 0 otherwise. [Ste].

The following example is taken from [Ste]:

? E = ellinit([0,0,0,1,1]);
? E5 = ellinit([0,0,0,1,1]*Mod(1,5));
? P = [0,1]
? ellisoncurve(E, P)
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%17 = 1
? P5 = [0,1]*Mod(1,5)
? ellisoncurve(E5, P)
%18 = 1

4.2 Operations

The two most useful arithmetic functions implemented in the group of points
on an elliptic curve are: elladd, and ellpow.

• The elladd function adds two points using the group law, but PARI does
not verify that these points are on the curve. Here are some examples
taken from [Ste].

? P = [0,1]
%2 = [0, 1]
? elladd(E,P,P)
%3 = [1/4, -9/8]
? elladd(E5,P5,P5)
%12 = [Mod(4, 5), Mod(2, 5)]
? [1/4,-9/8]*Mod(1,5)
%13 = [Mod(4, 5), Mod(2, 5)]

• The ellpow function computes nP = P + P + ⋯ + P (n times). For
example,

? ellpow(E,P,2)
%5 = [1/4, -9/8]
? ellpow(E,P,3)
%6 = [72, 611]

5 Conclusion

In summary, we described elliptic curve cryptosystems in one major compu-
tationally hard problems in Number Theory: the discrete logarithm problem.
We covered the Diffie-Hellman Key Exchange, the Massey-Omura Encryption,
and the Analgoue of ElGamal. There are other several algorithms for solving
the Discrete Logarithm Problem, though none of them perform in polynomial
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time. It would have been nice to cover the Shanks’ algorithm and the Pohlog-
Hellman algorithm which are among the strongest attacks.

We also presented a very simple implementation of elliptic curves using
PARI, and it would have been nice to show a full cryptosystem simulation,
such as encrypting a credit card number, using Mathematica. In this paper,
it was not possible due to time constrains.

As for the future of this field, elliptic curve cryptography will tend to in-
crease its attractiveness relative to other cryptosystems as computing power
keeps improving. The smaller key sizes result in smaller system parameters,
smaller public-key certificates, bandwidth savings, and faster implementations.
Elliptic curve systems are particularly beneficial in applications where com-
putational power is limited such a wireless networks, mobile phones, and the
future of wearable devices such as Google Glass.
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