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1 Introduction

The 17th century was a golden age for mathematics. Northern Europe
produced the likes of Descartes. Desargues, Pascal. Wallis, Bernoulli, and
Leibniz. Amongst them was a French royal councillor from the Parliament
of Toulouse, Pierre De Fermat (1601-1665). Fermat, nicknamed the " Prince
of Amateurs,” was the last great mathematician to pursue the subject as a
sideline to a nonscientific career. Before taking up the position of a royal
councillor, Fermat was a lawyer in Bordeaux. Interestingly, Fermat did not
seem to have formal mathematical training; he received a Bachelor's degree
in civil law from the University of Orleans. Furthermore, Fermat didn’t
develop an interest in the subject until he was past 30; it was just a hobby
to be cultivated during leisure time. Yet no practitioner of the time had
as much of an impact. Independently inventing analytic geometry, laying
the foundations of differential and integral calculus, and establish the con-
ceptual guidelines of probability theory with Pascal were a few of Fermat's
contributions. Even though he published significant results in various fields,
Fermat’s true legacy is as the father of modern number theory, a subject
whose revival began with his work in it. [2] [4]

Given his huge contributions to the field of number theory, Fermat was
notoriously infamous for not providing proofs for his conjectures. (We re-
turn to this when we discuss Fermat’s Last Theorem.) Fermat would be
in correspondance with the number theorists of the day, including Pascal,
Carcavi, and Frenicle. His go-between in exchanges with the other mathe-
maticians was Mersenne. It was in fact Mersenne who inspired Fermat to
jump into the field of number theory. In his letters, Fermat would formulate
number-theoretical questions, but there are also several definitive statements
and discussions of special numerical examples. His most important number-
theoretical heritage is a letter to Carcavi in August 1650. Before stating
any results in his letter, Fermat describes a certain method of proof that he
discovered himself and utilized with great success. He writes the following
about his method of proof, quoted from E.T. Bell, Men of Mathematics: [2]

[.,1 ]

For a long time I was unable to apply my method to affirma-
tive propositions, because the twist and the trick for getting at
them is much more troublesome than that which I use for neg-
ative propositions. Thus, when I had to prove that every prime
number which exceeds a multiple of 4 by 1 is composed of two
squares, I found myself in a fine torment. But at last a medita-



tion many times repeated gave me the light T lacked, and now
affirmative propositions submit to my method, with the aid of
certain new principles which necessarily must be adjoined to it.
The course of my reasoning in affirmative propositions is such:
if an arbitrarily chosen prime of the form 4n + 1 is not a sum
of two squares, [I prove that] there will be another of the same
nature, less than the one chose, and [therefore] next a third still
less, and so on. Making an infinite descent in this way, we finall
arive at the number 5, the least of all the numbers of this kind
[4n + 1]. [By the proof mentioned and the preceding argument
from it], it follows that 5 is not a sum of two squares. But it
is. Therefore we must infer by a reduction ad absurdum that all
numbers of the form 4n + 1 are sums of two squares.

This method is now known as the method of infinite descent. It is based
on the Well-Ordering Principle of the natural numbers, which states that
every non-empty subset of N has a minimal element. The general idea of
infinite descent may be described as follows. Let A be the subset of N s.£.
for a € A, the truth of the statement P(a) implies that 3 a subset B of
A with an element b with b < a s.t P(b) is true. This is the descent step.
Now, since P(b) is true, 3 a subset C' of B s.t. P(c) holds for ¢ € C where
¢ < b. Continuing in this fashion, the set {a, b, ¢, ...} is not bounded below,
so by the well-ordering principle, P(a) is false, implying the statement is
false ¥ n € N. The rest of the project will illustrate how this method can be
used to establish some of Fermat's results. As Fermat begins his letter by
describing the method of infinite descent for the decomposition of a prime of
the form 4n + 1 as the sum of two squares, this project begins by providing
the details to this result, and then the method is used to establish Fermat’s
Last Theorem for the exponents n = 3 and n = 4.

2 Sums of Two Squares

Theorem 2.1 Every prime number p of the form 4n + 1 can be written
uniquely as the sum of two squares.

The proof of this theorem is credited to Euler, who established it in a
series of propositions, with the help of the method of infinite descent.

Proposition 2.2 The product of any two numbers that are the sum of two
squares is itself the sum of two squares.



Proof This follows immediately from the identity (a4 b%)(c® +d?*) = (ac—
bd)? + (ad + be)? = (ac + bd)? + (ad — be)?. O

Proposition 2.3 If a number which is the sum of two squares is divisible
by a prime that is the sum of two squares, then the quotient is a sum of two
squares.

Proof Suppose that a? 4 b? is divisible by a prime p = ¢? +d?. Then ¢? + d*
divides (cb — ad)(cb 4 ad) = c*b* — a®d? = *(a® 4+ b*) — a*(c® + d?), clearly,
since p|(c® 4+ d?) by definition and p|(a? + %) by assumption. Since p is
prime, either p|(cb — ad) or p|(cb + ad). Suppose that p|(cb — ad). From
Proposition 2.1, we have that (a® + b%)(¢? + d?) = (ac + bd)? + (ad — bc)?
so ¢ + d® must divide (ac + bd)2. Thus, we can divide the entire equation

s r aZ4b? ac+bd 2 ad—be 2
by p” to get i d® T et +d? i c*+d?

as the sum of two squares. Now suppose p|(ch + ad). Using (a? + b%)(c? +

. Thus, the quotient can be expressed
; 1 I

d?) = (ac — bd)? + (ad + be)?, a similar argument shows that the quotient is
representable by a sum of two squares. []

Proposition 2.4 If a number which can be written as the sum of two squares
has a diwisor that is not a sum of two squares, then the quotient is not a
sum of two squares.

Proof Suppose z|(a® 4+ b%) and that pyps...p, is the prime factorization of
the quotient. Then a?+b® = zp;...p,. If all the prime factors py, ..., p, are of
the form of the sums of two squares, then we can divide a® + b® successively
by pi,.... pp by Proposition 2.2, then each of the quotients is a sum of two
squares, hence x is the sum of two squares. Therefore, if x is not the sum
of the two squares, then one of the py,.... p, is not a sum of two squares. [

The next proposition is where we use the method of infinite descent.

Proposition 2.5 If a,b are relatively prime, then every factor of a® + b* is
the sum of two squares.

Proof Let z be a factor of a? + b2, By division, a = ma + ¢, b = nx + d,
c,d £ %|.’J’:|. Then, a? + b*> = m?2? + 2mae + & + n?2? 4+ 2nad + d® =
Az + (2 + d?). Since z|(a? + b?), so is ¢ + d?, and let 2 + d? = yzx. If
ged(c.d) = D > 1, then D]z which implies that D|a and D|b, which is not
possible. So we can divide ¢? +d? = ya by D to give an equation of the form
e+ f2=z2x. Wehave zxr =2+ f2 < 2 +d* < %2 - ;—”2 = % Thus z < 3.
If 2 were not the sum of two squares, then by Proposition 2.3, 3 a divisor w




of z s.t. w is not the sum of two squares. By construction, w < x, and both
w and x divide sums of two squares but neither are sums of two squares. We
have constructed an infinite descent, and arrive at a contradiction because
no siuch minimal a exists. Therefore  must be the sum of two squares. [J

Proof (Of the Two-Square Theorem) Assume that a prime p is of the form
4n + 1. By Fermat’s Little Theorem, 1,2%" 3% . (4n)%" is congruent to 1
mod p. In particular, 24" — 1,34 — 24 are all divisible by p. We can
factor these differences into a' — b1 = (a*" + b**)(a®" — b*"). Since p is
prime, it must divide one of the two factors. If p|(a®" +b*") in any of the first
4n —1 cases then, by Proposition 2.4 and the fact that a and b are relatively
prime (since they differ by 1), it follows that p is the sum of two squares.
So it is sufficient to show that p does not divide all 4n — 1 differences.

If p divides 24" — 1,34 — 2% then it would divide all 4n—2 differences
of successive numbers, all 4n — 3 differences of the differences, and so on.
Now, the kth differences of the sequence 1%,2% 3%, ... is k! So the (2n)!th
differences would all be constant and would equal (2n)!. Sincep=4n+1,p
cannot divide (2n)!, thus p cannot divide all the second factors, so p is the
sum of two squares. [

3 Fermat’s Last Theorem for exponents 3 and 4

The 15th century saw the fall of Constantinope to the Turks. Many schol-
arly texts were lost during the Turk invasion, but Byzantine scholars had
managed to salvage some of the greatest texts of ancient Greek mathemat-
ics. One of the books that survived was Diophantus’ Arithmetica. It wasn't
until the second half of the 17th century that the book started to circulate
again. The credit for this goes to Claude Bachet, who published the original
Greek text alongside a Latin translation with comments and notes, making
the book accessible to European mathematicians. It was Bachet's edition
that steered Fermat to number theory. He would write down notes in the
margin of his copy of Arithmetica and as mentioned earlier, Fermat would
not prove these results. Undoubtedly the most famous marginal comment
was the one written around 1637, which states (as in Burton’s Elementary
Number Theory):[2]

It is impossible to write a cube as a sum of two cubes, a fourth
power as a sumn of two fourth powers, and, in general, any power
beyond the second as a sum of two similar powers. For this, 1



have discovered a truly wonderful proof, but the margin is too
small to contain it.

The statement came be to known as Fermat’s Last Theorem (FLT), not
because it was his last, but since it was his only comment in Arithmetica that
eluded mathematicians for 300 years. including the likes of Euler, Gauss,
Legendre, Dirichlet, Riemann, etc. The theorem is stated more generally
today as:

Theorem 3.1 There is no solution in the positive integers to x™ + 3" = z"

forn > 2.

Until 1993, only proofs for specific exponents were known. Andrew Wiles, a
British mathematician, presented a series of lectures in Cambridge in June
of 1993, claiming to have proved Fermat’s Last Theorem (there was a gap
in the proof that took Wiles 3 years to fill in), using techniques that were
only discovered in the 20th century, casting a shadow of doubt over whether
Fermat actually had a proof. Fermat did provide a proof, using his method
of infinite descent, for the case n=4, which is an easier result to establish
than the one for n=3, so it is provided here first.

3.1 The case n=4

We establish a stronger version of the theorem, and show that the case n=4
follows as a corollary almost immediately.

Theorem 3.2 The quadratic Diophantine equation z* + y* = 2% has no
solutions in positive integers.

We start with a discussion on the quadratic equation x? 4+ y? = 2% and
all its solutions, i.e. the Pythagorean triples.

Definition A Pythagorean triple is a set of three integers satisfying z2 +
] g I g ying
y2 = 22, Tt is said to be primitive if z,y, z are relatively prime.

In the rest of this discussion, it is enough to only work with primitive
Pythagorean triples. Suppose ged(x,y,z) =d > 1. Then z = dX, y = dY,
z = dZ for some integers X,Y, Z and we have X* 4+ Y? = idig”—z + f: = Z?,
where X, Y, Z are relatively prime. Also, we can restrict x,y, z > 0 since all
other triples arise from a change in sign from any of the three integers.

Lemma 3.3 If z,y.z is a primitive Pythagorean triple, then one of the
integers x and y is even, while the other is odd.



Proof Suppose that both x and y are even. Then 2|z and 2|y, and in
particular, 2|(x? + y?) = 2. Thus, 2|z. Then the greatest common divisor
of x,y, z is greater than or equal to 2, which is a contradiction to the initial
assumption.

Now suppose that both z and y are odd. Then z? = 1(mod4) and
y? =1(mod4) (the square of an odd number of the form 4k+3 is = 1(mod4)),
so 22 = 22 + y? = 2(mod4). But this is impossible since ¥Yn € N, n? =

0, 1(mod4). OJ

For the rest of this section we assume that x is even and y is odd,
so z is necessarily odd. Observe that x,y.z are pairwise relatively prime.
Suppose that ged(x,y) = d > 1. Then J a prime p dividing d, and thus
plz and ply. which implies that p|z. This contradicts the assumption that
x,y, z are all relative prime. Thus, d = 1. Similarly, one can verify that
ged(y, 2) = ged(z, z) = 1.

Lemma 3.4 If ab = ", where a.b are relatively prime, then a and b can
both be factorized into nth powers.

Proof We assume without loss of generality that @ > 1, b > 1, else the
result follows triviallly. By unique factorization, a = p;*1po*2...p, % and
b = i1 q%...q’. Since a,b are relatively prime, the prime factors of a
and b are distinct. Therefore, ab = pi ¥ po?2 . pfrg1 1% ...q%. Now, ¢
also admits a prime factorization, say w w2, uylt. Then, ab = " implies
piFpe™ R M . gt = w M ug™ ™

Since prime factorizations are unique up to multiplication by the identity
and reordering, we have that wj....,us are py,....pr, q1,...qs and nly, ..., nl;
are the corresponding exponents ki, ..., k., ji,...js. We conclude that nlk;,
n|j; Vi. Let A = pl%pg%”.pr% and B = ql%q@%...q&.% and we have the
desired result.

Theorem 3.5 Suppose that x,y, z are positive integers where x is even and
y,z are odd. Let x,y.z be relatively prime. Then all the solutions to the
Pythagorean equation z* + y* = 2% are given by x = 2st, y = 5% — 12,
z = s> +t2, where s > t > 0, s,t are relatively prime, and s,t are of
different parity.

Proof Suppose that x.y, z is a primitive Pythagorean triple. We have that
z—y and z+y are both even, so let z—y = 2u, z+y = 2v for some integers,

u, v. Rearraging the Pythagorean equation gives z° = 22—y? = (z+y)(z—y).

(ws]



T —Y 2+ . . -
S0 %2 = 229' ,Zy = wuv. Note that wu,v are relatively prime. If not then,

ged(u,v) = d > 1 means that d|(u —v) = y and d|(u + v) = z, which
contradicts the assumptions that y, z are relatively prime. From the previous

lemma, it follows that we can factor u,v as perfect squares, say, u = s2,

v = t2, where s,t > 0. Then z = u+v = % + 12, Yy=u—v= & -1,
x? = duv = 4s*1?, so a = 2st. If s,t are not relatively prime, then it would
contradict the assumption that x.y. z are relatively prime, so s,¢ must be
relatively prime.

It remains to establish that s, ¢ have different parity. Suppose that both
s and t are even, or both odd. Then y, z would both be even, which is a
contradiction to the assumption that y, z are odd. Thus, one of 5.1 is even
and the other is odd.

Conversely, let s, ¢ satisfy the assumptions in the theorem. Then letting
x = 2st, y = s> —t2, z = s> +12 gives us another Pythagorean triple. Indeed,
22 4+ % = (251)2 + (52 — 12)2 = 45242 + 5% — 2522 + 14 = (52 +12)2 = 22,
It remains to show that this set of solutions is primitive. Suppose to the
contrary that ged(z,y,z) = d > 1 and let p be a prime divisor of d. Since
2z = &% + t2, the sum of an even and odd number, then z is odd. So we
cannot have p = 2, else we would have a contradiction. Since p divides y
and p divides z, p|(z + y) = 2s% and p|(z — y) = 2t%. Since p # 2, p|s and
p|t, which is impossible. Thus d = 1, and the theorem is established. [OJ

Proof (Of Theorem 3.2) Suppose to the contrary that 3 positive integers
x,y, 2z s.t. 2+ 9y? = 22. We can assume that z,y, z are all relatively prime,
else a common divisor of two necessarily divides the third, so the entire
equation can be divided through to get relatively prime integers satisfying
the equation. Expressing the equation as (,1’2)2 + (3,:2)2 = 22, we see that
x?,y?, z form a primitive Pythagorean triple. Thus, by the previous theorem,
J integers s,t s.t. 2% = 2st,y? = s2 — 2, 2 = 5% +1? with s, t relatively prime
and of opposite parity. Since t? + y? = s and s,t,y are relatively prime,
then again by the previous theorem, 3 positive integers a, b relatively prime
with @ > b and of different parity with t = 2ab,y = a®> — b, s = a® + b>.
Thus 2% = 2st = 4ab(a® + b*). It is clear that a,b,a® + b* are relatively
prime, so by Lemma 3.3, we have that a, b, a® + b® are squares of positive
integers. Let a = ¢2,b = d?,a® + b? = ¢2. Then ¢* + d* = ¢2. Observe that
z =824+t = (a®> + *)? + 4a%h® > €' > e > 0, thus, (c,d,e) is a smaller
solution to the quadratic Diophantine equation than (x,y,z). Thus, by
infinite descent. there are no solutions to the quadratic Diophantine equation
4yt =22 0

Corollary 3.6 The equation z* + y* = 2z* has no solutions in the positive



integers.

Proof Suppoae that X,Y, Z ares.t. X*4+Y? = Z%. Then, X.Y, Z? would be
a solution to ! +y* = 22, contradicting the result of the previous theorem.

J

3.2 The case n=3

3—’7

Theorem 3.7 The equation r* + 1 3 has no solutions in the positive

integers.

Once again, most of the credit for the proof of this theorem goes to
Euler, who first published a proof in 1770. Euler studied the properties of
numbers that can be expressed as a® 4+ 3b°. Then assuming that a solution
for Fermat’s Last Theorem for the exponent n=3 existed, he uses these
properties to show that a smaller solution exists, hence by infinite descent,
no solution exists. Although, it turned out to be incomplete, as Euler did
not prove an existence lemma which is crucial, as will be seen. Gdus‘-; later
filled in this "gap” using the arithmetic properties of Z[/—3]. We begin
where Euler did, and establish the results of numbers of the form a? + 3b?
that are needed in the proof of the theorem.

3.2.1 Preliminary results

Proposition 3.8 The product of two numbers of the form a®+ 3b% is again
of the same form.

Proof This follows immediately from the identity (a?® + 3b%)(c® + 3d?) =
(ac — 3bd)? + 3(ad + be)?.

Proposition 3.9 If a number of the form a® + 3b* is divisible by 2, then
it must be divisible by 4. and its quotient on dividing by 4 is of the form
2 2

a® + 3b°.

Proof If a and b have opposite parities, then a? + 3b% is not divisible by 2.

If @ and b are boi h even, then a? + 3b? divisible by 4. and the quotient
of is of the form ¢ + 3d?, where ¢ = 5= %

Now suppose thdt a and b are both odd, soa=4m+t1and b=4n+1
where m, n, and the signs are properly chosen. Then 4|(a+b) or 4/(a—b). 1f
4|(a+b), then 4(a? +3b2) = (124 (3)12)(a® +3b%) = (a— 3b)2 +3(a = b)2 =
((a+b)—4b)*+3(a+b)*. So4*/(a—3b)*+3(a+b)? and thus the quotient also
has the desire form. If 4|(a—b), then 4(a?+3b?) = ((—1)2+(3)1%)(a?+3b?) =
(a 4+ 3b)? + 3(a — b)?, and the argument proceeds exactly as before. [J



Proposition 3.10 If a number of the form a® + 3b* is divisble by a prime
of the form p? + 3¢> then the quotient can be written in the form c¢* + 3d>.

Proof Observe that (pb — aq)(pb + aq) = p?b? + 3¢°b* — 3¢%0% — a*¢® =
b2 (p? + 3¢°) — ¢*(a® + 3b*). Therefore p® +3¢>|(pb— aq) or p* + 3¢°*|(pb+aq).
Thus, (p? +3¢%)(a®+3b%) = [p*+3(£q)?*][a®+3b*] = (paF3gb)?+3(pb+aq)?
is divisible by (pz +3¢%)? where the sign is chosen correctly and we have the
desired form for the quotient. [

Proposition 3.11 If a number which can be written in the form a® + 3b°
has an odd factor that is not of the same form, then the quotient has an odd
factor which is not of this form.

Proof Let xy = a® + 3b% where x is odd. If y is even then by Proposition
3.9, 4y so % = ¢ + 3d%. This process can be repeated until f’} is odd.
Therefore, y = 4¥p1pa...p, where the p;s are odd primes. If all the primes
can be written as ¢ + 3d?, then xy = a® + 3b% can be divided by 4% and
Pl, ..oy Pn, Whence it follows from the last two propositions that z is of the
form ¢? 4+ 3d®>. Therefore if x does not have this form, then y has an odd
factor which is not of this form. OJ

Proposition 3.12 Ifa,b are relatively prime, then every odd factor of a®+
3b% is of the form ¢® + 3d>.

Proof Let = be an odd factor of a® 4+ 3b>. Then on division we obtain
a=mzEcb=nxtd and |,|d| < 5. Then ¢ + 3d? is divisible by z, say
?+3d* = xy and y < . No common factor of ¢, d (other than 1) can divide
x, else it would contradict the assumption of a, b being relatively prime. So
we can divide xy by ged(c, d) to get e? + 3f% = xz where e, f are relatively
prime.

If 2 is not of the form, then by Proposition 3.11, z has an odd factor,
say, w, that is not of this form. Thus, we conclude by infinite descent that
every odd factor that is not of the form a? + 3b? has an odd factor which is
not of the same form by showing that for such an z, 3 a w < x which is not
of the same form. [J

Proposition 3.13 A number is of the form a* + 3b* if its quotient by the
largest square it contains contain no prime factors of the form 3n + 2.

Proof Note that every odd prime other than 3 is of the form 3n+1 or 3n+2.
If a® + 3b? is not divisble by 3, then 3 does not divide a, so @ = 3m =+ 1 and



a?+3b% = 2 +6m+3b2+1, so a®+3b? is of the form 3n+1. By the previous
proposition, an odd prime which divides a number of the form a®+3b? where
a,b are relatively prime is not of the form 3n + 2. If ged(a,b) = d > 1, then
a® + 3b* = d*(A? + 3B?) where A? + 3B? have no odd factors of the form
3n + 2 by the previous argument since A, B are relatively prime. Now. the
even prime factors of a? + 3b* contain a power of 4 by Proposition 3.11 so it
contains a square. We conclude that the quotient of a number of the form
a® + 3b? contains no prime factors of the form 3n + 2. O

Proposition 3.14 FEuvery prime of the form 3n-+1 can be written as a*+3b°.

Proof By Fermat’s Little Theorem, 3 a prime p of the form 3n+ 1 dividing
the p — 2 differences of the numbers 1,23 33" (p — 1)3". We can factor
the difference (a:ﬂn_ bZSn) = {{1” _bn)(ama L gt +b2n)‘ Either a or b is even,
so (a®™+a"b"+b*") can be written as A2+ A(2B)+(2B)? = (A+B)?+3B2,
where A, B are relatively prime. Thus, by Proposition 3.11, p must be of the
form ¢ + 3d? unless p divides the p — 2 differences of 1,2%,3", ..., (p — 1)".
But this would mean that p|n! since the nth differences are constants. Note
that p is of the form 3n + 1 but p cannot divide n!. Therefore, we have our
desired result. [

3.2.2 Proof of the theorem

Assume to the contrary that 3 x,y, 2 s.t. 2° + y3 = 22, We can assume

x,y. z to be pairwise relatively prime, else a common divisor of two would
automatically divide the third, so we can divide through the equation we
have by the ged to get a solution set where integers are pairwise relatively
prime. Also. at most one of the three is even and at least one of the three
is even (since the sum of two odd numbers is even). Thus, only one is even.

First suppose that .y are odd and z is even. Then x + y and @ — y are
both even, say x+y = 2p, x —y = 2¢q. From these, we get that x = p+q,y =
p—¢q, 0 2°+y° = (z+y)(2* —2y+y*) = 2p((p+9)*~ (p+a) (p—9)+(p—0)°] =
2p(p® + 3¢%).

Since p+ g, p — q are both odd, any common divisor of p, ¢ would divide
x,y contradicting the assumption that x,y are relatively prime. Thus, p.q
are relatively prime, and moreover, they have different parity. We can also
assume that p,q are positive. If # < y, we can interchange the roles to
get ¢ > 0. Note that if z = y then 2® + 3™ = 1+ 1+ 2 # 23Vz. Thus,
the assumption that 2% + y® = 2% with x,y odd and z even implies that 3
relatively prime positive integers p, g s.t. 2p(p? 4 3¢) is a cube.

10



The same conclusion can be reached if z is odd and either of = or y is
even (assume y is even). So we have x3 = 23 — 33 = (2 — y)(2® + 2y + ¢?).
Then z —y = 2p,2+y = 2¢ implying z = ¢+ p,y = ¢ — p and 2° =
2p[(q +p)® + (g +p)(qg — p) + (g — p)?] = 2p(p* + 3¢%), where p,q are of
oppositve parity and are relatively prime.

We claim that 2p, p* + 3¢? are relatively prime. Since p, q are of opposite
parity, p® + 3¢? is odd, so if ged(2p.p? + 3¢%) = d > 1, then d > 2 since
p.q are of opposite parity, so d is a common factor of p, p? + 3¢2, thus a
common factor of p,3¢%. Since p,q are relatively prime, the only possible
common factor of 2p, p? + 3¢? is 3. The remainder of the proof will be split
into two cases: the first will deal with where 3 does not divide p implying
that 2p, p? + 3¢? are relatively prime, and the second will deal with where 3
does divide p. In both cases, it will be shown that a smaller solution exists.

Before we establish the last part of the proof, we return momentarily to
the pair 2p, p? + 3¢°. Since the product is a cube, they must both equal
to cubes themselves. This is where Euler's proof is incomplete. [1] He
mistakenly confuses necessity and sufficiency, and does not show (under the
conditions of p, g above) that p?+3¢? can be expressed as a cube of the same
form, vet implicity assumes it. This fact is non-trivial and will be established
in the next subsection. For now, we assume it is true and complete the proof.

Assume first that 3 does not divide p. Since 2p, p® + 3¢° are relatively
prime and they each equal a cube. Recall the identity from Proposition 3.7:
(a® + 3b%)(c® + 3d*) = (ac — 3bd)? + 3(ad + be)®. We can use this formula
to find cubes of the form p* + 3¢* by writing (a” + 3b%)® = (a® + 3b%)[(a® —
30%)% 4 3(2ab)?] = [a(a® — 3b%) — 3b(2ab)]? + 3[a(2ab) + b(a® — 3b%)]* =
(a* — 9ab*)? + 3(3a*b — 3b%)%. Set p = a* — 9ab?® and ¢ = 3a*b — 3b* when
a and b are chosen at random. Factorizing gives p = a(a — 3b)(a + 3b),q =
3bla — b)(a + b). Another restatement of what Euler failed to show is that
if p® +3¢” is a cube then 3 a,b s.t. p,q admit the factorization given above.
Moving on, we deduce that a, b are relatively prime, else any common factor
would also divide p, ¢, contradicting that p, g are relatively prime. Moreover,
2p = 2a(a — 3b)(a + 3b) is a cube. Now, if a,b are both odd or both even,
then p, g are even, contradicting p, ¢ having different parity, hence a, b have
different parity. Thus, a — 3b, a + 3b are odd and the only possible common
factor of 2a, a£3b is the only common factor of a, a=£3b, whose only common
factor is the same as that of a. £3b, whose only possible common factor is 3,
the same as before. 3 cannot be the factor, otherwise 3|p, contradicting our
initial assumption. Therefore, 2a,a — 3b, a + 3b are relatively prime, so by
Proposition 3.7, they must be cubes, say 2a = A%, a —3b = B?, a+3b = C?.
Then, B3 + C3 = a —3b+ a + 3b = 2a = A3, implying that (A, B,C) is
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another solution to z3+y* = 2%, We have A3B?*C? = 2a(a—3b)(a+3b) = 2p,
which is positive and divides z* if z is even and z* if x is even. Thus,
APB3C3 < 23, A, B,C can take negative values and since we have the
identity (—A)? = —A3, the negative exponents can be moved to the other
side of the equation to become positive cubes, and we have an equation of
the form X3 +Y? = Z3 where X.Y,Z > 0 and Z° < z?. The result then
follows from infinite descent.

Now assume that 3 does divide p. Then p = 3s for some s and 3 does
not divide g. Then 2p(p* + 3¢%) = 3%25(3s% + ¢%), where 3225, 35% + ¢* are
relative prime (else any common factor would have to be a common factor
of s,¢* which is not possible since p, g have different parity. Therefore, by
3225 and 3s? + ¢* are both cubes, so ¢,s admit the factorizations a(a —
3b)(a + 3b),3b(a — b)(a + b) respectively for some integers a,b. Since 3?2s is
a cube, 3%2b(a — b)(a + b) is a cube, thus 2b(a — b)(a + b) is a cube. Now,
it is clear that 2b,a — b, a + b are relatively prime, hence each of them is a
cube since their product is, say 2b = A%, a —b = B*,a+b = C? and we have
C3 — B® = A%, An equation of the form X3 4+ Y3 = Z3 can then be found
in the same way as in the previous case where Z3 < z3. Again, by infident
descent, this means that % + y% = 23 cannot be solved in positive integers.
O

3.2.3 Filling the gap

The proof of the existence of a,b s.t. the factorization of p,q above that is
provided in this section is due to Gauss and his work in Z[/—3]. Before
the lemma can be stated and proved, it first has to be shown that the
above factorization of p, ¢ has an equivalent factorization in Z[v/—3|. Recall
that Z[v/=3] = {a +byv/=3} : a,b € Z}. 1t is a ring under the operations
of addition and multiplication defined respectively by (a + byv/—3) + (¢ +
dv=3) = (a+c¢)+ (b+d)v/=3 and (a+by/=3)(c+ dv/—=3) = ac+ ady/—3 +
beyv/ =3+ ad(—3) = (ac—3ad) + (ad 4 be)y/—3. The associative, distributive,
and commutative laws apply, even to multiplication. Thus, Z[v/—3] forms a
commutative ring with unit.

The idea behind working in Z+/—3 is the factorization of p* + 3¢* in
it. Instead of the identity that we had in Proposition 3.7, we have the
factorization p? +3¢® = (p+ qv—3)(p — v=3). If one of the these factors is
a cube, suppose (p + ¢v/—3) = (a + by/=3)3, then the complex conjugate’s
cube will be equal to p — gv/—3, ie. p—qgv/—3 = (a — b\/—é';i)3 (this can
be seen by applying the binomial theorem to (a + by/=3)? and then taking
its conjugate, which factors into (a — b\/—_3)3_), so from the commutavity of
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multiplication, (p + ¢v=3)(p — q¢v/=3) = [(a + bv/=3)(a — by/=3)]*. From
the Binomial theorem, p+ qv/—3 = (a+by/—3)3 = a + 3a%b\/=3 + 3ab?i* +
P (—3v—3 = (a' — 3(152) + 3(a®b — b*)\/=3. So it suffices to find integers
a,bst. p=a’—3ab?, q = 3(a®b — b*), which is just the desired conclusion
from the previous section.

Lemma 3.15 Let a.b be relatively prime numbers s.t. a® + 3b* is a cube.
Then 3 integers p,q s.t. a+bv/=3 = (p + q/=3)3

Before we can prove this lemma, we need some technical results about
the factorization of elements in Z[v/—3].

Proposition 3.16 Ifa.b are relatively prime integers and if a®+3b° is even

then a + by/—3 can be written in the form (1 £ v/=3)(u + vv/—3).

Proof Since a® + 3b% is even, a and b must be of the same parity, and since
they are relatively prime, a,b must both be odd. Therefore, they are of the
form 4n £ 1. Now, either 4|(a + b) or 4|(a — b). Assume the first. Then
4(a® + 3v%) = (12 + (3)12)(a® + ‘3:‘)' )= (r} - %)' + 3(a + b)%. 42 divides

24 352 —3k b 2 . .
atsh - (o 5’) 4 3T — 2 4 42 for some u, v

(a+by/—3)(a—/—3)
1 =

this equation, so we have

integers. Then, factorizing the equatlon in Z[y/ —3] gives

(utvv—=3)(u—vv/—3). Therefore, utuvy/—3 = M u—vy—3 =
{]—\/—'3)_(1—(;—!)\/—‘3) We conclude that a+bv/—3 = (u+vv/—3)(1—+/—3), which
is what was desired.

Now suppose f1|(n — b).. Then a similar argument to the above shows

that a — by/—3 = (u — vy/—3)(1 +/—3) for Hlut\»dhl(, u,v. Not that u, v are

relatively prime, else a, b would not be. Also, a® + .33)‘34(1; +3v%). 0

Proposition 3.17 If a.b are relatively prime and if a®> + 3b% is divisible
by the odd prime P then P can be written in the form p* + 3¢ with p.q
positive integers and a + byv/—3 = (p £ ¢v/—3)(u + vv/—3) where the sign is
appropriately chosen and where u,v are inlegers,

Proof Note that the first statement is just Proposition 3.12. Now, we have
that either P|(pb+ aq) P|(pb — agq). Suppu*—.t the first. Then the equation
P(a®43b%) = (p*+34°)(a® +3b%) = (pa—3qb)*>+3(pb+aq)? is divisble by P?
and we have @ in the form «? + 3v?, where u = 22 qub, v = ;’H% and

in Z[v-3], u+vv—-3 = (p+qv —3}%‘/—3, which implies that a +by/—3 =
(u+vv=3)(p— qv—3).
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Now suppose the latter. A similar argument reveals that a—byv/'—3 = (p+
qv—3)(u++/=3), where u, v are relatively prime and a®+3b* = P(u®+4v?).
O

Proposition 3.18 Let a.b be relatively prime. Then a -+ b\/—3 can be writ-
ten in the form +(p; £ q1v/=3)(p2 + gov/=3)...(pn £ g/ —3), where the p’s
and q’s are positive integers and p;> + 3q;% is either 4 or an odd prime.

Proof If a® + 3b° is even, then it is divisible by 4. If a® + 3b% is not 1 then
it has a factor P equal to 4 or an odd prime, and from the previous two
propositions, we have either a +byv/—3 = (p=£ ¢v/—3)(u + vv/—3) where p® +
3¢ = P. Now, u,v are relatively prime, and from the above decomposition
of a + by/—3, taking a p &+ ¢v/—3 out of u + v/—3 is the same as taking
one out of a + by/—3. We have that u? + 3v° = “% < a?® + 3b?, so by
repeating this process, we know that it must stop, i.e. we will reach a stage
where a + bv/=3 = (p1 £ 1v=3)(p2 £ ©2vV=3)...(pn £ GuvV=3)(u + vv/=3)

where u? +3v? = 1. Thus, u = £1, v = 0, and we have the desired result. [J

Proposition 3.19 Leta, b be relatively prime. Then the factors in the above
factorization of a + b\/—3 are completely determined, except for the choice
of sign as indicated, by the fact that (p12 +3q12)(p2? +3¢22)...(pn2% +3¢,2) =
(a® + 3b%) is a factorization of a® + 3b* into odd primes and 4’s. Moreover,
if the factor p + qv/—3 occurs then the factor p — gv/—3 does not, and this
holds conversely.

Proof In the first statement, we want to show that p®+3¢? = P determines
p.q up to a sign if P is 4 or an odd prime. If P=4, then the choice of p.q
is obvious. Suppose that P is an odd prime and that a® + 3b* were another
representation of it, then by Proposition 3.17, a + bv/—3 = (p £ ¢v/—3)(u +
vv/—3), which implies that P = P(u? + 3v?), hence u? + 30 = 1.

So, we have u = +1,v = 0, so we have the desire form a + by/—3 =
+(p + qv/—3). Now since a,b are relatively prime, then p + ¢v/—3 and
p — qv/—3) would give p? + 3¢> as a factor, which is not possible, so the
second statement holds. [

Proof (Of the lemma) Let a® + 3b*> = P P,...P, be a factorization into 4s
and odd primes as in the previous proposition. Then, if this factorization
contains k factors of 4, 22° is the largest power of 2 dividing a? + 3b2..
Since a? + 3b% is a cube, 2k (hence, a fortiori, k) must be multiples of 3.
Any odd prime p in the factorization must occur with a multiplicity which
is a multiple of 3, thus n is divisible by 3 and the factors P P;...P, can
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be arranged s.t. Psyro1 = Parpio = Pspag, whence, in the factorization of
a+ by/—3 given by Proposition 3.16 the factors corresponding to each group
of three P’s are identical because the only choice is the one of sign and we
cannot have both signs. Taking one factor from each group of three and
multplying them together then gives a number ¢ + dy/—3 s.t. a + bh/—3 =
+(e+dyv/—3)3. Since (—c+dy/—3)? = (—¢—dv/—3)?, the desired conclusion
follows. [

This completes our dicussion on Fermat’s method of infinite descent.
This exposition was meant to provide an introduction to method of infinite
descent and how it can be used to solve various number theoretic problems.
The reason that both Euler’s and Gauss’s proofs for the exponent n=3 for
FLT was to motivate two different problems. Similar properties to those that
were derived for numbers of the form a? + 3b? can be derived for numbers of
the form a® 4 2b%, and the properties of these numbers is then used to show
(via infinite descent) that the only solution to the Diophantine equation
2?42 =19%is (z,y) = (5,3). Similarly, Legendre studied the properties of
elements of Z[y/=5] to establish Fermat’s Last Theorem for the exponent
n=>5, and he also used the method of infinite descent. This is outlined in [1]
For the motivated reader, a detailed proof can be found in Larry Freeman's
blog [5]. A caveat: There might be typing mistakes present in the blog
and it is a bit hard to navigate, but it is amazingly detailed. Also, Gauss’s
complete proof of FLT for n=3 can be seen in [3].
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