
AN INTRODUCTION TO GAUSS’S NUMBER THEORY

Andrew Granville

We present a modern introduction to number theory, aimed both at students who
have little experience of university level mathematics, as well as those who are completing
an undergraduate degree. Like most introductions to number theory, our contents are
largely inspired by Gauss’s Disquisitiones Arithmeticae (1804), though we also include
many modern developments. We have gone back to Gauss to borrow several excellent
examples to highlight the theory.

There are many different topics that might be included in an introductory course in
number theory, though there are some topics, like the law of quadratic reciprocity, that
should surely appear in any such course. We therefore present a “basic” course as the first
dozen chapters of the book.

There are fifty additional chapters in the second half of the book, which are meant to
further highlight the material in the first 12 chapters, any of which may be used in a course.
For example, some students may need to work simple proofs with induction hypotheses,
so we include chapters on sums of powers, and on recurrence sequences. Other students
might be ready for advanced material, like modular functions, so we discuss these too. We
also use some of these additional chapters to better explain how elementary number theory
fits in with other subjects like algebra and group theory, and give some idea how it leads
to algebraic number theory, complex analysis, harmonic analysis and Galois theory. Many
of these chapters can be used for independent reading projects, and point the reader to
further, deeper references.

The most unusual feature of the book is that exercises appear embedded in the text.1

This is done to enable the student to complete the proofs of theorems.2 This does not
require the students to come up with new ideas but rather to follow the arguments given
so as to fill in the gaps.

We have chosen to give several proofs of various key results, not to confuse the reader
but to highlight how well the subject hangs together.

The most unconventional choice in our “basic course” is to give Gauss’s original proof
of the law of quadratic reciprocity, rather than Eisenstein’s proof (which we do give in
the additional section C8), which we find is much more motivated by the introductory
material, although a little bit more complicated.

1Though all of the exercises can be downloaded, as a separate list, from ....
2Often students have little experience with proofs, and struggle with the level of sophistication

required without adequate help.
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There is a tremendous leap in the level of mathematical knowledge required to take
graduate courses in number theory, because our curriculum expects the student to have
taken (and appreciated) several other relevant courses. This is a shame since so there is so
much beautiful advanced material that is easily accessible after finishing an introductory
course. Moreover, it can be easier to study other courses, if one already understands their
importance, rather than taking it on trust. Thus this book, An introduction to Gauss’s
Number Theory is designed to lead to two subsequent books, which develop the two main
thrusts of number theory research:

In The distribution of primes: An introduction to analytic number theory, we will
discuss how number theorists have sought to develop the themes of Chapter 5 (as well
as Chapters 4, and section E and F). In particular we prove the prime number theorem,
based on the extraordinary ideas of Riemann. This proof rests heavily of certain ideas from
complex analysis, which we will outline in a way that is relevant for a good understanding
of the proofs.

In Rational points on curves: An introduction to arithmetic geometry, we look at
solutions to Diophantine equations, especially those of degree two and three, extending
the ideas of Chapter 12 (as well as sections C and H). In particular we will prove Mordell’s
Theorem, and gain a basic understanding of modular forms, outlining the main steps
in Wiles’ proof of Fermat’s Last Theorem. We avoid a deep understanding of algebraic
geometry, instead proceeding by more elementary techniques and a little complex analysis
(which we explain).
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Notation

N – The natural numbers, 1, 2, 3, . . .
Z – The integers, . . . ,−3,−2,−1, 01, 2, 3, . . .

Throughout all variables are taken to be integers, unless otherwise specified.
Usually p, and sometimes q, will denote prime numbers.

Q – The rational numbers, that is the fractions a/b with a ∈ Z and b ∈ N.
R – The real numbers
C – The complex numbers
A[x] — The set of polynomials with coefficients from the set A, that is f(x) =

∑d
i=0 aix

i

where each ai ∈ A. Mostly we work with A = Z.
∑

Some variables:
Certain conditions hold

summand and
∏

Some variables:
Certain conditions hold

summand,

mean that we sum, or product, the summand over the integer values of some variable,
satisfying certain conditions.
[t] — The integer part of t. That is, the largest integer ≤ t.
{t} — The fractional part of (real number) t. That is {t} = t−[t]. Notice that 0 ≤ {t} < 1.
(a, b) — The greatest common divisor of a and b.
[a, b] — The least common multiple of a and b.
b|a — means b divides a
pk‖a — means pk divides a, but not pk+1 (where p is prime)
I(a, b) — The ideal {am+ bn : m,n ∈ Z}
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1. The Euclidean Algorithm

1.1. Finding the gcd. You probably know the Euclidean algorithm, used to find the
greatest common divisor of two given integers. For example, to determine the greatest
common divisor of 85 and 48, we begin by subtracting the smaller from the larger, 48 from
85, to obtain 85−48 = 37. Now gcd(85, 48) = gcd(48, 37) and we apply the algorithm again
to the pair 48 and 37. So we subtract the smaller from the larger to obtain 48− 37 = 11,
so that gcd(48, 37) = gcd(37, 11). Next we should subtract 11 from 37, but then we would
only do so again, and a third time, so let’s do all that in one go and take 37− 3× 11 = 4,
to obtain gcd(37, 11) = gcd(11, 4). Similarly we take 11− 2× 4 = 3, and then 4− 3 = 1, so
that the gcd of 85 and 48 is 1. This is the Euclidean algorithm that you learnt in school,
but did you ever prove that it really works?

To do so, we must first carefully define what we have implicitly used in the above
paragraph:

We say that a is divisible by b or b divides a,3 if there exists an integer q such that
a = qb. For convenience we write “b|a”.4
Exercise 1.1.1. (a) Prove that if b divides a then either a = 0 or |a| ≥| b|.

(b) Deduce that if a|b and b|a then b = ±a.
(c) Prove that if a divides b and c then a divides bx+ cy for all integers x, y.
(d) Prove that if a divides b, and b divides c, then a divides c.

In general we have

Lemma 1.1. If a and b > 0 are integers then there exist integers q and r, with 0 ≤ r ≤
b− 1, such that a = qb+ r. We call q the “quotient”, and r the “remainder”.

Proof. Let r be the smallest element of the set S := {a+ nb ≥ 0 : n ∈ Z}, say r = a− qb
with q ∈ Z. Evidently the set is non-empty (as may be seen by selecting n sufficiently
large) so that r exists. Now r ≥ 0 by definition, and if r = a− qb then we have r < b else
a− bq ≥ b so that r − b = a− (q + 1)b ∈ S, contradicting the minimality of r.

Exercise 1.1.2. (i) Let [t] be the integer part of t, that is the largest integer ≤ t. Prove that q = [a/b].

(ii) Let {t} to be the fractional part of t, that is {t} = t− [t]. Prove that r = b{r/b} = b{a/b}.
(A common source of confusion comes when applying these functions to negative numbers. Note, for

example, that [−3.14] = −4 and {−3.14} = .86)

We say that d is a common divisor of a and b if d divides both a and b. We are
interested here in the greatest common divisor of a and b, which is often written gcd(a, b)
or simply (a, b).5

Exercise 1.1.3. Show that if a and b are not both 0, then gcd(a, b) is a positive integer.

We say that a is coprime with b, or a and b are coprime integers or relatively prime if
(a, b) = 1.

Corollary 1.2. If a = qb+ r where a, b, q and r are integers, then gcd(a, b) = gcd(b, r).

3Also, one can say, a is a multiple of b, or b is a divisor of a, or b is a factor of a.
4And if b does not divide a, we write “b $ |a”.
5In the UK this is known as the highest common factor of a and b, and written hcf(a, b).
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Proof. Let g = gcd(a, b) and h = gcd(r, b). Now g divides a and b, so g divides a− qb = r
(by exercise 1.1.1(c)). Therefore g is a common divisor of both r and b, and therefore
g ≤ h. Similarly h divides b and r, so h divides qb + r = a and hence h is a common
divisor of both a and b, and therefore h ≤ g. We have shown that g ≤ h and h ≤ g, which
together imply that g = h.

Exercise 1.1.4. Use Corollary 1.2 to prove that the Euclidean algorithm indeed yields the greatest

common divisor of two given integers. (You should try to prove this by induction on, say, the smallest of

the two integers.)

1.2. Linear combinations. Another aspect of the Euclidean algorithm is that one can
find a linear combination of a and b, over the integers, which equals gcd(a, b); that is, one
can find integers u and v such that

au+ bv = gcd(a, b).

We proceed, as follows, to find integers u and v such that 85u+ 48v = 1 for our example
above. We retrace the steps of the Euclidean algorithm, but in reverse: The final step was
that 1 = 1 · 4 − 1 · 3, a linear combination of 4 and 3. The second to last step used that
3 = 11− 2 · 4, and so

1 = 1 · 4− 1 · 3 = 1 · 4− 1 · (11− 2 · 4) = 3 · 4− 1 · 11,

a linear combination of 11 and 4. This then implies, since we had 4 = 37− 3 · 11, that

1 = 3 · (37− 3 · 11)− 1 · 11 = 3 · 37− 10 · 11,

linear combination of 37 and 11. Continuing in this way, we deduce:

1 = 3 · 37− 10 · (48− 37) = 13 · 37− 10 · 48 = 13 · (85− 48)− 10 · 48 = 13 · 85− 23 · 48,

that is, we have the desired linear combination of 85 and 48.
To prove that this method always works, we use Lemma 1.1 again: Suppose that

a = qb + r so that gcd(a, b) = gcd(b, r) by Corollary 1.2, and we have bu − rv = gcd(b, r)
for some integers u and v. Then

(1.2.1) gcd(a, b) = gcd(b, r) = bu− rv = bu− (a− qb)v = b(u+ qv)− av,

the desired linear combination of a and b. This allows us to prove the following:

Theorem 1.3. If a and b are positive integers then there exist integers u and v such that

au+ bv = gcd(a, b).

Proof. Interchanging a and b if necessary we may assume that a > b ≥ 1. We shall prove the
result by induction on b. If b = 1 then b only has the divisor 1 so gcd(a, 1) = 1 = 0 ·a+1 ·1.
We now prove the result for b > 1: If b|a then gcd(b, a) = b = 0 · a + 1 · b. Otherwise
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Lemma 1.1 implies that there exist integers q and r such that a = qb+r and 1 ≤ r ≤ b−1.
Since 1 ≤ r < b we know, by the induction hypothesis, that there exist integers u and v
for which bu− rv = gcd(b, r) and then the result follows by (1.2.1).

Exercise 1.2.1. (a) Deduce, from Theorem 1.3, that Theorem 3 also holds for any given integers a and

b, so long as they are not both 0.

(b) Prove that gcd(u, v) = 1 in Theorem 1.3.

Exercise 1.2.2. Prove that if there exist integers u and v such that au+ bv = 1 then gcd(a, b) = 1. (Do

not use Theorem 1.3, but rather exercise 1.1.1(c))

Exercise 1.2.3. Prove that if d divides both a and b then d divides gcd(a, b).

Exercise 1.2.4. Prove that if a divides m, and b divides n then gcd(a, b) divides gcd(m,n). Deduce that

if a divides m, and b divides n where gcd(m,n) = 1 then gcd(a, b) = 1.

Corollary 1.4. If gcd(a,m) = gcd(b,m) = 1 then gcd(ab,m) = 1

Proof. By Theorem 1.3 there exist integers r, s, u, v such that au + mv = br + ms = 1.
Therefore ab(ur) +m(bvr+ aus+msv) = (au+mv)(br+ms) = 1, and the result follows
from exercise 1.2.2.

Corollary 1.5. We have gcd(ma,mb) = m · gcd(a, b) for all integers m ≥ 1.

Proof. By Theorem 1.3 there exist integers r, s, u, v such that au + bv = gcd(a, b) and
(ma)r + (mb)s = gcd(ma,mb). Now gcd(ma,mb) divides ma and mb so it divides mau+
mbv = m ·gcd(a, b). Similarly gcd(a, b) divides a and b, so that m ·gcd(a, b) divides ma and
mb, and therefore gcd(ma,mb) by exercise 1.2.3. The result follows for exercise 1.1.1(b),
since the gcd is always positive.

Exercise 1.2.5.(a) Deduce that if A and B are given integers with g =gcd(A,B) then gcd(A/g,B/g) = 1.

(Hint: Try m = g, A = ma, B = mb in Corollary 1.4.)

(b) Show that any rational number u/v where u, v ∈ Z with v $= 0, may be written as r/s where r

and s are coprime integers with s > 0.

We define the set of linear combinations of two integers as follows:

I(a, b) := {am+ bn : m,n ∈ Z}.

This definition can be extended to an arbitrary set of integers in place of {a, b}; that is

I(a1, . . . ak) := {a1m1 + a2m2 + . . .+ akmk : m1,m2, . . . ,mk ∈ Z}.

Corollary 1.6. If a and b are given non-zero integers then we have I(a, b) = I(g) where
g :=gcd(a, b); that is

{am+ bn : m,n ∈ Z} = {gk : k ∈ Z}.

Proof. By Theorem 1.3 we know that there exist u, v ∈ Z such that au+bv = g. Therefore
a(uk) + b(vk) = gk so that gk ∈ I(a, b) for all k ∈ Z; that is I(g) ⊂ I(a, b). On the other
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hand, as g divides both a and b, there exist integers A,B such that a = gA, b = gB, and
so any am+ bn = g(Am+Bn) ∈ I(g). That is I(a, b) ⊂ I(g). The result now follows from
the two inclusions.

Exercise 1.2.6. Show that I(a1, . . . ak) = I(g) for any non-zero integers a1, . . . ak, where g =gcd(a1, . . . ak).

Exercise 1.2.7. Deduce that if we are given integers a1, a2, . . . , ak, not all zero, then there exist integers
m1,m2, . . . ,mk such that

m1a1 +m2a2 + . . .+mkak = gcd(a1, a2, . . . , ak).

We say that the integers a1, a2, . . . , ak are relatively prime if gcd(a1, a2, . . . , ak) = 1. We say that they

are pairwise coprime if gcd(ai, aj) = 1 whenever i $= j. Note that 6, 10, 15 are relatively prime, but far

from pairwise coprime (since each pair of integers has a common factor > 1).

Exercise 1.2.8. Suppose that a, b and c are non-zero integers for which a + b = c. Show that a, b, c

are relatively prime if and only if they are pairwise coprime. Show that this is false for solutions to

a+ b = c+ d.

We have now proved that the Euclidean algorithm can be used to find the gcd of two
given integers a and b, as well as integers u and v such that au + bv = gcd(a, b). This is
more than mere proving the existence of u and v, which is all that was claimed in Theorem
1.3. However, the price that we paid for also obtaining the values of u and v was our
somewhat complicated analysis of the Euclidean algorithm. However, if we want to only
prove that such integers u and v exist, then we can do so with a somewhat easier proof:

Non-constructive proof of Theorem 1.3. Let h be the smallest positive integer that belongs
to I(a, b), say h = au+ bv. Then g := gcd(a, b) divides h, as g divides both a and b.

Lemma 1.1 implies that there exist integers q and r, with 0 ≤ r ≤ h − 1 such that
a = qh+ r. Therefore

r = a− qh = a− q(au+ bv) = a(1− qu) + b(−qv) ∈ I(a, b),

which contradicts the minimality of h, unless r = 0; that is h divides a. An analogous
argument reveals that h divides b, and so h divides g by exercise 1.2.3.

Hence g divides h, and h divides g, so that g = h as desired.

In section C1 we discuss how the sets I(a, b) generalize to other number domains, and
discuss some of the basic theory attached to that. This is recommended to be inserted
here particularly for classes in which many of the students have had a course in algebra.

In our analysis, up until, now we have considered the Euclidean algorithm, one step
at a time. It is convenient to give appropriate notation for the steps of the Euclidean
algorithm, so that we can consider all the steps together:

1.3. Continued Fractions. If a > b > 1 with (a, b) = 1 then Lemma 1.1 and Corollary
1.2 yield that there exists integers q and r, with b > r ≥ 1 such that

a

b
= q+

r

b
= q+

1
b
r

.
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This is admittedly a strange way to write things, but repeating this process with the pair
of integers b and r, and then again, will eventually lead us to an interesting representation
of the original fraction a/b. It is easiest to work with an example: In our original example
we found the gcd of 85 and 48. The first step, that 85 = 48 + 37, can be re-written as

85

48
= 1+

37

48
,

and the next step, 48 = 37 + 11, as

48

37
= 1+

11

37
, so that

85

48
= 1+

1
48
37

= 1+
1

1+ 11
37

.

The remaining steps of the Euclidean algorithm may re-written as

37

11
= 3+

4

11
,
11

4
= 2+

3

4
, and

4

3
= 1+

1

3
,

so that

85

48
= 1+

1

1+ 11
37

= 1+
1

1+ 1
3+ 4

11

= 1+
1

1+ 1
3+ 1

2+ 3
4

= 1+
1

1+ 1
3+ 1

2+ 1
1+ 1

3

.

This is the continued fraction for 85
48 and is more conveniently written as [1, 1, 3, 2, 1, 3].

Notice that this is the sequence of quotients ai from the various divisions, that is

a

b
= [a0, a1, a2, . . . , ak] := a0+

1

a1+
1

a2+ 1
a3+...+ 1

ak

.

Exercise 1.3.1. Show that if ak > 1 then [a0, a1, . . . , ak] = [a0, a1, . . . , ak − 1, 1]. Prove that the set

of positive rational numbers are in 1− 1 correspondence with the finite length continued fractions that do

not end in 1.

Taking the rationals that correspond to the first few entries in the continued fraction,
that is [1] = 1, [1, 1] = 2, [1, 1, 3], . . . and

1+
1

1+ 1
3

=
7

4
, 1+

1

1+ 1
3+ 1

2

=
16

9
, 1+

1

1+ 1
3+ 1

2+ 1
1

=
23

13
,

we obtain increasingly good approximations to 85/48 = 1.770833 . . . ; that is

1, 2, 1.75, 1.777 . . . , 1.7692 . . . .

We call these the convergents pj/qj , j ≥ 1 for the continued fraction, defined by

pj
qj

= [a0, a1, a2, . . . , aj ]
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so that a/b = pk/qk. Do you notice anything surprising about the convergents for 85/48?
In particular the previous one, namely 23/13? When we worked through the Euclidean
algorithm we found that 13 · 85 − 23 · 48 = 1 — could it be a co-incidence that all of the
same numbers show up again in this new context? In section C2.1 we show that this is no
co-incidence; indeed we always have

pjqj−1 − pj−1qj = (−1)j−1,

so, in general, if u = (−1)k−1qk−1 and v = (−1)kpk−1 then

au+ bv = 1.

When one studies this in detail, one finds that the continued fraction is really just a conve-
nient reworking of the Euclidean algorithm (as we explained it above) for finding u and v.
Bachet de Meziriac, the celebrated editor and commentator of Diophantus, introduced this
method to Renaissance mathematicians in the second edition of his brilliantly named book
Pleasant and delectable problems which are made from numbers (1624). Such methods
had been known from ancient times, certainly to the Indian scholar Aryabhata in 499 A.D.,
probably to Archimedes in Syracuse (Greece) in 250 B.C., and possibly to the Babylonians
as far back as 1700 B.C.6

6There remain many Cuneiform clay tablets from this era that contain related calculations. It is
known that after conquering Babylon in 331 B.C., Alexander the Great ordered his archivist Callisthenes
and his tutor Aristotle to supervise the translation of the Babylonian astronomical records into Greek. It
is therefore feasible that Archimedes was introduced to these ideas in this way.
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2. Congruences.

2.1. Basic Congruences. If m divides b− c then we write

b ≡ c (mod m),

and say that b and c are congruent modulo m, where m is the modulus. The numbers
involved should be integers, not fractions, and the modulus can be taken in absolute value;
that is b ≡ c (mod m) if and only if b ≡ c (mod |m|), by definition.

For example, −10 ≡ 15 (mod 5), and −7 ≡ 15 (mod 11), but −7 )≡ 15 (mod 3). Note
that b ≡ b (mod m) for all integers m and b.7

The integers ≡ a (mod m) are precisely those of the form a+km where k is an integer,
that is a, a+m, a+2m, . . . as well as a−m, a−2m, a−3m, . . . . We call this set of integers
a congruence class or residue class mod m, and any particular element of the congruence
class is a residue. By Lemma 1.1 there exist integers q and r with 0 ≤ r ≤ m−1, for which
a = qm+ r. Therefore, for every integer a, there exists r ∈ {0, 1, 2, . . . ,m− 1} for which
a ≡ r (mod m). We now prove a generalization of this last remark:

Theorem 2.1. Suppose that m is a positive integer. Exactly one of any m consecutive
integers is ≡ a (mod m).

Proofs. Suppose that we are given the m consecutive integers x, x+ 1, . . . , x+m− 1.
Analytic proof: One of these integers equals a+km, for some integer k, if and only if there
exists an integer k for which

x ≤ a+ km < x+m.

Subtracting a from each term here and dividing through by m, we find that this holds if
and only if

x− a

m
≤ k <

x− a

m
+1.

Hence k must be an integer from an interval of length one which has just one endpoint
included in the interval. One easily sees that such an integer k exists and is unique, indeed
it is the smallest integer that is ≥x−a

m .

Number theoretic proof: By Lemma 1.1 there exist integers q and r with 0 ≤ r ≤ m− 1,
for which a − x = qm + r, with 0 ≤ r ≤ m − 1. Then x ≤ x + r ≤ x + m − 1 and
x+ r = a− qm ≡ a (mod m), and so x+ r is the integer that we are looking for. We still
need to prove that it is unique:

If x + i ≡ a (mod m) and x + j ≡ a (mod m), where 0 ≤ i < j ≤ m − 1 then
i ≡ a− x ≡ j (mod m), so that m divides j − i which is impossible as 1 ≤ j − i ≤ m− 1.

Theorem 2.1 implies that any m consecutive integers yields a complete set of residues
(mod m); that is every congruence class (mod m) is represented by exactly one element
of the given set of m integers. For example, every integer has a unique residue amongst

The least non-negative residues (mod m) : 0, 1, 2, . . . , (m− 1),

7We adopt the symbol ≡ because of the analogies between equality and congruence; to avoid ambi-
guity, one makes a minor distinction between the two notations, by adding the extra bar.
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as well as amongst

The least positive residues (mod m) : 1, 2, . . . ,m,

and also amongst

The least negative residues (mod m) : −(m− 1), −(m− 2), . . . , −2, −1, 0.

If the residue is not 0 then these residues occur in pairs, one positive the other negative,
and at least one of each pair is ≤ m/2 in absolute value, which we call the absolutely least
residue (mod m) (and when m is even we select m/2 rather than −m/2). For example 2
is the absolutely least residue of −13 (mod 5), whereas −3 is the least negative residue. 5
is its own least positive residue mod 7, and −2 is the least negative residue as well as the
absolutely least.

We defined a complete set of residues to be any set of representatives for the residue
classes mod m, one for each residue class. A reduced set of residues has representatives
only for the residue classes that are coprime with m. For example {0, 1, 2, 3, 4, 5} is a
complete set of residues (mod 6), whereas {1, 5} is a reduced set of residues.
Exercise 2.1.1. Prove that the set of integers in the congruence class a (mod d) can be partitioned into

the set of integers in the congruence classes a (mod kd), a+ d (mod kd), . . . , a+ (k − 1)d (mod kd).

Exercise 2.1.2. Show that if a ≡ b (mod m) then (a,m) = (b,m).

Exercise 2.1.3. Prove that the property of congruence modulo m is an equivalence relation on the

integers. To prove this one must establish (i) a ≡ a (mod m); (ii) a ≡ b (mod m) implies b ≡ a (mod m);

and (iii) a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m).

The equivalence classes are therefore the congruence classes mod m.

One consequence of this is that congruent numbers have the same least residues,
whereas non-congruent numbers have different least residues.

The main use of congruences is that it simplifies arithmetic when we are looking into
questions about remainders. This is because the usual rules for addition, subtraction and
multiplication work for congruences; division is a little more complicated, as we shall see.

Lemma 2.2. If a ≡ b (mod m) and c ≡ d (mod m) then

a+ c ≡ b+ d (mod m)

a− c ≡ b− d (mod m)

and ac ≡ bd (mod m).

Proof. By hypothesis there exist integers u and v such that a− b = um and c− d = vm.
Therefore

(a+ c)− (b+ d) = (a− b) + (c− d) = um+ vm = (u+ v)m

so that a+ c ≡ b+ d (mod m),

(a− c)− (b− d) = (a− b)− (c− d) = um− vm = (u− v)m
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so that a− c ≡ b− d (mod m), and

ac− bd = a(c− d) + d(a− b) = a · vm+ b · um = (av + bu)m

so that ac ≡ bd (mod m).

Exercise 2.1.4. Show that, in Lemma 2.2, for any integers k and l we have ka+ lc ≡ kb+ ld (mod m).

To see that division does not work so easily, try to divide each side of 8 ≡ 2 (mod 6)
by 2. This yields the incorrect “4 ≡ 1 (mod 6)”. To make this correct we need to divide
the modulus through by 2 also, so as to obtain 4 ≡ 1 (mod 3). However even this is not the
whole story, for if we wish to divide both sides of 21 ≡ 6 (mod 5) through by 3, we cannot
also divide the modulus, since 3 does not divide 5. However, in this case one does not need
to divide the modulus through by 3, indeed 7 ≡ 2 (mod 5). So what is the general rule?
We shall return to this question in Lemma 3.5. For now the only observation we make is
the following easy exercise:
Exercise 2.1.5. Prove that if a ≡ b (mod m) then a ≡ b (mod d) for any divisor d of m.

Let Z[x] denote the set of polynomial with integer coefficients.

Corollary 2.3. If f(x) ∈ Z[x] and a ≡ b (mod m) then f(a) ≡ f(b) (mod m).

Proof. Since a ≡ b (mod m) we have a2 ≡ b2 (mod m) by Lemma 2.2, and then ak ≡ bk

(mod m) for all integers k, by induction. Now, writing f(x) =
∑d

i=0 fix
i where each fi is

an integer, we have

f(a) =
d∑

i=0

fia
i ≡

d∑

i=0

fib
i = f(b) (mod m),

by exercise 2.1.4.

This result can be extended to polynomials in many variables.
Exercise 2.1.6. Prove that if f(t) ∈ Z[t] and r, s ∈ Z then r − s divides f(r)− f(s).

Therefore, for any given polynomial f(x) ∈ Z[x], the sequence f(0), f(1), f(2), f(3), . . .
modulo m is periodic of period m, that is the values repeat every mth time, repeated in-
definitely. More precisely f(n+m) ≡ f(n) (mod m) for all integers n.

Example: If f(x) = x3 − 8x+ 6 and m = 5 then we get the sequence

f(0), f(1), . . . = 1, 4, 3, 4, 3, 1, 4, 3, 4, 3, 1 . . .

and the first five terms 1, 4, 3, 4, 3 repeat infinitely often. Moreover we get the same pattern
if we run though the consecutive negative integer values for x.

Note that in this example f(x) is never 0 or 2 (mod 5). Thus neither of the two
equations

x3 − 8x+ 6 = 0 and x3 − 8x+ 4 = 0

can have solutions in integers.
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Exercise 2.1.7. Let f(x) ∈ Z[x]. Suppose that f(r) $≡ 0 (mod m) for all integers r in the range

0 ≤ r ≤ m− 1. Deduce that there does not exist an integer n for which f(n) = 0.

Exercise 2.1.8.(a) Take f(x) = x2 in Corollary 2.3 to determine all of the squares modulo m, for

m = 3, 4, 5, 6, 7, 8, 9 and 10. (Note that “the squares modulo m” means the congruence classes (mod m)

that are equivalent to the squares of other congruence classes (mod m).)

(b) Show that there are no solutions in integers x, y, z to x2 + y2 = z2 with x and y odd. (Hint: Use

the results for m = 4 from (a).)

2.2. Tests for divisibility. There are easy tests for divisibility based on ideas from this
section. For instance writing an integer in decimal as

a+ 10b+ 100c+ . . . ≡ a+ b+ c+ . . . (mod 9),

we can test our integer (the first number) for divisibility by 9, by testing the latter for
divisibility by 9. In other words, if an integer is written in decimal notation then it is
divisible by 9 if and only if the sum of its digits is divisible by 9.

This same test works for divisibility by 3, (by exercise 2.1.5) since 3 divides 9. For
example, is 7361842509 divisible by 9? This holds if and only if 7+ 3+ 6+ 1+ 8+ 4+ 2+
5+0+9 = 45 is divisible by 9, which holds if and only if 4+ 5 = 9 is divisible by 9, which
it is. The key idea behind this divisibility test is that 10 ≡ 1 (mod 9), and so 10k ≡ 1
(mod 9) for all k ≥ 0.

For the modulus 11 we have that 102 = 100 ≡ 1 (mod 11) and, in general, that

102k = (102)k ≡ 1k ≡ 1 (mod 11) and 102k+1 = 102k · 10 ≡ 1 · (−1) ≡ −1 (mod 11).

Therefore
a+ 10b+ 100c+ . . . ≡ a− b+ c . . . (mod 11).

Therefore 7361842509 is divisible by 11 if and only if 7−3+6−1+8−4+2−5+0−9 = 1
divisible by 11, which it is not.

One may deduce similar rules to test for divisibility by any integer, though we will
need to develop our theory of congruences. We return to this theme in section 7.6.
Exercise 2.2.1. Invent tests for divisibility by 2 and 5 (easy), and also by 7 and 13 (similar to the above).

Try and make one test that tests for divisibility by 7, 11 and 13 simultaneously (assuming that one knows

about the divisibility of every integer up to 1000, by 7, 11 and 13).
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3. The basic algebra of number theory

A prime number is an integer n > 1 whose only positive divisors are 1 and n. Hence
2, 3, 5, 7, 11, . . . are primes. Integer n > 1 is composite if it is not prime.
Exercise 3.1.1. Suppose that p is a prime number. Prove that gcd(p, a) = 1 if and only if p does not

divide a.

3.1. The Fundamental Theorem of Arithmetic. All the way back to ancient Greek
times, mathematicians recognized that abstract lemmas allowed them to prove sophisti-
cated theorems. The archetypal result is “Euclid’s Lemma”, an important result that first
appeared in Euclid’s “Elements” (Book VII, No. 32).

Euclid’s Lemma. If c divides ab and gcd(c, a) = 1 then c divides b.

This has the following important consequence, taking c = p prime:

Theorem 3.1. If prime p divides ab then p must divide at least one of a and b.

The hypothesis in Theorem 3.1 that p is prime, and the hypothesis in Euclid’s Lemma
that gcd(c, a) = 1, are certainly necessary, as may be understood from the example where
4 divides 2 · 6, but 4 does not divide either 2 or 6.

We begin by giving Gauss’s proof of Theorem 3.1, which is (arguably) more intuitive
than the usual proof of Euclid’s lemma:

Gauss’s proof of Theorem 3.1. Suppose that this is false so there exist positive integers a
and b that are not divisible by p, and yet ab is divisible by p (if a or b is negative, replace
them by −a or −b, respectively). Pick the counterexample with b as small as possible, and
note that 0 < b < p else if n is the least residue of b mod p, then n ≡ b )≡ 0 (mod p) and
an ≡ ab ≡ 0 (mod p), contradicting the minimality of b.

We also have b > 1 else p divides a · 1 = a.
Let B be the least positive residue of p (mod b), so that 1 ≤ B < b < p, and therefore

p) |B. Writing B = p− kb for some integer k we have

aB = a(p− kb) = pa− (ab)k ≡ 0 (mod p).

So we have constructed a new example where p divides aB but p does not divide either
a or B, with 1 ≤ B < b. But this example contradicts the minimality of b, and therefore
there can be no counterexamples.

The slick, but unintuitive proof of Euclid’s lemma. Since gcd(c, a) = 1 there exist integers
m and n such that cm+ an = 1 by Theorem 1.3. Hence c divides

c · bm+ ab · n = b(cm+ an) = b.

Corollary 3.2. If am = bn then a/gcd(a, b) divides n.

Proof. Let a/gcd(a, b) = A and b/gcd(a, b) = B so that (A,B) = 1 by exercise 1.2.5(a),
and Am = Bn. Therefore A|Bn with (A,B) = 1, and therefore A|n by Euclid’s Lemma.

Exercise 3.1.2. Prove that if prime p divides a1a2 . . . ak then p divides aj for some j, 1 ≤ j ≤ k.

With this preparation we are ready to prove the first great theorem of number theory,
which appears in Euclid’s “Elements”:
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The Fundamental Theorem of Arithmetic. Every integer n > 1 can be written as a
product of primes in a unique way (up to re-ordering).

By “re-ordering” we mean that although one can write 12 as 2× 2× 3, or 2× 3× 2, or
3 × 2 × 2, we count all of these as the same product, since they involve the same primes,
each the same number of times, differing only in the way we order the prime factors.

Proof. We first show that there is a factorization of n into primes. We prove this by
induction on n: If n is prime then we are done; since 2 and 3 are primes, this also starts our
induction hypothesis. If n is composite then it must have a divisor a for which 1 < a < n,
and so b = n/a is also an integer for which 1 < b < n. Then, by the induction hypothesis,
both a and b can be factored into primes, and so n = ab equals the product of these two
factorizations. (For example, to prove the result for 1050, we note that 1050 = 15× 70; we
have already observed the factorization of 15 and 70, namely 15 = 3×5 and 70 = 2×5×7,
so that 1050 = 15× 70 = (3× 5)× (2× 5× 7) = 2× 3× 5× 5× 7.)

Now we prove that there is just one factorization for each n ≥ 2. If this is not true
then let n be the smallest integer ≥ 2 that has two distinct factorizations,

p1p2 · · · pr = q1q2 · · · qs,

where the pi and qj are primes. Now prime pr divides q1q2 · · · qs, and so pr divides qj for
some j, by exercise 3.1.2. But then pr must equal qj since qj is a prime and hence its only
prime divisor is itself. Re-ordering the qj if necessary we may assume that j = s, and if
we divide through both factorizations by pr = qs then we have two distinct factorizations
of

n/pr = p1p2 · · · pr−1 = q1q2 · · · qs−1,

which contradicts the minimality of n unless n/pr = 1. But then n = pr is prime, and by
the definition (of primes) it can have no other factor.

It is useful to write the factorizations of natural numbers in a standard form, like

n = 2n23n35n57n7 . . . ,

with each ni ≥ 0, and where only finitely many of the ni are non-zero. Usually we only
write down those prime powers where ni ≥ 1, for example 12 = 22 · 3 and 50 = 2 · 52.

It is important to note that our proof of the Fundamental Theorem of Arithmetic
is constructive but it does not provide an efficient way to find the prime factors of a
given integer n. Indeed find efficient techniques for factoring an integer is a difficult and
important problem, which we discuss, in part, in Chapter 10.
Exercise 3.1.3.(a) Prove that every natural number has a unique representation as 2km with k ≥ 0 and

m an odd natural number.

(b) Show that any integer n ≥ 3 has a divisor which is either 4 or an odd prime.

Exercise 3.1.4.(a) Show that if all of the prime factors of an integer n are ≡ 1 (mod m) then n ≡ 1

(mod m). Deduce that if n $≡ 1 (mod m) then n has a prime factor that is $≡ 1 (mod m).

(b) Show that if all of the prime factors of an integer n are ≡ 1 or 3 (mod 8) then n ≡ 1 or 3 (mod 8).

Prove this with 3 replaced by 5 or 7. Generalize this as much as you can.
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We write pe‖n if pe is the highest power of p that divides n; thus 32‖18 and 111‖1001.
Suppose that n =

∏
p prime p

np , a =
∏

p p
ap , b =

∏
p p

bp .8 If n = ab then

2n23n35n5 · · · = 2a23a35a5 · · · 2b23b35b5 · · · = 2a2+b23a3+b35a5+b5 · · · ,

so by the fundamental theorem of arithmetic we have np = ap + bp for each prime p. As
ap, bp ≥ 0 for each prime p, we can deduce that 0 ≤ ap ≤ np. In the other direction if
a = 2a23a35a5 . . . with each 0 ≤ ap ≤ np then a divides n since we can write n = ab where
b = 2n2−a23n3−a35n5−a5 . . .

From this we can deduce that the number of divisors a of n is equal to the number of
possibilities for the exponents ap, that is each ap is an integer in the range 0 ≤ ap ≤ np.
There are, therefore, np + 1 possibilities for the exponent ap, for each prime p, making

(n2 + 1)(n3 + 1)(n5 + 1) . . .

possible divisors in total. Hence if we write τ(n) for the number of divisors of n, then

τ(n) =
∏

p prime
pnp‖n

τ(pnp).

Functions like this, in which we can break up the value of the function at n, via the
factorization of n, into the value of the function at the maximum prime powers that divide
n, are called multiplicative functions.

Use the Fundamental Theorem of Arithmetic in all of the remaining exercises in this section.

Exercise 3.1.5. Reprove Corollary 1.4.

Exercise 3.1.6. Prove that if (a, b) = 1 then (ab,m) = (a,m)(b,m).

Exercise 3.1.7. Use the description of the divisors of a given integer to prove the following: Suppose

that we are given positive integers m =
∏

p pmp and n =
∏

p pnp . Then

(i) gcd(m,n) =
∏

p pmin{mp,np} and (ii) lcm[m,n] =
∏

p pmax{mp,np}.

Here lcm[m,n] denotes the least common multiple of m and n, that is the smallest positive
integer which is divisible by both m and n.

The method of exercise 3.1.7(i) for finding the gcd of two integers appears to be much
simpler than the Euclidean algorithm. However, in order to make this method work, one
needs to be able to factor the integers involved: we have not yet discussed techniques for
factoring integers puts severe limitations on the size of numbers for which the method will
easily work. On the other hand, the Euclidean algorithm is very efficient for finding the
gcd of two given integers without needing to know anything else about those numbers.
Exercise 3.1.8.(a) Prove that d divides gcd(a, b) if and only if d divides both a and b.

(b) Prove that lcm[a, b] divides m if and only if a and b both divide m.

8Here, and often hereafter, we suppress writing “prime” in the subscript of
∏

, for convenience.
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Exercise 3.1.9. Deduce that mn = gcd(m,n) · lcm[m,n] for all pairs of natural numbers m and n.

Notice that this allows result allows us to compute the lcm of two integers using the
Euclidean algorithm: To determine, say, lcm[12, 30], we first use the Euclidean algorithm
to show that gcd(12, 30) = 6, and then lcm[12, 30] = 12× 30/gcd(12, 30) = 360/6 = 60.
Exercise 3.1.10. Prove that lcm[ma,mb] = m · lcm[a, b] for any positive integer m.

Exercise 3.1.11. Reprove exercise 1.2.5(a), that if (a, b) = g then (a/g, b/g) = 1.

Exercise 3.1.12. Fix non-zero integers m and n. Prove that for any integers a and b there exists an

integer c for which a
m + b

n= c
L where L = lcm[m,n]. Show that lcm[m,n] is the smallest positive integer

with this property. For this reason we often call lcm[m,n] the lowest common denominator of the fractions

1/m and 1/n.

One can obtain the gcd and lcm for any number of integers by similar means to exercise
3.1.7:

Example: If A = 504 = 23 · 32 · 7, B = 2880 = 26 · 32 · 5 and C = 864 = 25 · 33, then the
greatest common divisor is 23 ·32 = 72 and the least common multiple is 26 ·33 ·5·7 = 60480.

Exercise 3.1.13. Prove that gcd(a, b, c) = gcd(a, gcd(b, c)) and lcm[a, b, c] = lcm[a, lcm[b, c]]

Exercise 3.1.14. Prove that gcd(a, b, c) · lcm[a, b, c] = abc if and only if a, b and c are pairwise coprime.

Exercise 3.1.15. Prove that if each of a, b, c, . . . is coprime with m then so is abc . . .

Exercise 3.1.16. Prove that if a, b, c, . . . are pairwise coprime and they each divide m, then abc . . .

divides m.

Gauss’s proof of Euclid’s Lemma. Since ab is divisible by both a and c, and since (a, c) = 1,
therefore ab is divisible by ac by exercise 3.1.16. Therefore ab/ac = b/c is an integer, and
so c divides b.

Exercise 3.1.17.(a) Deduce that if m ≡ n (mod a) and m ≡ n (mod b) and m ≡ n (mod c), . . . , where

a, b, c, . . . are coprime with one another, then m ≡ n (mod abc) . . .

(b) Prove that each of a, b, c, . . . divides m if and only if lcm[a, b, c, . . . ] divides m. What is the

analogous strengthening of the result in (a)?

Using the representation of an integer in terms of its prime power factors can be useful
when considering powers:
Exercise 3.1.18.(a) Prove that A is the nth power of an integer if and only if n divides the exponent of
all of the prime power factors of A.

(b) Prove that if a, b, c, . . . are pairwise coprime, positive integers and their product is an nth power
then they are each an nth power.

(c) Prove that if ab is a square then a = ±gA2 and b = ±gB2 where g = gcd(a, b). (Hint: Use
exercise 3.1.11.)

Exercise 3.1.19. Let p be an odd prime. Suppose that x, y and z are integers for which xp + yp = zp.

Show that there exist an integer r such that z − y = rp, prp or pp−1rp. (Hint: Factor zp − yp =

(z − y)(zp−1 + zp−2y + . . . + zyp−2 + yp−1) and find the possible gcds of the two factors.) Rule out the

possibility that z − y = prp. (This last part is not easy – you may wish to use Lemma 7.11.)
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3.2. Irrationality. Are there irrational numbers? How about
√
2?

Proposition 3.3. There does not exist a rational number a/b for which
√
2 = a/b. That

is,
√
2 is irrational.

Proof. We may assume, as in any fraction (see exercise 1.2.5(b)), that (a, b) = 1 so that a
and b are minimal, and that b ≥ 1 (and so a ≥ 1). Now if

√
2 = a/b then a = b

√
2 and so

a2 = 2b2.
Write the factorizations

a =
∏

p

pap , b =
∏

p

pbp so that
∏

p

p2ap = 2
∏

p

p2bp ,

where the aps and bps are all integers. Therefore 2a2 = 1+2b2 which is impossible mod 2.

More generally we have

Proposition 3.4. If d is an integer for which
√
d is rational, then

√
d is an integer.

Therefore if integer d is not the square of an integer than
√
d is irrational.

Proof. We may write
√
d = a/b where a and b are coprime positive integers, and a2 =

db2. Write a =
∏

p p
ap , b =

∏
p p

bp , d =
∏

p p
dp where each ap, bp, dp ≥ 0, so that∏

p p
2ap = a2 = db2 =

∏
p p

dp+2bp . Therefore 2ap = 2bp + dp for each prime p, and so
dp = 2(ap − bp) ≡ 0 (mod 2), so that d is a square (by exercise 3.1.18(a)). Moreover if
bp > 0 or dp > 0 then ap = bp + dp/2 > 0, and so bp = 0 as (a, b) = 1. Therefore dp = 2ap,
so that b = 1 and d = a2.

3.3. Dividing in congruences. We are now ready to return to the topic of dividing
both sides of a congruence through by a given divisor.

Lemma 3.5. If d divides both a and b and a ≡ b (mod m) then

a/d ≡ b/d (mod m/g) where g = gcd(d,m).

Proof. We may write a = dA and b = dB for some integers A and B, so that dA ≡ dB
(mod m). Hencem divides d(A−B) and therefore m

g divides d
g (A−B). Now gcd(mg ,

d
g ) = 1

by Corollary 1.4, and so m
g divides A−B by Euclid’s Lemma. The result follows.

For example, we have 14 ≡ 91 (mod 77). Now 14 = 7× 2 and 91 = 7× 13, and so we
divide 7 out from 77 to obtain 2 ≡ 13 (mod 11). More interestingly 12 ≡ 18 (mod 15),
and 6 divides both 12 and 18. However 6 does not divide 15, so we cannot divide this out
from 15, but rather we divide out by gcd(15, 6) = 3 to obtain 2 ≡ 3 (mod 5).

Corollary 3.6. If (a,m) = 1 then: u ≡ v (mod m) if and only if au ≡ av (mod m).

Proof. First use the third part Lemma 2.2 to verify that if u ≡ v (mod m) then au ≡ av
(mod m). Then take a, b, d in Lemma 3.5 to equal au, av, a respectively, so that g =
(a,m) = 1, to verify that if au ≡ av (mod m) then u ≡ v (mod m).

Corollary 3.6 implies that if (a,m) = 1 then

a.0, a.1, . . . , a.(m− 1)

is a complete set of residues (mod m), since there are m of them and no two of them are
congruent. In particular one of these is congruent to 1 (mod m); and so we deduce:
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Corollary 3.7. If (a,m) = 1 then there exists an integer r such that ar ≡ 1 (mod m).
We call r the inverse of a (mod m). We often denote this by 1/a (mod m).

Third Proof of Theorem 1.3. For any given integers A,M let A = ag,M = mg where
g = gcd(A,M) so that (a,m) = 1. Then, by Corollary 3.7, there exists an integer r such
that ar ≡ 1 (mod m), and so there exists an integer s such that ar − 1 = ms; that is
ar −ms = 1. Hence Ar −Ms = g(ar −ms) = g = gcd(A,M), as desired.

This also goes in the other direction:

Second proof of Corollary 3.7. By Theorem 1.3 there exist integers u and v such that
au+mv = 1, and so

au ≡ au+mv = 1 (mod m).

Exercise 3.3.1. Prove that if (a,m) = 1 and b is an integer then

a.0 + b, a.1 + b, . . . , a(m− 1) + b

is a complete set of residues (mod m).

Exercise 3.3.2. Deduce that, whenever (a,m) = 1, for all given integers b and c, there is a unique value

of x (mod m) for which ax+ b ≡ c (mod m).

Exercise 3.3.3. Prove that if {r1, . . . rk} is a reduced set of residues mod m, and (a,m) = 1 then

{ar1, . . . ark} is also a reduced set of residues mod m

3.4. Linear equations in two unknowns. Given integers a, b, c can we find all solutions
in integers m,n to

am+ bn = c ?

Example: To find all integer solutions to 4m + 6n = 10, we begin by noting that we
can divide through by 2 to get 2m + 3n = 5. There is clearly a solution, 2 · 1 + 3 · 1 = 5.
Comparing the two gives 2m + 3n = 5 = 2 · 1 + 3 · 1, so that 2(m − 1) = 3(1 − n). Now
2|3(1−n) and (2, 3) = 1 so that 2|(1−n). Hence we may write n = 1−2$ for some integer
$, and then deduce that m = 1 + 3$. We can imitate this discussion in giving a general
result:

Theorem 3.8. Let a, b, c be given integers. There are solutions in integers m,n to am+
bn = c if and only if gcd(a, b) divides c. If there are solutions then one solution, call it
r, s, can be found using the Euclidean algorithm. All other integer solutions are given by

m = r + $
b

(a, b)
, n = s− $ a

(a, b)
where $ is an integer.

Proof 1. If there are solutions m,n then gcd(a, b) divides am+ bn = c by exercise 1.1.1(c).
Hence there are no solutions when gcd(a, b) does not divide c. On the other hand, we have
seen that there exists integers u, v such that au + bv = (a, b) and so if c = k(a, b) then
a(ku) + b(kv) = c.
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Given one solution r, s to ar+ bs = c we can find all other solutions by noting that if
am+ bn = c = ar + bs then

a(m− r) = b(s− n).

Hence b/(a, b) divides m− r by Corollary 3.2, so we can write m = r + $b/(a, b) for some
integer $, and then n = s− $a/(a, b).

Note that the real solutions to ax+ by = c are given by x = r+kb, y = s−ka, k ∈ R.
The integer solutions come when k = $/(a, b) where $ ∈ Z.

An equation involving a congruence is said to be solved when integer values can be
found for the variables so that the congruence is satisfied. For example 6x + 5 ≡ 13
(mod 11) has the unique solution x ≡ 5 (mod 11), that is all integers of the form 11k+5.

Proof 2. For a given integer m there exists an integer n such that am + bn = c if and
only if am ≡ c (mod b). In that case c ≡ am ≡ 0 (mod (a, b)) as (a, b)|b. If so, write
a = (a, b)A, b = (a, b)B, c = (a, b)C and then we are looking for solutions to Am ≡ C
(mod B) where (A,B) = 1. If q ≡ 1/A (mod B) then this is equivalent to

m ≡ qAm ≡ qC (mod B).

That is the set of solutions m is a residue class mod B = b/(a, b) and the result follows.

There is another way to interpret Theorem 3.8:

The Local-Global Principle for Linear Equations. Let a, b, c be given integers. There
are solutions in integers m,n to am+ bn = c if and only if for all positive integers r there
exist residue classes u, v (mod r) such that au+ bv ≡ c (mod r).

Proof. If am + bn = c then am + bn ≡ c (mod r) for all r ≥ 1. On the other hand if
au + bv ≡ c (mod b) and m is any integer ≡ u (mod b/(a, b)) then am ≡ au + bv ≡ c
(mod b), as a · b/(a, b) = b ·a/(a, b) ≡ 0 (mod b), and so there exists an integer n such that
am+ bn = c.

Remark. Note that it suffices to take only the modulus r = b in this result.

The Frobenius postage stamp problem: If we only have postage stamps worth a cents and b cents
where (a, b) = 1, what amounts can we make up? That is, what is the set

P(a, b) := {am+ bn : m,n ∈ Z, m, n ≥ 0} ?

(Note that in P(a, b) we only allow non-negative coefficients for a and b in our linear combinations,
whereas in I(a, b) there is no such restriction.) Suppose that r is an integer with 0 ≤ r ≤ b − 1. If
N = am + bn ∈ P(a, b) with N ≡ ar (mod ab) then am ≡ N ≡ ar (mod n) so that m ≡ r (mod b) and
hence m = r+ bk for some integer k ≥ 0. Therefore N = am+ bn = ar+ b(n+ak), and so the elements of
P(a, b) in the arithmetic progression ar (mod b) are all those elements of the arithmetic progression that
are ≥ ar. Hence a(b− 1)− b = ab− a− b is the largest integer that is not in P(a, b).

Exercise 3.4.1. Show that if 1 ≤ M,N ≤ ab with (M,ab) = 1 and M +N = ab then exactly one of M
and N is in P(a, b). (Hint: Given a representation of M , find one of N .)

Determining, in general, the largest integer that does not belong P(a, b, c), is an open problem.

3.5. Congruences to several moduli. What are the integers that satisfy given con-
gruences to two different moduli?
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Lemma 3.9. Suppose that a,A, b, B are integers. There exists an integer x satisfying
x ≡ a (mod A) and x ≡ b (mod B) if and only if b ≡ a (mod gcd(A,B)). If so, this holds
for all those x belonging to a unique residue class (mod lcm[A,B]).

Proof. Integers x satisfying x ≡ a (mod A) can be written as x = Ay + a for an arbitrary
integer y, and then Ay + a = x ≡ b (mod B) has solutions if and only gcd(A,B) divides
b − a by Theorem 3.8 (as in the second proof). Moreover Theorem 3.8 gives us that y is
any element of a particular residue class mod B/(A,B), and so x = Ay+ a is any element
of a particular residue class modulo AB/(A,B) = [A,B].

The generalization of this last result is most elegant when we restrict to moduli that
are pairwise coprime.

The Chinese Remainder Theorem. Suppose that m1,m2, . . . ,mk are a set of pairwise
coprime positive integers. For any set of residue classes a1 (mod m1), a2 (mod m2), . . . , ak
(mod mk), there exists a unique residue class x (mod m), where m = m1m2 . . .mk, such
that x ≡ aj (mod mj) for each j.

Proof. We can map x (mod m) to the vector (x (mod m1), x (mod m2), . . . , x (mod mk)).
There are m1m2 . . .mk different such vectors and each different x mod m maps to a dif-
ferent one, for if x ≡ y (mod mj) for each j then x ≡ y (mod m) by exercise 3.1.17(a).
Hence there is a suitable 1-to-1 correspondence between residue classes mod m and vectors,
which implies the result.

This is known as the Chinese Remainder Theorem because of the ancient Chinese practice (as dis-

cussed in Sun Tzu’s 4th century Classic Calculations) of counting the number of soldiers in a platoon

by having them line up in three columns and seeing how many are left over, then in five columns and

seeing how many are left over, and finally in seven columns and seeing how many are left over, etc. For

instance, if there are a hundred soldiers then one has 1,0 and 2 soldiers left over respectively;9 and the

next smallest number of soldiers you would have to have for this to be true is 205 ... Presumably an

experienced commander can eyeball the difference between 100 soldiers and 205! Primary school children

in China learn a song that celebrates this contribution.

In order to make the Chinese Remainder Theorem practical we need an algorithm for
determining x, given a1, a2, . . . , ak. This can be done be constructing a formula for x:
Since (m/mj ,mj) = 1 there exists an integer bj such that bj · m

mj
≡ 1 (mod mj) for each

j, by Corollary 3.7. Then

(3.5) x ≡ a1b1·
m

m1
+a2b2·

m

m2
+ . . .+ akbk·

m

mk
(mod m).

We can verify that this works, since mj divides m/mi for each i )= j, and therefore

x ≡ aj · bj
m

mj
≡ aj · 1 ≡ aj (mod mj)

for each j. Note that the bj can all be determined using the Euclidean algorithm, so x can
be determined rapidly in practice.

9Since 100 ≡ 1 (mod 3),≡ 0 (mod 5), and ≡ 2 (mod 7)
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In Gauss’s 1801 book he gives an example involving what was then a practical question, but one that
is forgotten today. Before pocket watches and cheap printing, people were perhaps more aware of solar
cycles and the moon’s phases then what year it actually was. Moreover from Roman times to Gauss’s
childhood, taxes were hard to collect since travel was difficult and expensive, and so were not paid annually
but rather on a multiyear cycle. Gauss explained how to use the Chinese Remainder Theorem to deduce
the year in the Julian calendar from this information: The three pieces of information given were

• The indiction, which is ≡ year + 3 (mod 15), was used from 312 to 1806 to specify the position of
the year in a 15 year taxation cycle.

• The golden number, which is ≡ year + 1 (mod 19), since the moon’s phases and the days of the
year repeat themselves every 19 years.10

• The solar cycle, which is ≡ year+9 (mod 28), since the days of the week and the dates of the year
repeat in cycles of 28 years in the Julian calender.11

Taking m1 = 15, m2 = 19, m3 = 28, we observe that

b1 ≡
1

19 · 28
≡

1

4 · (−2)
≡ −2 (mod 15) and b1·

m

m1
= −2 · 19 · 28 = −1064;

b2 ≡
1

15 · 28
≡

1

(−4) · 9
≡
1

2
≡ 10 (mod 19) and b2·

m

m2
= 10 · 15 · 28 = 4200;

b3 ≡
1

15 · 19
=

1

(14 + 1) · 19
≡

1

14 + 19
≡
1

5
≡ −11 (mod 28) and b3·

m

m3
= −3135.

Therefore if the indiction is a, the golden number is b, and the solar cycle is c then the year is

≡ −1064a+ 4200b− 3135c (mod 7980).

Exercise 3.5.1. Use this method to give a general formula for x (mod 1001) if x ≡ a (mod 7), x ≡ b

(mod 11) and x ≡ c (mod 13).

Exercise 3.5.2. Suppose that p1 < p2 < . . . < pk are primes, and that f(x) ∈ Z[x]. Prove that there

exist integers a1, . . . ak such that f(ai) ≡ 0 (mod pi) for 1 ≤ i ≤ k, if and only if there exists an integer a

such that f(a) ≡ 0 (mod p1p2 . . . pk).

Exercise 3.5.3. Prove the following version of the The Local-Global Principle for Linear Equations: Let

a, b, c be given integers. There are solutions in integers m,n to am + bn = c if and only if for all prime

powers pe (where p is prime and e is an integer ≥ 1) there exist residue classes u, v (mod pe) such that

au + bv ≡ c (mod pe). (Hint: Use the earlier statement of the local-global principle along with exercise

3.5.2.)

There is more discussion of the Chinese Remainder Theorem in section B2.

10Meton of Athens (5th century BC) observed that 19 (solar) years is less than two hours out from
being a whole number of lunar months.

11Since there are seven days in a week, and leap years occur every four years.
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4. Multiplicative functions

A function f is multiplicative if f(mn) = f(m)f(n) for all pairwise coprime positive
integers m,n; and totally multiplicative if f(mn) = f(m)f(n) for all m,n ≥ 1. We already
saw the example τ(n), which counts the number of divisors of n, which is multiplicative
but not totally multiplicative, since τ(pa) = a + 1. There are many examples of totally
multiplicative functions, for example f(n) = 1, and f(n) = n, and even f(n) = ns for a
fixed complex number s.

What makes multiplicative functions central to number theory is that one can evaluate
a multiplicative function f(n) in terms of the f(pe) for the prime powers pe dividing n.
Exercise 4.1.1. Show that if f is multiplicative, and n =

∏
p prime p

np then

f(n) =
∏

p prime

f(pnp ).

Deduce that if f is totally multiplicative then f(n) =
∏

p f(p)np .

We will focus in this section on two further examples of multiplicative functions of
great interest.

4.1. Euler’s φ-function. It is natural that we wish to know the value of

φ(n) := #{m : 1 ≤ m ≤ n and (m,n) = 1}

for any n ≥ 1. We have already seen that there are always φ(m) elements in a reduced
system of residues. Evidently φ(1) = 1.

Lemma 4.1. φ(n) is a multiplicative function.

Proof. Suppose that n = mr where (m, r) = 1. By the Chinese Remainder Theorem
there is natural bijection between the integers a (mod n) with (a, n) = 1, and the pairs of
integers (b (mod m), c (mod r)) with (b,m) = (c, r) = 1. Therefore φ(n) = φ(m)φ(r).

Hence to evaluate φ(n) for all n we simply need to evaluate it on the prime powers, by
exercise 4.1.1, which is straightforward: If n = p is prime then φ(p) is simply the number
of integers 1, 2, . . . , p − 1; that is φ(p) = p − 1. If n = pa is a prime power then we
count every integer 1 ≤ m ≤ pa except those that are a multiple of p, that is except for
p, 2p, 3p, . . . , (pa−1)p. Therefore

φ(pa) = pa − pa−1 = pa−1(p− 1) = pa
(
1− 1

p

)
.

Hence we deduce

Theorem 4.2. If n =
∏

p prime p
np then

φ(n) =
∏

p prime
p|n

(pnp − pnp−1) =
∏

p prime
p|n

pnp

(
1− 1

p

)
= n

∏

p prime
p|n

(
1− 1

p

)
.
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Example: φ(60) = 60 ·
(
1− 1

2

) (
1− 1

3

) (
1− 1

5

)
= 16, the least positive residues being

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53 and 59.

Exercise 4.1.2. Show that there are [x/d] natural numbers ≤ x that are divisible by d.

We give an alternative proof of Theorem 4.2, based on the inclusion-exclusion principle, in
section F1.

If one looks at values of φ(n) one makes a surprising observation:

Proposition 4.3. We have
∑

d|n φ(d) = n.

Example: For n = 30, we have φ(1)+φ(2)+φ(3)+φ(5)+φ(6)+φ(10)+φ(15)+φ(30) =
1 + 1 + 2 + 4 + 2 + 4 + 8 + 8 = 30

Proof. Given any integer m with 1 ≤ m ≤ n, let d = n/(m,n), which must divide n. Then
(m,n) = n/d so one can write m = an/d with (a, d) = 1 and 1 ≤ a ≤ d. Now, for each
divisor d of n the number of such integers m, equals the number of integers a for which
(a, d) = 1 and 1 ≤ a ≤ d, which is φ(d) by definition. The result follows.

Exercise 4.1.3. Prove that
∏

d|n d = nτ(n)/2, and
∑

1≤m≤n, (m,n)=1 m = nφ(n)/2.

Exercise 4.1.4. The function φ(m) is fundamental in number theory. Looking at its values, Carmichael

came up with the conjecture that for all integers m there exists an integer n $= m such that φ(n) = φ(m).

By considering n = 2m and n = 3m show that Carmichael’s conjecture is true if m is odd or if m is not

divisible by 3. Can you find other classes of m for which it is true? Carmichael’s conjecture is still an

open problem but it is known that if it is false then the smallest counterexample is > 1010
10
?

Exercise 4.1.5. Given a polynomial f(x) ∈ Z[x] let Nf (m) denote the number of a (mod m) for which

f(a) ≡ 0 (mod m). Show that Nf (m) is a multiplicative function. (Hint: Refer to exercise 3.5.2.)

Exercise 4.1.6. Given a polynomial f(x) ∈ Z[x] let Rf (m) denote the number of b (mod m) for which

there exists a (mod m) with f(a) ≡ b (mod m). Show that Rf (m) is a multiplicative function. Can you

be more explicit about Rf (m) for f(x) = x2, the example of exercise 2.1.8?

4.2. Perfect numbers. 6 is a perfect number, the sum of its smaller divisors, since

6 = 1 + 2 + 3.

“Six is a number perfect in itself, and not because God created all things in six
days; rather, the converse is true. God created all things in six days because the
number is perfect...” – from The City of God by Saint Augustine (354-430)

The next perfect number is 28 = 1+ 2+ 4+ 7+ 14 which is the number of days in a lunar
month. However the next, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248, appears to
have little cosmic relevance, though we will be interested in trying to classify them all. To
create an equation we will add the number to both sides to obtain that n is perfect if and
only if

2n = σ(n), where σ(n) :=
∑

d|n

d.
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Exercise 4.2.1. Show that n is perfect if and only if
∑

d|n
1
d= 2.

Exercise 4.2.2. Prove that if (a, b) = 1 then each divisor of ab can be written as "m where "|a and m|b.

By this last exercise we see that if (a, b) = 1 then

σ(ab) =
∑

d|ab

d =
∑

"|a, m|b

$m =
∑

"|a

$ ·
∑

m|b

m = σ(a)σ(b),

proving that σ is a multiplicative function. Now

σ(pk) = 1 + p+ p2 + . . .+ pk =
pk+1 − 1

p− 1

by definition, and so if n =
∏

i p
ki
i then

σ(n) =
∏

i

pki+1
i − 1

pi − 1
.

Proposition 4.4. (Euclid) If 2p − 1 is a prime number then 2p−1(2p − 1) is a perfect
number.

The cases p = 2, 3, 5 correspond to primes 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31
and therefore yield the three smallest perfect numbers 6, 28, 496 (and the next smallest
examples are given by p = 7 and p = 13).

Proof. Since σ is multiplicative we have, for n = 2p−1(2p − 1),

σ(n) = σ(2p−1) · σ(2p − 1) =
2p − 1

2− 1
·(1 + (2p − 1)) = (2p − 1) · 2p = 2n.

After extensive searching one finds that these appear to be the only perfect numbers.
Euler succeeded in proving that these are the only even perfect numbers, and we believe
that there are no odd perfect numbers.

Theorem 4.5. (Euler) If n is an even perfect number then there exists a prime number
of the form 2p − 1 such that n = 2p−1(2p − 1).

Proof. Write n = 2k−1m where m is odd and k ≥ 2, so that if n is perfect then

2km = 2n = σ(n) = σ(2k−1)σ(m) = (2k − 1)σ(m).

Now (2k − 1, 2k) = 1 and so 2k − 1 divides m. Writing m = (2k − 1)M we find that
σ(m) = 2kM = m + M . That is, σ(m), which is the sum of all of the divisors of m,
equals the sum of just two of its divisors (and note that these are different integers since
m = (2k − 1)M ≥ (22 − 1)M > M); this implies that m and M are the only divisors of
m. But the only integers with just two divisors are the primes, so that m is a prime and
M = 1 and the result follows.
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We will discuss numbers of the form 2m − 1 in more detail in the next chapter. In
exercise 5.1.4(a) we will show that if 2p − 1 is prime then p must itself be prime.

It is widely believed that the only perfect numbers were those identified by Euclid;
that is that there are no odd perfect numbers. It has been proved that if there is an odd
perfect number then it is > 10300.
Exercise 4.2.3. Prove that if p is odd and k is odd then σ(pk) is even. Deduce that if n is an odd perfect

then n = pm2 where p is a prime ≡ 1 (mod 4), for some integer m.

Exercise 4.2.4. The integers m and n are amicable if the sum of the proper divisors of m equals n, and

the sum of the proper divisors of n equals m (the proper divsors of m, are those positive integers d|m with

d < m). For example 220 and 284 are amicable. In the tenth century Thâbit ibn Kurrah’s claimed that if

p = 3× 2n−1 − 1, q = 3× 2n − 1 and r = 9× 22n−1 − 1 are each primes then 2npq and 2nr are amicable.

Verify that this is true.
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5. The Distribution of Prime Numbers

Once one begins to determine which integers are primes, one quickly finds that there
are many of them, though as we go further and further, they seem to be a smaller and
smaller proportion of the positive integers. It is also tempting to look for patterns amongst
the primes: Can we find a formula that describes all of the primes? Or at least some of
them? Are there actually infinitely many? And, if so, can we quickly determine how many
there are up to a given point? Or at least give a good estimate? Once one has spent long
enough determining primes, one cannot help but ask whether it is possible to recognize
prime numbers quickly and easily? These questions motivate different parts of this section
and of section 10.

5.1. Proofs that there are infinitely many primes. The first known proof appears
in Euclid’s Elements, Book 9 Proposition 20:

Theorem 5.1. There are infinitely many primes.

Proof 1. Suppose that there are only finitely many primes, which we will denote by 2 =
p1 < p2 = 3 < . . . < pk. What are the prime factors of p1p2 . . . pk+1? Since this number is
> 1 it must have a prime factor by the Fundamental Theorem of Arithmetic, and this must
be pj for some j, 1 ≤ j ≤ k, since all primes are contained amongst p1, p2, . . . , pk. But
then pj divides both p1p2 . . . pk and p1p2 . . . pk + 1, and hence pj divides their difference,
1, by exercise 1.1.1(c), which is impossible.

Exercise 5.1.1. (Proof # 2) Suppose that there are only finitely many primes, the largest of which is n.

Show that this is impossible by considering the prime factors of n!− 1.

Exercise 5.1.2. Prove that there are infinitely many composite numbers.

Euclid’s proof that there are infinitely many primes is a “proof by contradiction”, in
that it proceeds by showing that it is impossible that there are finitely many. It is mildly
disturbing that this proof does not suggest how one might find any of the infinitely many
primes that we now know to exist! We can correct this deficiency by defining the sequence

a1 = 2, a2 = 3 and then an = a1a2 . . . an−1 + 1 for each n ≥ 2.

For each n ≥ 1, let pn be some prime divisor of an. We claim that the pn are all distinct,
and so we have an infinite sequence of distinct primes: If m < n then an ≡ 1 (mod am) by
the construction of an, and so (am, an) = (am, 1) = 1 by exercise 2.1.2. But then pm )= pn
else pm = pn divides (am, an) = 1, which is impossible.

Fermat conjectured that the integers Fn = 22
n

+1 are primes for all n ≥ 0. His claim
starts off correct: 3, 5, 17, 257, 65537 are all prime, but is false for F5 = 641× 6700417, as
Euler famously noted. It is an open question as to whether there are infinitely many primes
of the form Fn.12 Nonetheless we can prove that if pn is a prime divisor of Fn for each n ≥ 0,

12There are no Fermat primes, 22
n
+ 1, known other than for n ≤ 4, and we know that the Fermat

numbers, 22
n
+ 1, are composite for 5 ≤ n ≤ 30 and for many other n besides. It is always a significant

moment when a Fermat number is factored for the first time. It could be that all Fn, n > 4 are composite,
or they might all be prime for some sufficiently large n. Currently, we have no way of knowing what is the
truth.
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then p0, p1, . . . is an infinite sequence of distinct primes, because Fn = F1F2 . . . Fn−1 + 2
for each n ≥ 1, and so (Fm, Fn) = (Fm, 2) = 1 for all m < n, since Fn ≡ 2 (mod Fm).
(This proof appeared in a letter from Goldbach to Euler in July 1730.)

Exercise 5.1.3. Suppose that p1 = 2 < p2 = 3 < . . . is the sequence of prime numbers. Use the fact

that every Fermat number has a distinct prime divisor to prove that pn ≤ 22
n
+ 1. What can one deduce

about the number of primes up to x?

The Mersenne numbers take the form Mn = 2n − 1. In our discussion of perfect
numbers (section 4.2) we observed that M2,M3 and M5 are each prime. That is, Mn is
prime for the three smallest primes n. Does this pattern continue?

Exercise 5.1.4.(a) Prove that if n is composite then Mn is composite, by showing that Ma divides Mab.

Deduce that if Mp is prime then p is prime.

(b) Show that if m is not a power of 2 then 2m+1 is composite by showing that 2a+1 divides 2ab+1

whenever b is odd. Deduce that if 2m + 1 is prime then there exists an integer n such that m = 2n; that

is, if 2m + 1 is prime then it is a Fermat number Fn = 22
n
+ 1.

It is conjectured that there are infinitely many Mersenne primes Mp = 2p − 1.13 We
saw in section 4.2 that the Mersenne primes are in 1-to-1 correspondence with the even
perfect numbers.

Furstenberg’s extraordinary proof that there are infinitely many primes, using point set
topology. Define a topology on the set of integers Z in which a set S is open if it is empty
or if for every a ∈ S there is an arithmetic progression Za,q := {a+ nq : n ∈ Z} which is a
subset of S. Evidently each Za,q is open, and it is also closed since

Za,q = Z \
⋃

b: 0≤b≤q−1, b %=a

Zb,q.

If there are only finitely many primes p then A = ∪pZ0,p is also closed, and so Z \
A = {−1, 1} is open, but this is obviously false since A does not contain any arithmetic
progression Z1,q. Hence there are infinitely many primes.

Remark: This is Euclid’s proof in heavy disguise: In effect Furstenberg’s proof states that
the integer 1 + $p1p2 . . . pk is evidently not in any of the arithmetic progressions Z0,pi so
cannot be divisible by any prime, contradiction. To illustrate this link, we now give a proof
that lies somewhere between those of Euclid and Furstenberg:

Proof # 6. Suppose that there are only finitely many primes, namely p1, p2, . . . , pk. Let
m = p1p2 · · · pk be their product. If r is an integer with (r,m) = 1 then r cannot divisible
by any primes (since they all divide m), and so must equal −1 or 1. Therefore φ(m) =
#{1 ≤ r ≤ m : (r,m) = 1} = 1, but this is easily seen to contradict our formula in
Theorem 4.2.

13It is known that 2p − 1 is prime for p = 2, 3, 5, 7, 13, 17, 19, . . . , 43112609, a total of 47 values as of
January 2013. There is a long history of the search for Mersenne primes, from the first serious computers
to the first great distributed computing project, GIMPS (The Great Internet Mersenne Prime Search).
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5.2. Distinguishing primes. We can determine whether a given integer n is prime in
practice, by proving that it is not composite: If a given integer n is composite then we can
write it as ab, two integers both > 1. If we suppose that a ≤ b then a2 ≤ ab = n and so
a ≤

√
n. Hence n must be divisible by some integer a in the range 1 < a ≤

√
n. Therefore

we can test divide n by every integer a in this range, and we either discover a factor of
n or, if not, we know that n must be prime. This process is called trial division and is
too slow, in practice, except for relatively small integers n. We can slightly improve this
algorithm by noting that if p is a prime dividing a then p divides n, so we only need to
test divide by the primes up to

√
n. This is still very slow, in practice. We discuss more

practical techniques in chapter 7.
Although trial division is a very slow way of recognizing whether an individual integer

is prime, it can be organized so as to be a highly efficient way to determine all of the
primes up to some given point, as was observed by Eratosthenes in about 200 BC.14

The sieve of Eratosthenes provides an efficient method for finding all of the primes up
to x. We begin by writing down every integer up to x and then deleting every composite
even number, that is one deletes every second integer up to x after 2. The first undeleted
integer > 2, is 3; one then deletes every composite integer divisible by 3, that is every
third integer up to x after 3. The next undeleted integer is 5 and one deletes every fifth
integer subsequently. One keeps on going like this, finding the next undeleted integer, call
it p, which must be prime, and then delete every pth integer beyond p and up to x. We
stop once p >

√
x and then the undeleted integers are the primes ≤ x. There are about

x log log x steps in this algorithm, so it is remarkably efficient.
Exercise 5.2.1. Use this method to find all of the primes up to 100.

The number of integers left after one removes the multiples of 2 is roughly 1
2 ·x. After

one removes the multiples of 3, one expects that there are about 2
3 · 1

2 ·x integers left. In
general removing the multiples of p removes, we expect, about 1/p of the integers, and so
leaves a proportion 1− 1

p . Therefore we expect that the number of primes up to x, which
equals the number of integers left, up to x, by the sieve of Eratosthenes, is about

x
∏

p≤
√
x

p prime

(
1− 1

p

)
.

The product
∏

p≤y(1−
1
p ) is well approximated by c/log y, where c ≈ 0.5614594836,15 so

one might guess from these sieve methods that the number of primes up to x is approxi-
mately

(5.2) 2c
x

log x
.

14Eratosthenes lived in Cyrene in ancient Greece, from 276 to 195 B.C. He used his mathematical
abilities to invent the discipline of geography: He created a system of latitude and longitude, and so
drew a map of the world incorporating parallels and meridians. He was the first person to calculate the
circumference of the earth, as well as the tilt of the Earth’s axis, and also approximated the distance from
the earth to the sun (and so invented the leap day). Moreover he attempted to assign dates to ancient
history (like the conquest of Troy) using available evidence.

15This is a fact that is beyond the scope of this book, but will be discussed in [Gr1].
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5.3. Primes in certain arithmetic progressions. How are the primes split between
the arithmetic progressions modulo 3? Or modulo 4? Or modulo any given integer m?
Evidently every integer in the arithmetic progression 0 (mod 3) (that is integers of the
form 3k) is divisible by 3, so the only prime in that arithmetic progression is 3 itself.
There are no such divisibility restrictions for the arithmetic progressions 1 (mod 3) and 2
(mod 3) and if we calculate the primes up to 100 we find

Primes ≡ 1 (mod 3) : 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, . . .
Primes ≡ 2 (mod 3) : 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, . . .

There seem to be lots of primes in either arithmetic progression, and they seem to be
roughly equally split between the two. Let’s see what we can prove. First let’s deal, in
general, with the analogy to the case 0 (mod 3). This includes not only 0 (mod m) but
also cases like 2 (mod 4):
Exercise 5.3.1. Prove that any integer ≡ a (mod m) is divisible by (a,m). Deduce that if (a,m) > 1

then there cannot be more than one prime ≡ a (mod m). Give examples of arithmetic progressions which

contain exactly one prime, and examples which contain none.

Thus all but finitely many primes are distributed among the φ(m) arithmetic progres-
sions a (mod m) with (a,m) = 1. How are they distributed? If the m = 3 case is anything
to go by it appears that there are infinitely many in each such arithmetic progression, and
maybe even roughly equal numbers of primes in each up to any given point.

We will prove that there are infinitely many primes in each of the two feasible residue
classes mod 3 (see Theorems 5.2 and 7.17). Proving that there are roughly equally many
primes, in each of these two arithmetic progressions, is rather more difficult (though true).
Exercise 5.3.2. Use exercise 3.1.4(a) to show that if n ≡ −1 (mod 3) then there exists a prime factor p

of n which is ≡ −1 (mod 3).

Theorem 5.2. There are infinitely many primes ≡ −1 (mod 3).

Proof. Suppose that there are only finitely many primes ≡ −1 (mod 3), say p1, p2, . . . , pk.
The integer N = 3p1p2 . . . pk − 1 must have a prime factor q ≡ −1 (mod 3), by exercise
5.3.2. However q divides both N and N + 1 (since it must be one of the primes pi), and
hence q divides their difference 1, which is impossible.

Exercise 5.3.3. Prove that there are infinitely many primes ≡ −1 (mod 4).

Exercise 5.3.4. Prove that there are infinitely many primes ≡ 5 (mod 6). (Hint: Consider splitting

arithmetic progressions mod 3 into several arithmetic progressions mod 6.)

Exercise 5.3.5. Prove that at least two of the arithmetic progressions mod 8 contain infinitely many

primes (one might use exercise 3.1.4(b) in this proof).

In exercise B4.2, we generalize this considerably, using basically the same ideas.

The 1837 Dirichlet showed that whenever (a, q) = 1 there are infinitely many primes
≡ a (mod q). We discuss this deep result in section E4. In fact we know that the primes
are roughly equally distributed amongst these arithmetic progressions. In other words, half
the primes are ≡ 1 (mod 3) and half are ≡ −1 (mod 3). Roughly 1% of the primes are
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≡ 69 (mod 101) and indeed in each arithmetic progression a mod 101 with 1 ≤ a ≤ 100.
This is a deep result and will be discussed at length in our book [Gr1].

5.4. How many primes are there up to x? When people started to develop large
tables of primes, perhaps looking for a pattern, they discovered no patterns, but did find
that the proportion of integers that are prime is gradually diminishing. In 1808 Legendre
suggested that there are roughly x

log x primes up to x.16 A few years earlier, aged 15 or
16, Gauss had already made a much better guess, based on studying tables of primes:

“In 1792 or 1793 ... I turned my attention to the decreasing frequency of primes
... counting the primes in intervals of length 1000. I soon recognized that behind
all of the fluctuations, this frequency is on average inversely proportional to the
logarithm...” — from a letter to Encke by K.F. Gauss (Christmas Eve 1849).

His observation may be best phrased as

About 1 in log x of the integers near x are prime,

which is (subtly) different from Legendre’s assertion: Gauss’s observation suggests that a
good approximation to the number of primes up to x is

∑x
n=2

1
log n . Now 1

log t is does

not vary much for t between n and n+ 1, and so Gauss deduced that π(x) should be well
approximated by

(5.4.1)

∫ x

2

dt

log t
.

We denote this quantity by Li(x) and call it the logarithmic integral. Here is a comparison
of Gauss’s prediction with the actual count of primes up to various values of x:

16And even the more precise assertion that there exists a constant B such that π(x), the number of
primes up to x, is well approximated by x/(log x−B) for large enough x. This turns out to be true with
B = 1, which was not the value for B suggested by Legendre.
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x π(x) = #{primes ≤ x} Overcount: Li(x)− π(x)

103 168 10
104 1229 17
105 9592 38
106 78498 130
107 664579 339
108 5761455 754
109 50847534 1701
1010 455052511 3104
1011 4118054813 11588
1012 37607912018 38263
1013 346065536839 108971
1014 3204941750802 314890
1015 29844570422669 1052619
1016 279238341033925 3214632
1017 2623557157654233 7956589
1018 24739954287740860 21949555
1019 234057667276344607 99877775
1020 2220819602560918840 222744644
1021 21127269486018731928 597394254
1022 201467286689315906290 1932355208
1023 1925320391606818006727 7236148412

Table 1. Primes up to various x, and the overcount in Gauss’s prediction.

Gauss’s prediction is amazingly accurate. It seems to always be an overcount, but since
the last column (representing the overcount) is always about half the width of the central
column (representing the number of primes up to x), the data suggests that the difference
is no bigger than

√
x, perhaps multiplied by a constant. The data certainly suggests that

π(x)
/
Li(x) → 1 as x → ∞.

Exercise 5.4.1. Integrate (5.4.1) by parts to prove that Li(x) = x
log x − 2

log 2 +
∫ x
2

dt
(log t)2

. By bounding

1/log t by a constant in the range 2 ≤ t ≤
√
x, and by 1/log

√
x for larger t, show that there exists a

constant κN such that
∫ x
2

dt
(log t)2

< κ2
x

(log x)2
for all x ≥ 2. Deduce that

Li(x)
/ x

log x
→ 1 as x → ∞.

Exercise 5.4.2. Prove that 1 is the best choice for B when approximating Li(x) by x/(log x−B).

Combining the result of exercise 5.4.1 with Gauss’s prediction (5.4.1) gives that

π(x)
/ x

log x
→ 1 as x → ∞.

The notation of limits is rather cumbersome notation – it is easier to write

(5.4.2) π(x) ∼ x

log x
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as x → ∞, “π(x) is asymptotic to x/log x”. (In general, A(x) ∼ B(x) is equivalent to
limx→∞ A(x)/B(x) = 1.) This is different by a multiplicative constant from (5.2), our
guesstimate based on the sieve of Eratosthenes. The data here makes it clear that the
constant 1 given here, rather than 2c given in (5.2), is correct.

The asymptotic (5.4.2) is called The Prime Number Theorem and its proof had to wait
until the end of the nineteenth century, requiring various remarkable developments. The
proof was a high point of nineteenth century mathematics and there is still no straight-
forward proof. There are reasons for this: Surprisingly the prime number theorem is
equivalent to a statement about zeros of an analytic continuation, and although proofs
can be given that hides this fact, it still seems to be lurking somewhere just beneath the
surface.17 A proof of the prime number theorem is beyond the scope of this book, but is
the main point of the sequel [Gr1].

In section E1 we will prove Chebyshev’s 1850 result that there exist constants c2 >
c1 > 0 such that

c1
x

log x
≤ π(x) ≤ c2

x

log x

for all x ≥ 100, which is based on elementary ideas..
Exercise 5.4.3. Let p1 = 2 < p2 = 3 < . . . be the sequence of primes. Prove that the prime number
theorem is equivalent to the asymptotic

pn ∼ n log n as n → ∞.

Exercise 5.4.4. Assuming the prime number theorem, show that for all ε > 0, if x is sufficiently large

then there are primes between x and x + εx. Deduce that R≥0 is the set of limit points of the set

{p/q : p, q primes}.

Let pN be the largest prime ≤ x. Then pN ∼ x by exercise 5.4.4, and N = π(x),
which is ∼ x

log x by the prime number theorem. This implies that the average gap between
consecutive primes up to x is

1

N − 1

N−1∑

n=1

(pn+1 − pn) =
pN − p2
N − 1

∼ x

x/log x
= log x.

One can ask whether there are gaps between consecutive primes that are much smaller
than the average, and whether there are gaps that are much larger than the average?

One can easily prove that there are arbitrarily long gaps between consecutive primes,
since if 2 ≤ j ≤ m then j divides m! + j, and so

m! + 2, m! + 3, . . . ,m! +m

are all composite. Hence if p is the largest prime ≤ m! + 1 and if q is the next largest
prime, so that q ≥ m! +m+ 1, then q − p ≥ m. Hence for any given integer m there are
consecutive primes that differ by at least m.

17Though recent proofs seem to have escaped this problem, see [GrSo].
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One can extend this argument to prove that

lim sup
n→∞

pn+1 − pn
log pn

= ∞.

though this is, again, beyond the scope of this book.
What about small gaps between primes?

Exercise 5.4.5. Prove that 2 and 3 are the only two primes that differ by 1.

There are plenty of pairs of primes that differ by two, namely 3 and 5, 5 and 7, 11
and 13, 17 and 19, etc., seemingly infinitely many, and this twin prime conjecture remains
an open problem. It is also open as to whether there are infinitely many pairs of primes
that differ by no more than 100, and until recently, that differ by no more than 1/4 of the
average. However in 2009, Goldston, Pintz and Yildirim showed that

lim inf
n→∞

pn+1 − pn
log pn

= 0.

Other famous open problems include:

– Are there infinitely many pairs of primes p, 2p+ 1 (Sophie Germain primes) ?
– Are there infinitely many primes of the form n2 + 1 ?
– Are there infinitely many primes of the form 2p − 1 ?
– Goldbach’s conjecture: Can every even number ≥ 4 be written as the sum of two

primes? This has been verified for all even numbers ≤ 1018.

Great problems motivate mathematicians to think of new techniques, which can have great
influence on the subject, even if they fail to resolve the original question! For example,
although there have been few plausible ideas for proving Goldbach’s conjecture, it has
motivated much of the development of sieve theory, and there are some beautiful results
on modifications of the original problem. The most famous are Jingrun Chen’s 1973 result
that every sufficiently large even integer is the sum of a prime and an integer that is the
product of at most two primes, and I.M. Vinogradov’s 1934 theorem that every sufficiently
large odd integer is the sum of three primes. In both cases, “sufficiently large” means
enormous and it is difficult to determine what size the proofs give. Recent breakthroughs
may lead soon to a proof that every odd integer > 1 is the sum of at most three primes,
and there has been some very recent progress on this problem
Exercise 5.4.6. Show that the Goldbach conjecture is equivalent to the statement that every integer > 1

is the sum of at most three primes. (Goldbach was the friend of Euler, arguably the greatest mathematician

of the 18th century, and would often send Euler mathematical questions. In one letter Goldbach asked

whether every integer > 1 is the sum of at most three primes, and Euler observed that this is equivalent

to showing that every even number ≥ 4 is the sum of two primes. Why then does Goldbach get credit for

this conjecture, that he did not make? Perhaps because “Euler is rich, and Goldbach is poor”.)

5.5. Formulas for primes. Are there formulas that only yield prime values? For exam-
ple, can we give a polynomial f(x) of degree ≥ 1 such that f(n) is prime for every integer
n? The example 6n+ 5 takes values 5, 11, 17, 23, 29, which are all prime, before getting to
35 = 5× 7. Continuing on, we get the primes 41, 47, 53, 59 till we hit 65 = 5× 13, another
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multiple of 5. One observes that every fifth term of the arithmetic progression is divisible
by 5, since 6(5k) + 5 = 5(6k+1). More generally qn+ a is a multiple of a whenever n is a
multiple of a, since q(ak)+a = a(qk+1), and so is composite whenever |a| > 1 and k ≥ 1.
When a = 0 we see that qn is composite for all n > 1 provided q > 1. When a = ±1
we need to proceed a little differently: The integers in the arithmetic progression 6m − 1
(for example) are the same as the integers in the arithmetic progression 6n+ 5 (by taking
m = n + 1), and we have already shown that this progression takes on infinitely many
composite values. Similarly qm+ 1 is the same as the progression qn+ (q + 1) for any q,
but now |q + 1| > 1, so we know that this progression takes on infinitely many composite
values. We will develop this argument to work for all polynomials, but we will need the
following result (which is proved in section A3):

The Fundamental Theorem of Algebra. If f(x) ∈ C[x] has degree d ≥ 1 then f(x)
has no more than d distinct roots in C.

Proposition 5.3. If f(x) ∈ Z[x] has degree d ≥ 1 then there are infinitely many integers
n for which |f(n)| is composite.

Proof sketch. If f(x) = x2+x+41 then f(41k) = 41(41k2+k+1) and so is composite for
each integer k such that 41k2 + k + 1 )= −1, 0 or 1 (and there are no more than two such
k in each case, by the Fundamental Theorem of Algebra). This same proof works for any
polynomial with constant coefficient f(0) (in place of 41), provided f(0) )= −1, 0 or 1. Now
if f(0) = −1, 0 or 1 then we can instead select an integer a for which f(a) )= −1, 0 or 1 (such
an a must exist by the Fundamental Theorem of Algebra). Then we let g(x) = f(x+ a),
which is another polynomial in Z[x], but with the property that g(0) = f(a) )= −1, 0 or
1 and so the previous argument works. That is, there are infinitely integers n such that
|g(n)| is composite, that is |f(n+ a)| = |g(n)| is composite.

One can intuitively concoct such a proof from good examples, but the discussion seems
convoluted. One can re-write this same proof more smoothly as follows:

Proof. There are at most d roots of each of the polynomials f(x), f(x) − 1, f(x) + 1 by
the Fundamental Theorem of Algebra. Select an integer a which is not the root of any of
these polynomials so that m := |f(a)| > 1. Now km+a ≡ a (mod m) and so, by Corollary
2.3, we have

f(km+ a) ≡ f(a) ≡ 0 (mod m).

There are a most 3d values of k for which km + a is a root of one of f(x) − m, f(x)
or f(x) + m, by the Fundamental Theorem of Algebra. For any other k we have that
|f(km+ a)| )= 0 or m. Therefore |f(km+ a)| is divisible by m, and |f(km+ a)| > m, and
so |f(km+ a)| is composite.

Exercise 5.5.1. Show that if f(x, y) ∈ Z[x, y] has degree d ≥ 1 then there are infinitely many pairs of

integers m,n such that |f(m,n)| is composite.

We saw that nine of the first ten values of the polynomial 6n + 5 are primes. Even
better is the polynomial n2 + n + 41, discovered by Euler in 1772, which is prime for
n = 0, 1, 2, . . . , 39, and the square of a prime for n = 40. However, in the proof of
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Proposition 5.3, we saw that n2 + n+41 is composite whenever n is a positive multiple of
41. See section 12.3 for more on such prime rich polynomials.

Proposition 5.3 proves that there is no (non-constant) polynomial that takes only
prime values, and exercise 5.5.1 says the same thing for polynomials in more than one
variable. But perhaps there is a more exotic formula than mere polynomials, which yields
only primes? Earlier we discussed the Fermat numbers, 22

n

+ 1, which Fermat had mis-
takenly believed to all be prime, but maybe there is some other formula? One intriguing
possibility stems from the fact that

22 − 1, 22
2−1 − 1, 22

22−1−1 − 1 and 22
22

2−1−1−1 − 1

are all prime. Could every term in this sequence be prime? No one knows and the next
example is so large that one will not be able to determine whether or not it is prime in the
foreseeable future. (Draw lessons on the power of computation from this example!)

Actually with a little imagination it is not so difficult to develop formulae that easily
yield all of the primes. For example if p1 = 2 < p2 = 3 < . . . is the sequence of primes
then define

α =
∑

m≥1

pm
10m2 = .2003000050000007000000011 . . .

One can read off the primes from the decimal expansion of α, the mth prime coming from
the few digits to the right of m2th digit; or, more formally,

pm = [10m
2

α]− 102m−1[10(m−1)2α].

Is α truly interesting? If one could easily describe α (other than by the definition that we
gave) then it might provide an easy way to determine the primes. But with its artificial
definition it does not seem like it can be used in any practical way. There are other such
constructions (see, e.g., exercise 7.3.2).

In a rather different vein, Matijasevič, while working on Hilbert’s tenth problem,
discovered that there exist polynomials f in many variables, such that the set of positive
values taken by f when each variable is set to be a positive integer, is precisely the set of
primes.18 One can find many different polynomials for the primes; we will give one with
26 variables of degree 21. (One can cut the degree to as low as 5 at the cost of having
an enormous number of variables. No one knows the minimum possible degree, nor the
minimum possible number of variables): Our polynomial is k + 2 times

1− (n+ l + v − y)2 − (2n+ p+ q + z − e)2 − (wz + h+ j − q)2 − (ai+ k + 1− l − i)2

− ((gk + 2g + k + 1)(h+ j) + h− z)2 − (z + pl(a− p) + t(2ap− p2 − 1)− pm)2

− (p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m)2 − ((a2 − 1)l2 + 1−m2)2

− (q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x)2 − ((a2 − 1)y2 + 1− x2)2

− (16(k + 1)3(k + 2)(n+ 1)2 + 1− f2)2 − (e3(e+ 2)(a+ 1)2 + 1− o2)2

− (16r2y4(a2 − 1) + 1− u2)2 − (((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2)2.

18One can also construct such polynomials so as to yield the set of Fibonacci numbers (see section
A1), or the set of Fermat primes, or the set of Mersenne primes, or the set of even perfect numbers (see
section 4.2), and indeed any Diophantine set (and see section 6 for more on “Diophantine”).
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Stare at this for a while and try to figure out how it works: The key is to determine when
the displayed polynomial takes positive values. Note that it is equal to 1 minus a sum of
squares so, if the polynomial is positive, with k+2 > 0, then the second factor must equal
1 and therefore each of the squares must equal 0, so that

n+ l + v − y = 2n+ p+ q + z − e = wz + h+ j − q = ai+ k + 1− l − i = . . . .

Understanding much beyond this seems difficult, and it seems that the only way to appre-
ciate this polynomial is to understand its derivation – see [JSW]. In the current state of
knowledge it seems that this absolutely extraordinary and beautiful polynomial is entirely
useless in helping us better understand the distribution of primes!
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6. Diophantine problems

Diophantus lived in Alexandria in the third century A.D. His thirteen volume Arith-
metica dealt with solutions to equations in integers and rationals (though only parts of
six of the volumes have survived). Diophantus’s work was largely forgotten in Western
Europe during the Dark Ages, as ancient Greek became much less studied; but interest
in Arithmetica was revived by Bachet’s 1621 translation into Latin.19 In his honour, a
Diophantine equation is a polynomial equation for which we are searching for integer or
rational solutions.

6.1. The Pythagorean equation. We wish to find all solutions in integers x, y, z to

x2 + y2 = z2.

To do so we can reduce the problem so as to work with some convenient assumptions:
— That x, y, z are all positive, changing their signs if necessary. Therefore z > x, y.
— That (x, y, z) = 1 by dividing through by any common factor (call it g), and

therefore that x, y and z are pairwise coprime, by exercise 1.2.8.
— That x is even and y is odd, and therefore that z is odd. First note that x and

y cannot both be even, since x, y and z are pairwise coprime; nor both odd, by exercise
2.1.8(b). Hence one of x and y is even, the other odd, and we interchange them, if necessary,
to ensure that x is even and y is odd.

So under these assumptions we re-organize the equation, and factor to get

(z − y)(z + y) = z2 − y2 = x2.

We prove that (z − y, z + y) = 2: Since y and z are both odd, we know that 2 divides
(z−y, z+y). Moreover (z−y, z+y) divides (z+y)−(z−y) = 2y and (z+y)+(z−y) = 2z,
and hence (2y, 2z) = 2(y, z) = 2.

Therefore, since (z − y)(z + y) = x2 and (z − y, z + y) = 2, there exist integers r, s
such that

z − y = 2s2 and z + y = 2r2; or z − y = −2s2 and z + y = −2r2,

by exercise 3.1.18(c). The second case is impossible since r2, y and z are all positive. From
the first case we deduce that

x = 2rs, y = r2 − s2, and z = r2 + s2.

To ensure that these are pairwise coprime we need (r, s) = 1 and r + s odd. If we now
multiply back in any common factors, we get the general solution

(6.1) x = 2grs, y = g(r2 − s2), and z = g(r2 + s2).

One can also give a nice geometric proof of this parametrization:

19Translations of ancient Greek texts into Latin helped inspire the Renaissance.
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Exercise 6.1.1. Prove that the integer solutions to x2 + y2 = z2 with z $= 0 and (x, y, z) = 1 are in

1-to-1 correspondence with the rational solutions u, v to u2 + v2 = 1.

Where else does a line going though (1, 0) intersect the circle x2 + y2 = 1? Unless the
line is vertical it will hit the unit circle in exactly one other point, which we will denote
by (u, v). Note that u < 1. If the line has slope t then t = v/(u− 1) is rational if u and v
are. In the other direction, the line through (1, 0) of slope t is y = t(x−1) which intersects
x2 + y2 = 1 where 1 − x2 = y2 = t2(x − 1)2, so that either x = 1 or 1 + x = t2(1 − x).
Hence

u =
t2 − 1

t2 + 1
and v =

−2t

t2 + 1

are both rational if t is. We have therefore proved that u, v ∈ Q if and only if t ∈ Q. In
other words the line of slope t through (1, 0) hits the unit circle again at another rational
point if and only if t is rational, and then we can classify those points in terms of t.
Therefore, writing t = −r/s where (r, s) = 1, we have

u =
r2 − s2

r2 + s2
and v =

2rs

r2 + s2
,

the same parametrization to the Pythagorean equation as in (6.1) when we clear out
denominators (or, if you prefer, taking g = 1/(r2 + s2) in (6.1)).

In around 1637, Pierre de Fermat was studying the proof of (6.1) in his copy of Bachet’s
translation of Diophantus’s Arithmetica. In the margin he wrote:

“I have discovered a truly marvelous proof that it is impossible to separate a
cube into two cubes, or a fourth power into two fourth powers, or in general,
any power higher than the second into two like powers. This margin is too
narrow to contain it.” — by P. de Fermat (1637), in his copy of Arithmetica.

In other words, Fermat claimed that for every integer n ≥ 3 there do not exist positive
integers x, y, z for which

xn + yn = zn.

Fermat did not subsequently mention this problem or his truly marvelous proof elsewhere,
and the proof has not, to date, been re-discovered, despite many efforts. Since Fermat
claimed it, and yet it remained un re-proved for so long, it became known as “Fermat’s
Last Theorem”.20 We will discuss Fermat’s Last Theorem further in section 6.5.

6.2. No solutions to a Diophantine equation through prime divisibility. One can
sometimes show that a Diophantine equation has no non-trivial solutions by considering
the divisibility of the variables by various primes. For example we will give such a proof
that

√
2 is irrational.

Proof of Proposition 3.3 by 2-divisibility: Let us recall that if
√
2 is rational then we can

write it as a/b so that a2 = 2b2. Let us suppose that (b, a) gives the smallest non-zero

20“Last”, as in, the “last” of Fermat’s claims to be (re-)proved.
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solution to y2 = 2x2 in non-zero integers. Now 2 divides 2b2 = a2 so that 2|a. Writing
a = 2A, thus b2 = 2A2, and so 2|b. Writing b = 2B we obtain a solution A2 = 2B2 where
A and B are half the size of a and b, contradicting the assumption that (b, a) is minimal.

Exercise 6.2.1. Show that there are no non-zero integer solutions to x3 + 3y3 + 9z3 = 0.

6.3. No solutions through geometric descent. We will give yet another proof of
both Propositions 3.3 and 3.4 on irrationality, this time using geometric descent.

Proof of Proposition 3.3 by geometric descent: Again we may assume that
√
2 = a/b with a

and b positive integers, where a is minimal. Hence a2 = 2b2 which gives rise to the smallest
right-angle, isosceles triangle, OPQ with integer side lengths OP = OQ = b, PQ = a
and angles ˆPOQ = 90o, ˆPQO = ˆQPO = 45o. Now mark a point R which is b units
along PQ from Q and then drop a perpendicular to meet OP at the point S. Now
ˆRPS = ˆQPO = 45o, and so ˆRSP = 180o − 90o − 45o = 45o by considering the angles

in the triangle RSP , and therefore this is a smaller isosceles, right-angled triangle. This
implies that RS = PR = a − b. Now two sides and an angle are the same in OQS and
RQS so these triangles are congruent; in particular OS = SR = a − b and therefore
PS = OP − OS = b − (a − b) = 2b − a. Hence RSP is a smaller isosceles, right-angled
triangle than OPQ with integer side lengths, giving a contradiction.

This same proof can be written more algebraically: As a2 = 2b2, so a > b > a/2.
Now

(2b− a)2 = a2 − 4ab+ 2b2 + 2b2 = a2 − 4ab+ 2b2 + a2 = 2(a− b)2.

However 0 < 2b− a < a contradicting the minimality of a.

Proof of Proposition 3.4 by geometric descent: Suppose that a is the smallest integer for
which

√
d = a/b with a and b positive integers. Let r be the smallest integer ≥ db/a, so

that db
a +1 > r ≥db

a , and therefore a > ra− db ≥ 0. Then

(ra− db)2 = da2 − 2rdab+ d2b2 + (r2 − d)a2

= da2 − 2rdab+ d2b2 + (r2 − d)db2 = d(rb− a)2

However 0 ≤ ra − db < a contradicting the minimality of a, unless ra − db = 0. In this
case r2 = d · db2/a2 = d.

6.4. Fermat’s “infinite descent”.

Theorem 6.1. There are no solutions in non-zero integers x, y, z to

x4 + y4 = z2.

Proof. Let x, y, z give the solution in positive integers with z minimal. We may assume
that gcd(x, y) = 1 else we can divide out the common factor. Here we have

(x2)2 + (y2)2 = z2 with gcd(x2, y2) = 1,

and so, by (6.1), there exist integers r, s with (r, s) = 1 and r + s odd such that

x2 = 2rs, y2 = r2 − s2, and z = r2 + s2.
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Now s2 + y2 = r2 with y odd and (r, s) = 1 and so, by (6.1), there exist integers a, b with
(a, b) = 1 and a+ b odd such that

s = 2ab, y = a2 − b2, and r = a2 + b2,

and so
x2 = 2rs = 4ab(a2 + b2).

Now a, b and a2+ b2 are pairwise coprime integers whose product is a square so they must
each be squares by exercise 3.1.18(b), say a = u2, b = v2 and a2 + b2 = w2 for some
positive integers u, v, w. Therefore

u4 + v4 = a2 + b2 = w2

yields another solution to the original equation with

w ≤ w2 = a2 + b2 = r < r2 + s2 = z,

contradicting the minimality of z.

6.5. Fermat’s Last Theorem.
Fermat’s Last Theorem is the assertion that for every integer n ≥ 3 there do not exist

positive integers x, y, z for which
xn + yn = zn.

He himself left a proof of this for n = 4.

Corollary 6.2. There are no solutions in non-zero integers x, y, z to

x4 + y4 = z4.

Exercise 6.5.1. Prove this using Theorem 6.1.

One can therefore deduce that Fermat’s Last Theorem holds for all exponents n ≥ 3
if it holds for all odd prime exponents:

Proposition 6.3. If Fermat’s Last Theorem is false then there exists an odd prime p and
pairwise coprime non-zero integers x, y, z such that

xp + yp + zp = 0.

Hence, to prove Fermat’s Last Theorem, one can restrict attention to odd prime exponents.

Proof. Suppose that xn+yn = zn with x, y, z > 0 and n ≥ 3. If two of x, y have a common
factor then it must divide the third and so we can divide out the common factor. Hence
we may assume that x, y, z are pairwise coprime positive integers. Now any integer n ≥ 3
has a factor m which is either = 4 or is an odd prime (see exercise 3.1.3(b)). Hence, if
n = dm then (xd)m + (yd)m = (zd)m, so we get a solution to Fermat’s Last Theorem with
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exponent m. We can rule out m = 4 by Corollary 6.2. If m = p is prime and we are given
a solution to ap + bp = cp then ap + bp + (−c)p = 0 as desired.

There is a great history of attempts to prove Fermat’s Last Theorem, some of which
we will discuss in section H4; in particular a beautiful advance due to Sophie Germain
from the beginning of the 19th century. For a very long time Fermat’s Last Theorem was
the best known and most sought after open question in number theory. It inspired the
development of much great mathematics, in many different directions. For example ideal
theory, as we will see in section C1.

In 1994 Andrew Wiles announced that he had finally proved Fermat’s Last Theorem,
using an idea of Frey and Serre involving modular forms, a subject far removed from the
original. The proof is extraordinarily deep, involving some of the most profound themes
in arithmetic geometry (see our sequel [Gr2] for some discussion of the ideas involved in
the proof). If the whole proof were written in the leisurely style of, say, this book, it
would probably take a couple of thousand pages. This could not be the proof that Fermat
believed that he had – could Fermat have been correct? Could there be a short, elementary,
marvelous proof still waiting to be found? Such a proof came to Lisbeth Salander in The
girl who played with fire just as she went into the final tense moments of that novel — can
truth follow fiction, as it so often does, or will Fermat’s claim always remain a mystery?
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7. Power Residues

We compute the least residues of the small powers of each given residue mod m:

a0 a1 a2

1 0 0
1 1 1

a0 a1 a2 a3 a4 a5

1 0 0 0 0 0
1 1 1 1 1 1
1 2 1 2 1 2

The least residues of powers (mod 2). The least residues of powers (mod 3).21

We see that in these small examples, the numbers soon settle into repeating patterns: for
example, in the mod 3 case, the columns alternate between 0, 1, 1 and 0, 1, 2, repeating
every second power. How about for slightly larger moduli?

a0 a1 a2 a3 a4 a5

1 0 0 0 0 0
1 1 1 1 1 1
1 2 0 0 0 0
1 3 1 3 1 3

a0 a1 a2 a3 a4 a5

1 0 0 0 0 0
1 1 1 1 1 1
1 2 4 3 1 2
1 3 4 2 1 3
1 4 1 4 1 4

The least power residues (mod 4). The least power residues (mod 5).

Again the patterns repeat, every second power mod 4, and every fourth power mod 5. Our
goal in this chapter is to understand the power residues, and in particular when the we
get these repeated patterns.

7.1. Generating the multiplicative group of residues.
We begin by verifying that for each coprime pair of integers a and m, the power

residues do repeat periodically:

Lemma 7.1. For any integer a, with (a,m) = 1, there exists an integer k, 1 ≤ k ≤ φ(m)
for which ak ≡ 1 (mod m).

Proof. Each term of the sequence 1, a, a2, a3, . . . is coprime with m by exercise 3.1.15. But
then each is congruent to some element from any given reduced set of residues mod m

21Why did we take 00 to be 1 (mod m) for m = 2, 3, 4 and 5? In mathematics we create symbols
and protocols (like taking powers) to represent numbers and actions on those numbers, and then we
need to be able to interpret combinations of those symbols and protocols. Occasionally some of those
combinations do not have an immediate interpretation, for example 00: So how do we deal with this?
Usually mathematicians develop a convenient interpretation that allows that not-well-defined use of a
protocol to nonetheless be consistent with the many appropriate uses of the protocol. Therefore, for
example, we let 00 be 1, because it is true that a0 = 1 for every non-zero number a, so it makes sense (and
is often convenient) to define this to be so for a = 0. Perhaps the best known dilemma of this sort, comes
in asking whether ∞ is a number? The answer is “No, it is a symbol” (representing an upper bound on
the set of real numbers) but it is certainly convenient to treat it as a number in many situations.
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(which has size φ(m)). Therefore, by the pigeonhole principle, there exist i and j with
0 ≤ i < j ≤ φ(m) for which ai ≡ aj (mod m). Finish off the proof:

Exercise 7.1.1.(a) Deduce that ak ≡ 1 (mod m) where 1 ≤ k = j − i ≤ φ(m). (Hint: Let b be the

inverse of a (mod m) so that biai ≡ 1 (mod m).)

(b) Extend the proof of Lemma 7.1 to show that for any integer a and any m, there exist integers i

and k, with 0 ≤ i ≤ m− 1 and 1 ≤ k ≤ m− i such that an+k ≡ an (mod m) for every n ≥ i. (Hint: First

find i and k as above, and then proceed by induction on n.)

Another proof of Corollary 3.7. If r = ak−1 then ar = ak ≡ 1 (mod m).

Examples. Consider the geometric progression 2, 4, 8, . . . . The first term ≡ 1 (mod 13)
is 212 = 4096. The first term ≡ 1 (mod 23) is 211 = 2048. Similarly 56 = 15625 ≡ 1
(mod 7) but 55 ≡ 1 (mod 11). Hence we see that in some cases the power needed is as big
as φ(p) = p− 1, but not always.

If ak ≡ 1 (mod m), then ak+j ≡ aj (mod m) for all j ≥ 0, and so the geometric
progression a0, a1, a2, . . . modulo m, has period k. Thus if u ≡ v (mod k) then au ≡ av

(mod m). Therefore one can easily determine the residues of powers (mod m). For
example, to compute 31000 (mod 13), first note that 33 ≡ 1 (mod 13). Now 1000 ≡ 1
(mod 3), and so 31000 ≡ 31 = 3 (mod 13).

If (a,m) = 1 then let ordm(a), the order of a (mod m), denote the smallest positive
integer k for which ak ≡ 1 (mod m). Hence ord3(2) = ord4(3) = 2, ord5(2) = ord5(3) = 4
(from the tables above), and ord13(2) = 12, ord23(2) = 11, ord7(5) = 6 and ord11(5) = 5
from the examples above.
Exercise 7.1.2. Let k := ordm(a) where (a,m) = 1.

(a) Prove that if k|n then an ≡ 1 (mod m).
(b) Writing any given integer n as qk + r with 0 ≤ r ≤ k − 1, show that an ≡ ar (mod m).
(c) Show that 1, a, a2, . . . , aordm(a)−1 are distinct (mod m) (Hint: Use the technique in the proof

of exercise 7.1.1(a)).
(d) Deduce that aj ≡ ai (mod m) if and only if j ≡ i (mod k).

Lemma 7.2. n is an integer for which an ≡ 1 (mod m) if and only if ordm(a) divides n.

Proof # 1. This follows immediately from exercise 7.1.2(d).

Proof # 2. There exist integers q and r such that n = q · ordm(a) + r where 0 ≤ r ≤
ordm(a) − 1. Hence ar = an/(aordm(a))q ≡ 1/1q ≡ 1 (mod m). Therefore r = 0 by the
minimality of ordm(a), and so ordm(a) divides n as claimed.

In the other direction we have an = (aordm(a))n/ordm(a) ≡ 1 (mod m).

We wish to understand the possible values of ordm(a), especially for fixed m, as a
varies over integers coprime to m. We begin by taking m = p prime, since the theory for
composite m can be deduced from an understanding of the prime modulus case.

Theorem 7.3. If p is a prime and p does not divide a then ordp(a) divides p− 1.

Proof. Let A = {1, a, a2, . . . , aordp(a)−1 (mod p)}. For any non-zero b (mod p) define the
set bA = {ba (mod p) : a ∈ A}. In the next paragraph we will prove that for any two
non-zero elements b, b′ (mod p), either bA = b′A or bA∩ b′A = ∅, so that the bA partition
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the non-zero elements mod p. In other words, the residues 1, . . . , p − 1 (mod p) may
be partitioned into disjoint cosets bA, of A, each of which has size |A|; and therefore
|A| = ordp(a) divides p− 1.

Now if bA ∩ b′A )= ∅ then there exist 0 ≤ i, j ≤ ordp(a) − 1 such that bai ≡ b′aj

(mod p). Therefore b′ ≡ bak (mod p) where k is the least non-negative residue of i − j
(mod ordp(a)). Hence

b′a" ≡
{

bak+" (mod p) if 0 ≤ $ ≤ ordp(a)− 1− k

bak+"−ordp(a) (mod p) if ordp(a)− k ≤ $ ≤ ordp(a)− 1

We deduce that bA = b′A.

To give an example, consider A = {1, 5, 52 ≡ 12, 53 ≡ 8 (mod 13)}. Then the
cosets A, 2A ≡ {2, 10, 11, 3 (mod 13)} and 4A ≡ {4, 7, 9, 6 (mod 13)} partition the
reduced residues mod 13, and therefore 3|A| = 12. We note also that 7A ≡ {7, 9, 6, 4
(mod 13)} = 4A, as claimed; the same residues but in a rotated order.

Theorem 7.3 limits the possible values of ordp(a). The beauty of the proof of Theorem
7.3, which is taken from Gauss’s Disquisitiones Arithmeticae, is that it works in any finite
group, as we will see in Proposition B4.1.22 This result leads us to directly to one of the
great results of elementary number theory, first observed by Fermat in a letter to Frénicle
on October 18th, 1640:

Fermat’s “Little” Theorem. If p is a prime and a is an integer that is not divisible by
p then

p divides ap−1 − 1.

Proof. Now ordp(a) divides p − 1 by Theorem 7.3, and therefore ap−1 ≡ 1 (mod p) by
Lemma 7.2.

Exercise 7.1.3. Fix prime p. Show that p divides ap−1 − 1 for every integer a that is not divisible by p,

if and only if p divides ap − a for every integer a.

Euler’s 1741 Proof: We shall show that ap − a is divisible by p for every integer a ≥ 1.
For those a that are not divisible by p, we divide through by a to deduce the above result.
We proceed by induction on a: For a = 1 we have 1p−1−1 = 0, and so the result is trivial.
Otherwise, by the binomial theorem,

(a+ 1)p − ap − 1 =
p−1∑

i=1

(
p

i

)
ai ≡ 0 (mod p),

as p divides the numerator but not the denominator of
(p
i

)
for each i, 1 ≤ i ≤ p−1, so that

(a+ 1)p − (a+ 1) ≡ (ap + 1)− (a+ 1) ≡ ap − a ≡ 0 (mod p),

22What is especially remarkable is that Gauss produced this surprising proof, before anyone had
thought up the abstract notion of a group!
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by the induction hypothesis.

Combinatorial proof. The numerator of the multinomial coefficient
( p
a,b,c,...

)
is divisible by

p, by not the denominator, unless all but one of a, b, c, . . . equals 0 and the other p, in
which case the multinomial coefficient equals 1. Therefore, by the multinomial theorem,

(a+ b+ c+ . . . )p ≡ ap + bp + cp + . . . (mod p).

Taking a = b = c = . . . = 1 gives kp ≡ k (mod p) for all k.

Another proof of Theorem 7.3. The last two proofs of Fermat’s Little Theorem do not use
Theorem 7.3, so we have proved that ap−1 ≡ 1 (mod p) independent of Theorem 7.3. But
then Theorem 7.3 follows from Fermat’s Little Theorem and Lemma 7.2 (with m = p and
n = p− 1).

“Sets of reduced residues” proof. In exercise 3.3.3 we saw that {a · 1, a · 2, . . . , a · (p− 1)}
form a reduced set of residues. The residues of these integers mod p, are therefore the
same as the residues of {1, 2, . . . , p − 1} although in a different order. However since the
two sets are the same mod p, the product of the elements of each set are equal mod p, and
so

(a · 1)(a · 2) . . . (a · (p− 1)) ≡ 1 · 2 · · · (p− 1) (mod p).

Therefore
ap−1 · (p− 1)! ≡ (p− 1)! (mod p)

and, as (p, (p−1)!) = 1, we can divide the (p−1)! out from both sides to obtain the desired

ap−1 ≡ 1 (mod p).

Exercise 7.1.4. The argument in this last proof works for any symmetric function of the elements of
two given sets of reduced residues. Use this to show that for any integer k ≥ 1 and any a which is not
divisible by p, we have:

Either ak ≡ 1 (mod p), or 1k + 2k + . . .+ (p− 1)k ≡ 0 (mod p).

Deduce that 1k + 2k + . . .+ (p− 1)k ≡ 0 or p− 1 (mod p).

Let us return to the problem of determining large powers in modular arithmetic, for
example 21000001 (mod 31). Now 230 ≡ 1 (mod 31) by Fermat’s Little Theorem, and so,
as 1000001 ≡ 11 (mod 30), we obtain 21000001 ≡ 211 (mod 31) and it remains to do the
final calculation. On the other hand, it is not hard to show that ord31(2) = 5, so that
25 ≡ 1 (mod 31) and, as 1000001 ≡ 1 (mod 5), we obtain 21000001 ≡ 21 ≡ 2 (mod 31).
We see that using the order makes this calculation significantly easier.

It is worth stating the converse to Fermat’s Little Theorem:

Corollary 7.4. If (a, n) = 1 and an−1 )≡ 1 (mod n) then n is composite.

For example (2, 15) = 1 and 24 = 16 ≡ 1 (mod 15) so that 214 ≡ 22 ≡ 4 (mod 15).
Hence 15 is a composite number. The surprise here is that we have proved that 15 is
composite without having to factor 15. Indeed whenever the Corollary is applicable we
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will not have to factor n to show that it is composite. This is important because we do
not know a fast way to factor an arbitrary integer n, but one can compute rapidly with
this Corollary. We will discuss such compositeness tests in section 7.5.

Theorem 7.3 generalizes easily to: For any m > 1 if (a,m) = 1 then ordm(a) divides
φ(m) by the analogous proof; and hence we can deduce, in the same manner as the first
proof above:

Euler’s Theorem. For any m > 1 if (a,m) = 1 then aφ(m) ≡ 1 (mod m).

And this generalizes even further, to any finite group, as we will see in Corollary B4.2.
Exercise 7.1.5. Prove Euler’s Theorem using the idea in the “sets of reduced residues” proof of Fermat’s

little theorem, given above.

Exercise 7.1.6. Determine the last two decimal digits of 38643.

7.2. Special primes and orders. We now look at prime divisors of the Mersenne and
Fermat numbers using our results on orders.
Exercise 7.2.1. Show that if p is prime, and q is a prime dividing 2p − 1, then ordq(2) = p.

Hence if q divides 2p − 1 then p divides q − 1 by Theorem 7.3.

Proof # 7 that there are infinitely many primes. If p is the largest prime, and q is a prime
factor of 2p − 1, then we have just seen that p divides q − 1, so that p ≤ q − 1 < q. This
contradicts the assumption that p is the largest prime.

Exercise 7.2.2. Show that if prime p divides Fn = 22
n
+ 1 then ordp(2) = 2n+1. Deduce that p ≡ 1

(mod 2n+1).

Theorem 7.5. Fix k ≥ 2. There are infinitely many primes ≡ 1 (mod 2k).

Proof. Let pn be a prime factor of Fn = 22
n

+ 1. We saw that these are all distinct in
section 5.1. By exercise 7.2.2 we see that pn ≡ 1 (mod 2k) for all n ≥ k − 1.

7.3. Further observations. We begin with the generalization of the Fundamental The-
orem of Algebra to polynomials mod p. We define f(x) to be a polynomial mod p of degree
d if we can write f(x) as polynomial of degree d with integer coefficients, in which p does
not divide the leading coefficient of f (the leading coefficient is the coefficient of xd).

Lagrange’s Theorem. Let f(x) be a polynomial mod p of degree d ≥ 1 . There are no
more than d distinct roots (mod p) of f(x) ≡ 0 (mod p).

This result, due to Lagrange, is proved in section A3. It is essential that we are working
modulo p, a prime. For example x2 − 1 (mod 8) has the four distinct roots 1, 3, 5 and 7
(mod 8), and x2 + 2x− 3 (mod 15) has the four distinct roots 1, 6, 7 and 12 (mod 15).

Lagrange’s Theorem has many interesting consequences:

Corollary 7.6. If p is an odd prime then there are exactly two square roots of 1 (mod p),
namely 1 and −1.

Proof # 1. As 12 = (−1)2 = 1, both 1 and −1 are roots of x2 − 1, not only over C, but
also mod m for any m. Now 1 and −1 are distinct mod m if m > 2. Moreover there are no
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more than two roots of x2− 1 ≡ 0 (mod p) when m = p is prime, by Lagrange’s Theorem.
Combining these two facts gives the result.

There can be more than two square roots of 1 if the modulus is composite. For
example, we just saw the example in which 1, 3, 5 and 7 are all roots of x2 ≡ 1 (mod 8); but
we also have that 1, 4,−4 and −1 are all roots of x2 ≡ 1 (mod 15); and ±1,±29,±34,±41
are all square roots of 1 (mod 105).

Proof # 2. If x2 ≡ 1 (mod p) then p|(x2−1) = (x−1)(x+1) and so p divides either x−1
or x+ 1 by Theorem 3.1. Hence x ≡ 1 or −1 (mod p).

Fermat’s Little Theorem tells us that 1, 2, 3, . . . , p − 1 are p − 1 distinct roots of
xp−1 − 1 (mod p), and are therefore all the roots, by Lagrange’s Theorem. Therefore the
polynomials xp−1 − 1 and (x − 1)(x − 2) . . . (x − (p − 1)) mod p are the same up to a
multiplicative constant. But since they are both monic,23 they must be identical; that is

(7.1) xp−1 − 1 ≡ (x− 1)(x− 2) . . . (x− (p− 1)) (mod p),

or
xp − x ≡ x(x− 1)(x− 2) . . . (x− (p− 1)) (mod p).

Wilson’s Theorem. For any prime p we have (p− 1)! ≡ −1 (mod p).

Proof. Take x = 0 in (7.1), and note that (−1)p−1 ≡ 1 (mod p), even for p = 2.

Gauss’s proof of Wilson’s theorem. Let S be the set of pairs (a, b) for which 1 ≤ a < b < p
and ab ≡ 1 (mod p); that is, every residue is paired up with its inverse unless it equals
its inverse. Now if a ≡ a−1 (mod p) then a2 ≡ 1 (mod p), in which case a ≡ 1 or p − 1
(mod p) by Corollary 7.6. Therefore

1 · 2 · · · (p− 1) = 1 · (p− 1) ·
∏

(a,b)∈S

ab ≡ 1 · (−1) ·
∏

(a,b)∈S

1 ≡ −1 (mod p).

Example: For p = 13 we have

12! = 12(2× 7)(3× 9)(4× 10)(5× 8)(6× 11) ≡ −1 · 1 · 1 · 1 · 1 · 1 ≡ −1 (mod 13)

Exercise 7.3.1.(a) Show that n ≥ 2 is prime if and only if n divides (n− 1)!+ 1. (Hint: Show that if a|n
then (n− 1)! + 1 ≡ 1 (mod a), and so deduce the result for composite n.)

(b) Show that if n > 4 is composite then n divides (n− 1)!.

Combining Wilson’s Theorem with the last exercise we have an indirect primality test
for integers n > 2: Compute (n− 1)! (mod n). If it is ≡ −1 (mod n) then n is prime; if it
is ≡ 0 (mod n) then n is composite. Note however that in determining (n−1)! we need to
do n−2 multiplications, so that this primality test takes far more steps than trial division!

23A polynomial
∑d

i=0 cix
i with leading coefficient cd $= 0 is monic if cd = 1.
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Exercise 7.3.2. Show that the number of primes up to N equals, exactly,

∑

2≤n≤N

n

n− 1
·
{
(n− 1)!

n

}
−

2

3
.

(Here {t} is defined as in exercise 1.1.2.) Compare this with the formulae at the end of section 5.

Exercise 7.3.3.(a) Use the idea in the proof of Wilson’s Theorem to show that

∏

1≤a≤n
(a,n)=1

a ≡
∏

1≤b≤n

b2≡1 (mod n)

b (mod n).

(b) Determine the product of the square roots of 1 (mod n). One idea to begin is to multiply the square

root, b, with another square root, n− b. One can also try to pair the square roots in some other way.

7.4. The number of elements of a given order, and primitive roots. In Theorem
7.3 we saw that the order modulo p of any integer a (which is coprime to p) divides p− 1.

Example: For the primes p = 13 and p = 19 we have

Order (mod 13) a (mod 13)

1 1
2 12
3 3, 9
4 5, 8
6 4, 10
12 2, 6, 7, 11

Order (mod 19) a (mod 19)

1 1
2 18
3 7, 11
6 8, 12
9 4, 5, 6, 9, 16, 17

18 2, 3, 10, 13, 14, 15

How many residues are there of each order? From these examples we might guess the
following result.

Theorem 7.7. If m divides p−1 then there are exactly φ(m) elements a (mod p) of order
m. If m does not divide p− 1 then there are no elements (mod p) of order m.

A primitive root a mod p is an element of order p−1, so that {1, a, a2, . . . , ap−2} is the
complete reduced set of residues mod p. For example, 2, 3, 10, 13, 14, 15 are the primitive
roots mod 19. We can verify that the powers of 3 mod 19 are the reduced set of residues:

1, 3, 32, 33, 34, 35, 36, 37, 38, 39, 310, 311, 312, 313, 314, 315, 316, 317, 318, . . .

≡ 1, 3, 9, 8, 5,−4, 7, 2, 6,−1,−3,−9,−8,−5, 4,−7,−2, −6, 1, . . . (mod 19)

Taking d = p− 1 in Theorem 7.7 we obtain.

Corollary 7.8. For every prime p there exists a primitive root mod p. In fact there are
φ(p− 1) distinct primitive roots mod p.

Proof of Theorem 7.7. By induction on m dividing p− 1. Define ψ(d) to be the number of
elements a (mod p) of order m. The only element of order 1 is 1 (mod p), so ψ(1) = 1 =
φ(1) and the result is true for m = 1. Therefore we take m > 1 and we can assume that
ψ(d) = φ(d) for all d < m that divide p− 1.
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We saw in (7.1) that

xp−1 − 1 = (xm − 1)(xp−1−m + xp−1−2m + . . .+ x2m + xm + 1)

factors into distinct linear factors mod p, and so xm−1 does also. By Lemma 7.2 we know
that the set of roots of xm − 1 (mod p) is precisely the union of the sets of elements of
order d, over each d dividing m. Therefore the number of roots of xm − 1 (mod p) is

m =
∑

d|m

ψ(d) = ψ(m) +
∑

d|m
d<m

ψ(d) = ψ(m) +
∑

d|m
d<m

φ(d) = ψ(m) +m− φ(m),

by the induction hypothesis and Proposition 4.3. The result follows.

Although there are many primitive roots mod p it is not obvious how to always find
one rapidly. However in special cases this is not difficult:
Exercise 7.4.1. Show that if p = 2q + 1 where p and q are primes with p ≡ 3 (mod 8) then 2 is a

primitive root mod p. (e.g. 11, 59, 83, 107, . . . )

It is believed that 2 is a primitive root mod p for infinitely many primes p though this
remains an open question. In fact it is conjectured that every prime q is a primitive root
mod p for infinitely many primes p, and it is known that this is true for all, but at most
two, primes.24

Corollary 7.9. For every prime p we have

1k + 2k + . . .+ (p− 1)k ≡
{

0 if p− 1 ) |k
−1 if p− 1|k

(mod p).

Proof. Let a be a primitive root in exercise 7.1.4 so that ak )≡ 1 (mod p) when p− 1) |k. If
p− 1 divides k then each jk ≡ 1 (mod p) and the result follows.

Exercise 7.4.2. Write each reduced residue mod p as a power of the primitive root a, and use this to

evaluate 1k + 2k + . . .+ (p− 1)k (mod p) directly, so as to give another proof of Corollary 7.9.

If a is a primitive root (mod p) then the least residues of the powers 1, a, a2, a3, . . . , ap−2

(mod p) are distinct, and so must equal 1, 2, . . . , p − 1 in some order. Thus any number,
not divisible by p, is congruent to some power of a. This property is extremely useful
for it allows us to treat multiplication as addition of exponents in the same way that the
introduction of logarithms simplifies usual multiplication. We will discuss this further in
section D0.
Exercise 7.4.3. Show that g(p−1)/2 ≡ −1 (mod p) for every primitive root g modulo odd prime p.

We also give an important practical way to recognize primitive roots mod p:

24This result is strangely formulated because of the nature of what was proved (by Heath-Brown
[HB], improving a result of Gupta and Murty [GuMu]) – that in any set of three distinct primes q1, q2, q3,
at least one is a primitive root mod p for infinitely many primes p. We certainly believe that this is the
case for all primes q, that there are no two exceptions, but the nature of the proof means that this is as
much as we can know for sure, for now.
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Corollary 7.10. Suppose that p is a prime that does not divide integer a. Then a is not
a primitive root (mod p) if and only if there exists a prime q dividing p− 1, such that

a(p−1)/q ≡ 1 (mod p).

Proof. By definition a is not a primitive root (mod p) if and only if m := ordp(a) < p−1.
If so then let q be a prime factor of (p− 1)/m, so that m divides (p− 1)/q, and therefore
a(p−1)/q ≡ 1 (mod p) by Lemma 7.2. On the other hand if a(p−1)/q ≡ 1 (mod p) then m
divides (p− 1)/q by Lemma 7.2; in particular, m ≤ (p− 1)/q < p− 1.

Define Carmichael’s λ-function λ(m) to be the maximal order of an element a mod
m for which (a,m) = 1. We therefore know that λ(p) = p − 1 for all primes p, because
there are primitive roots for all primes p. In fact λ(pe) = φ(pe) for all odd prime powers
pe (which we will prove in section D0) as well as for pe = 2 or 4, and λ(2e) = 2e−2 for all
e ≥ 3.

A primitive root mod m, is a residue g (mod m) whose powers generate all of the
φ(m) reduced residues mod m.
Exercise 7.4.4. Use Euler’s Theorem and Lemma 7.2 to prove that λ(m) divides φ(m). Prove also that

there is a primitive root mod m if and only if λ(m) = φ(m).

Proposition 7.11. λ(m) = lcm[λ(pe) : pe‖m].

Proof. Let r and s be coprime integers. Suppose that a has order λ(r) mod r, and b has
order λ(s) mod s. Select n ≡ a (mod r) and ≡ b (mod s) by the Chinese Remainder
Theorem. If k is the order of n (mod rs) then ak ≡ nk ≡ 1 (mod r) so that λ(r)|k, and
bk ≡ nk ≡ 1 (mod s) so that λ(s)|k, and therefore L|k where L := lcm[λ(r),λ(s)]. On
the other hand for any m with (m, rs) = 1 we have mL = (mλ(r))L/λ(r) ≡ 1 (mod r) and
similarly mL = (mλ(s))L/λ(s) ≡ 1 (mod s), so that mL ≡ 1 (mod rs). Hence we have
proved that if (r, s) = 1 then λ(rs) = L = lcm[λ(r),λ(s)]. The result follows by induction
on the number of distinct prime factors of m.

Exercise 7.4.5. Prove that aλ(m) ≡ 1 (mod m) for all integers a coprime to m.

7.5. Testing for composites, pseudoprimes and Carmichael numbers. In the
converse to Fermat’s Little Theorem, Corollary 7.4, we saw that if integer n does not
divide an−1 − 1 for some integer a coprime to n, then n is composite. For example, taking
a = 2 we calculate that

21000 ≡ 562 (mod 1001),

so we know that 1001 is composite. We might ask whether this always works. In other
words,

Is it true that if n is composite then n does not divide 2n − 2?
For, if so, we have a very nice way to distinguish primes from composites. Unfortunately
the answer is “no” since, for example,

2340 ≡ 1 (mod 341),



GAUSS’S NUMBER THEORY 49

but 341 = 11× 31. We call 341 a base-2 pseudoprime. Note though that

3340 ≡ 56 (mod 341),

and so the converse to Fermat’s Little Theorem, with a = 3, implies that 341 is composite.
So then we might ask whether there is always some value of a that helps us prove that

a given composite n is indeed composite, via the converse to Fermat’s Little Theorem. In
other words, we are asking whether or not there are any Carmichael numbers, composite
numbers n for which an−1 ≡ 1 (mod n) for all integers a coprime to n; one can think of
these as composite numbers that “masquerade” as primes.
Exercise 7.5.1.(a) Show that n is a Carmichael number if and only if λ(n) divides n − 1. (Hint: Use

exercise 7.4.5.)

(b) Show that composite n is a Carmichael number if and only if n divides an − a for all integers a.

There are indeed Carmichael numbers, the smallest of which is 561 = 3 · 11 · 17,
and this can be proved to be a Carmichael number since λ(561) = [2, 10, 16] = 80 which
divides 560. The next few Carmichael numbers are 1105 = 5 · 13 · 17, then 1729 =
7 · 13 · 19, etc. Carmichael numbers are a nuisance, masquerading as primes like this,
though computationally they only appear rarely. Unfortunately it was recently proved
that there are infinitely many of them, and that when we go out far enough they are not
so rare as it first appears. Here is an elegant way to recognize Carmichael numbers:

Lemma 7.14. n is a Carmichael number if and only if n is squarefree, and p− 1 divides
n− 1 for every prime p dividing n.

Proof. Suppose that n is a Carmichael number. If prime p divides n then an−1 ≡ 1
(mod p) for all integers a coprime to n. In particular, if a is a primitive root mod p then
p− 1 = ordp(a) divides n− 1 by Lemma 7.2. If p2|n then let a be a primitive root mod p2,
so that p(p−1) = ordp2(a) divides n−1. However this implies that p divides n−1, as well
as n, and hence their difference, 1, which is impossible. Therefore n must be squarefree.

In the other direction if (a, n) = 1 and prime p divides n, then ordp(a)|p − 1 by
Theorem 7.3 which divides n − 1, and so an−1 ≡ 1 (mod p) by Lemma 7.2. Therefore
an−1 ≡ 1 (mod n) by the Chinese Remainder Theorem.

Exercise 7.5.2. Show that if p is prime then the Mersenne number 2p − 1 is either a prime or a base-2

pseudoprime.

7.6. Divisibility tests, again. In section 2.2 we found simple tests for the divisibility
of integers by 7, 9, 11 and 13, promising to return to this theme later. The key to these
earlier tests was that 10 ≡ 1 (mod 9) and 103 ≡ −1 (mod 7 · 11 · 13); that is ord9(10) = 1
and ord7(10) = ord11(10) = ord13(10) = 6. For all primes p )= 2 or 5 we know that
k := ordp(10) is an integer dividing p− 1. Hence

n =
d∑

j=0

nj10
j ≡

∑

m≥0

(
k−1∑

i=0

nkm+i10
i

)
(mod p),

since if j = km + i then 10j ≡ 10i (mod p). In the displayed equation we have cut up
integer n, written in decimal, into blocks of digits of length k and add these blocks together,
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which is clearly an efficient way to test for divisibility. The length of these blocks, k, is
always ≤ p− 1 no matter what the size of n.

If k = 2$ is even we can do a little better (as we did with p = 7, 11 and 13), namely
that

n =
d∑

j=0

nj10
j ≡

∑

m≥0

(
"−1∑

i=0

nkm+i10
i −

"−1∑

i=0

nkm+"+i10
i

)
(mod p),

thus breaking n up into blocks of length $ = k/2.

7.7. The decimal expansion of fractions. The fraction 1
3= .3333 . . . is given by a

recurring digit 3, so we write it as .3. More interesting to us are the set of fractions

1

7
= .142857,

2

7
= .285714,

3

7
= .428571,

4

7
= .571428,

5

7
= .714285,

6

7
= .857142.

Notice that the decimal expansions of the six fractions a
7 , 1 ≤ a ≤ 6, are each periodic of

period length 6, and each contain the same six digits in the same order but starting at a
different place. Starting with the period for 1/7 we find that we go through the fractions
a/7 with a = 1, 3, 2, 6, 4, 5 when we rotate the period one step at a time. Do you recognize
this sequence of numbers? These are the least positive residues of 100, 101, 102, 103, 104, 105

(mod 7). To prove this, note that

106

7
= 142857.142857, so that

106 − 1

7
=

106

7
− 1

7
= 142857.

That is 106 ≡ 1 (mod 7) and the period 142857 is the quotient. What happens when we
multiply 1/7 through by 10k? For example, if k = 4 then

104

7
= 1428.571428 = 1428+

4

7
;

The part after the decimal point is always { 10k

7 } which equals "
7 where $ is the least positive

residue of 10k (mod 7). We can now give two results.

Proposition 7.15. Suppose that p is an odd prime, p )= 5. If 1 ≤ a ≤ p − 1 then the
decimal expansion of the period for a/p is periodic, with period of length ordp(10).

Proof. If a/p = .m where m has length n, then 10na/p = m.m, so that (10n − 1)a/p = m.
That is p|a(10n − 1) and so p|(10n − 1) which implies that ordp(10)|n. On the other hand
if 10n ≡ 1 (mod p) then (10n − 1)a/p = m for some integer m. Dividing through by 10n,
then 102n, then 103n, etc. and adding, we obtain that a/p = .m.

Theorem 7.16. Suppose that p is an odd prime for which 10 is a primitive root. If m is
the periodic part of 1/p, and if a is the least residue of 10k (mod p), then a/p has periodic
part mk, which is given by taking m, removing the leading k digits and concatenating them
on to the end.

Exercise 7.7.1. Prove this!
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7.8. Primes in arithmetic progressions, revisited. We can use the ideas in this
section to prove that there are infinitely many primes in certain arithmetic progressions 1
(mod m).

Theorem 7.17. There are infinitely many primes ≡ 1 (mod 3).

Proof. Suppose that there are finitely many primes ≡ 1 (mod 3), say p1, p2, . . . , pk. Let
a = 3p1p2 · · · pk, and q be a prime dividing a2+a+1. Now q )= 3 as a2+a+1 ≡ 1 (mod 3).
Moreover q divides a3−1 = (a−1)(a2+a+1), but not a−1 (else 0 ≡ a2+a+1 ≡ 1+1+1 ≡ 3
(mod q) but q )= 3). Therefore ordq(a) = 3 and so q ≡ 1 (mod 3) by Theorem 7.3. Hence
q = pj for some j, so that q divides a and thus (a2 + a + 1) − a(a + 1) = 1, which is
impossible.

Exercise 7.8.1. Generalize this argument to primes that are 1 (mod 4), 1 (mod 5), 1 (mod 6), etc.

Can you prove that there are infinitely many primes ≡ 1 (mod m) for arbitrary m?

In order to generalize this argument to primes ≡ 1 (mod m), we need to replace
the polynomial a2 + a + 1 by one that recognizes when a has order m. Evidently this
must be a divisor of the polynomial am − 1, indeed am − 1 divided through by all of the
factors corresponding to orders which are proper divisors of m. So define the cyclotomic
polynomials φn(t) ∈ Z[t], inductively, by the requirement

tm − 1 =
∏

d|m

φd(t) for all m ≥ 1,

with each φd(t) monic. Therefore

φ1(t) = t−1, φ2(t) = t+1, φ3(t) = t2+t+1, φ4(t) = t2+1, φ5(t) = t4+t3+t2+t+1, . . .

Exercise 7.8.2. Prove that φm(t) has degree φ(m). (Hint: Use the definition together with Proposition

4.3, much as in the proof of Theorem 7.7.)

We will discuss cyclotomic polynomials in detail at the end of section A3.



52 ANDREW GRANVILLE

8. Quadratic residues

We are interested in understanding the squares modm; that is the residues a (mod m)
for which there exists b (mod m) with b2 ≡ a (mod m). By the Chinese Remainder
Theorem we know that a is a square mod m if and only if a is a square modulo every
prime power factor of m, so it suffices to study only the case where m is a prime power.
We begin by considering only m = p an odd prime.

8.1. Squares mod p. Those non-zero residues a (mod p) that are congruent to a square
modulo p are called “quadratic residues (mod p)”. All other numbers are “quadratic
non-residues”. If there is no ambiguity we simply say “residues” and “non-residues”. Note
that 0 is always a square mod p (as 02 ≡ 0 (mod p)). Examples:

Modulus Quadratic residues

5 1, 4
7 1, 2, 4

11 1, 3, 4, 5, 9
13 1, 3, 4, 9, 10, 12
17 1, 2, 4, 8, 9, 13, 15, 16

In each case we see that there are p−1
2 quadratic residues mod p. One sees immediately

that (p − b)2 ≡ b2 (mod p) so the distinct quadratic non-residues are 12, 22, . . . ,
(p−1

2

)2

(mod p).

Lemma 8.1. The distinct quadratic residues mod p are given by 12, 22, . . . ,
(p−1

2

)2
(mod p).

Proof. If r2 ≡ s2 (mod p) where 1 ≤ s < r ≤ p − 1 then p | r2 − s2 = (r − s)(r + s) and
so p | r − s or p | r + s. Now −p < r − s < p and so if p|r − s then r = s. Moreover

0 < r + s < 2p and so if p|r + s then r + s = p. Hence the residues of 12, 22, . . . ,
(p−1

2

)2

(mod p) are distinct, and if s = p− r then s2 ≡ (−r)2 ≡ r2 (mod p).

Exercise 8.1.1.(a) One can write each non-zero residue mod p as a power of a primitive root. Prove

that the quadratic residues are precisely those residues are an even power of the primitive root, and the

quadratic non-residues are those that are an odd power .

(b) Are primitive roots ever quadratic residues?

Exercise 8.1.2. (a) Prove that for every m (mod p) there exist a and b mod p such that a2 + b2 ≡ m
(mod p). (Hint: Consider the size of the set of residues {a2 (mod p)} and of the set of residues {m − b2

(mod p)}, as a and b vary.)
(b) Deduce that there are three squares, not all divisible by p, whose sum is divisible by p.
(c) Generalize this argument to show that if a, b, c $≡ 0 (mod p) then there are at least p solutions

x, y, z (mod p) to ax2 + by2 + cz2 ≡ 0 (mod p).

Define the Legendre symbol as follows:

(
a

p

)
=






0 if a ≡ 0 (mod p)

1 if a is a quadratic residue (mod p),

−1 if a is a quadratic non-residue (mod p).
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Exercise 8.1.3.(a) Prove that if a ≡ b (mod p) then
(

a
p

)
=

(
b
p

)
.

(b) Prove that
∑p−1

a=0

(
a
p

)
= 0.

Corollary 8.2. There are exactly 1 +
(

a
p

)
residues classes b (mod p) for which b2 ≡ a

(mod p).

Proof. This is immediate if a is a quadratic non-residue. For a = 0 if b2 ≡ 0 (mod p)
then b ≡ 0 (mod p) so there is just one solution. If a is a quadratic residue then, by
definition, there exists b such that b2 ≡ a (mod p), and then there are the two solutions
(p − b)2 ≡ b2 ≡ a (mod p) and no others, by the proof in Lemma 8.1 (or by Lagrange’s
Theorem).

Theorem 8.3.
(

ab
p

)
=

(
a
p

)(
b
p

)
for any integers a, b. That is:

i) The product of two quadratic residues (mod p) is a quadratic residue;
ii) The product of a quadratic residue and a non-residue, is itself a non-residue.
iiI) The product of two quadratic non-residues (mod p) is a quadratic residue;

Proof. (i) If a ≡ A2 and b ≡ B2 then ab ≡ (AB)2 (mod p).
Let R := {r (mod p) : (r/p) = 1} be the set of quadratic residues mod p. We just saw

that if (a/p) = 1 then (ar/p) = 1 for all r ∈ R; in other words ar ∈ R, that is aR ⊂ R.
However the elements of aR are distinct, so that |aR| = |R|, and therefore aR = R.

(ii) Let N = {n (mod p) : (n/p) = −1} be the set of quadratic non-residues mod p, so that
N ∪R partitions the reduced residues mod p. By exercise 3.3.3, we deduce that aR ∪ aN
also partitions the reduced residues mod p, and therefore aN = N since aR = R. That is,
the elements of the set {an : (n/p) = −1} are all quadratic non-residues mod p.

By Lemma 8.1, we know that |R| =p−1
2 , and hence |N | =p−1

2 since N ∪ R partition
the p− 1 reduced residues mod p.

(iii) In (ii) we saw that if (n/p) = −1 and (a/p) = 1 then (na/p) = −1. Hence nR ⊂ N
and, as |nR| = |R| =p−1

2 = |N |, we deduce that nR = N . But nR ∪ nN partitions the
reduced residues mod p, and so nN = R. That is, the elements of the set {nb : (b/p) = −1}
are all quadratic residues mod p.

Exercise 8.1.4. What is the value of
(

a/b
p

)
? (Hint: Compare this to

(
ab
p

)
).

We deduce from the theorem that
(

.
p

)
is a multiplicative function. Therefore if we

have a factorization of a into prime factors as a = ±qe11 qe22 . . . qekk , and (a, p) = 1, then25

(
a

p

)
=

(
±1

p

) k∏

i=1

(
qi
p

)ei

=

(
±1

p

) k∏

i=1
ei odd

(
qi
p

)
,

since (q/p)2 = 1 for all p) |q. This implies that, in order to determine
(

a
p

)
for all integers

a, it is only really necessary to know the values of
(

−1
p

)
, and

(
q
p

)
for all primes q.

25By “±” and “±1” we mean that the sign can be either “+” or “−”, but the proofs of both cases
are the same, as long as one takes care to be consistent throughout with the choice of sign.
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8.2. Squares mod m. We show how to recognize squares modulo prime powers, in terms
of the squares mod p:

Proposition 8.4. Suppose that r is not divisible by prime p. If r is a square mod pk then
r is a square mod pk+1 whenever k ≥ 1, except perhaps in the cases pk = 2 or 4.

Proof. Let x be an integer, coprime with p, such that x2 ≡ r (mod pk), so that there exists
an integer n for which x2 = r + npk. Therefore

(x− jpk)2 = x2 − 2jxpk + x2p2k ≡ r + (n− 2jx)pk (mod pk+1);

and this is ≡ r (mod pk+1) for j ≡ n/2x (mod p) when p is odd. If p = 2 then

(x− n2k−1)2 = x2 − nx2k + x222k−2 ≡ r (mod 2k+1),

provided k ≥ 3.

Exercise 8.2.1. Deduce that integer r is a quadratic residue mod pk if and only if r is a quadratic residue

mod p, when p is odd, and if and only if r ≡ 1 (mod gcd(2k, 8)) when p = 2.

Notice that this implies that exactly half of the reduced residue classes mod pk are
quadratic residues, when p is odd, and exactly one quarter when p = 2 and k ≥ 3.

Using the Chinese Remainder Theorem we deduce from exercise 8.2.1 that if (a,m) = 1

then a is a square mod m if and only if
(

a
p

)
= 1 for every odd prime p dividing m, and

a ≡ 1 (mod gcd(m, 8)).

8.3. The Jacobi symbol. It is useful to extend the definition of the Legendre symbol
as follows: If m is odd, with m =

∏
p p

ep then

( a

m

)
=

∏

p

(
a

p

)ep

.

Observe that if a is a square mod m then (a/p) = 1 for all p|m and so (a/m) = 1.
However the converse is not always true: The squares mod 15 that are prime to 15 are
(±1)2 ≡ (±4)2 ≡ 1 (mod 15) and (±2)2 ≡ (±7)2 ≡ 4 (mod 15). Therefore 2 is not a
square mod 15 but

(
2

3

)
=

(
2

5

)
= −1, so that

(
2

15

)
=

(
2

3

)(
2

5

)
= 1.

Exercise 8.3.1.(a) Prove that
( a
m

)
=

(
b
m

)
whenever a ≡ b (mod m).

(b) Prove that
(

ab
m

)
=

( a
m

) ( b
m

)
.

Exercise 8.3.2. For how many residues a mod m do we have (a/m) = 1?
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8.4. The quadratic character of a residue. We have seen that the (p− 1)st power of
any reduced residue mod p is congruent to 1 (mod p) but are there perhaps other patterns
amongst the lower powers?

a a2 a3 a4

1 1 1 1
2 -1 -2 1
-2 -1 2 1
-1 1 -1 1

a a2 a3 a4 a5 a6

1 1 1 1 1 1
2 -3 1 2 -3 1
3 2 -1 -3 -2 1
-3 2 1 -3 2 1
-2 -3 -1 2 3 1
-1 1 -1 1 -1 1

The powers of a mod 5. The powers of a mod 7.

As expected the (p−1)st column is all 1s, but one also observes that the entries in the
“middle” columns, namely a2 (mod 5) and a3 (mod 7), are all −1s and 1s. This column

represents the least residues of numbers of the form a
p−1
2 (mod p). Euler showed that, not

only is this always −1 or 1, but that it determines the value of the Legendre symbol:

Euler’s criterion.
(

a
p

)
≡ a

p−1
2 (mod p), for all primes p and integers a.

Proof 1. If
(

a
p

)
= 1 then there exists b such that b2 ≡ a (mod p) so that a

p−1
2 ≡ bp−1 ≡ 1

(mod p), by Fermat’s Little Theorem.

If
(

a
p

)
= −1 then we proceed as in Gauss’s proof of Wilson’s Theorem by defining

S = {(r, s) : 1 ≤ r < s ≤ p− 1, rs ≡ a (mod p)}.

Each integer m, 1 ≤ m ≤ p − 1, appears in exactly one such pair, for it is paired with
the least positive residue of a/m (mod p), and no residue is paired with itself else m2 ≡ a
(mod p) which is impossible as a is a quadratic non-residue mod p. Hence

(p− 1)! =
∏

(r,s)∈S

rs ≡ a|S| = a
p−1
2 (mod p),

and the result follows from Wilson’s Theorem.

Exercise 8.4.1. Prove the result for (a/p) = 1, by evaluating (p− 1)! (mod p), as in the second part of

this proof which was given when (a/p) = −1?

Proof 2: We begin by noting that xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1). In (7.1) we noted

that xp−1−1 (mod p) factors in linear factors, the roots of which are the reduced residues

mod p. Hence the roots of x
p−1
2 − 1 (mod p) and the roots of x

p−1
2 + 1 (mod p) partition

the reduced residues mod p into two sets of size p−1
2 .

Now if
(

a
p

)
= 1 then there exists b (mod p) for which a ≡ b2 (mod p) and so a

p−1
2 ≡

bp−1 ≡ 1 (mod p), and therefore a
p−1
2 ≡

(
a
p

)
(mod p). So we have proved that a is a root
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of x
p−1
2 − 1 (mod p). By Lemma 8.1 there are exactly p−1

2 quadratic residues mod p, and

we now know that these are all roots of x
p−1
2 − 1 (mod p), and are thus all of the roots of

x
p−1
2 − 1 (mod p).
Now, all p−1

2 quadratic non-residues mod p are also roots of xp−1 − 1 (mod p), and

hence of x
p−1
2 +1 (mod p) (since they cannot be roots of x

p−1
2 − 1 (mod p)). Therefore if

(b/p) = −1 then b
p−1
2 ≡ −1 ≡ (b/p) (mod p).

This proof (and Euler’s criterion) imply that

x
p−1
2 − 1 ≡

∏

1≤a≤p
(a/p)=1

(x− a) (mod p) and x
p−1
2 + 1 ≡

∏

1≤b≤p
(b/p)=−1

(x− b) (mod p).

Example:
(

3
13

)
= 1 since 36 = 272 ≡ 12 ≡ 1 (mod 13), but

(
2
13

)
= −1 since 26 = 64 = −1

(mod 13).

Exercise 8.4.2. Explain how one can determine
(

a
p

)
by knowing the least residue of a

p−1
2 (mod p).

One of the beautiful consequences of Euler’s criterion is that one can test whether a is
a square mod p without determining the square root of a (mod p) (which may be difficult).
To justify this we will show that taking a high power of a mod p is not difficult using the
method of section A5.

When p ≡ 3 (mod 4) it is easy to find the square root of a (mod p):

Exercise 8.4.3. Let p be a prime ≡ 3 (mod 4). Show that if
(

a
p

)
= 1 and x ≡ a

p+1
4 (mod p) then

x2 ≡ a (mod p). Can one adapt this method when p ≡ 1 (mod 4)?

Although half of the residues mod p are quadratic non-residues we do not know how
to find one quickly (and thus we do not know how to find primitive roots quickly either)

Given an integer m it is easy to determine all of the quadratic residues (mod m), by
simply computing a2 (mod m) for each (a,m) = 1. However finding all primes p for which
m is a quadratic residue (mod p) is considerably more difficult. We begin examining this
question now with the exceptional cases m = −1 and m = 2:

8.5. The residue −1.

Theorem 8.5. −1 is a quadratic residue (mod p) if and only if p = 2 or p ≡ 1 (mod 4).

Proof. By Euler’s criterion, and exercise 8.4.2.

Proof #2. In exercise 7.4.3 we saw that −1 ≡ g(p−1)/2 (mod p) for any primitive root g
modulo odd prime p. Now if −1 ≡ (gk)2 (mod p) for some integer k then p−1

2 ≡ 2k

(mod p− 1), and there exists such an integer k if and only if p−1
2 is even.

Proof #3. (Euler) If a is a quadratic residue then so is 1/a (mod p). Thus we may “pair
up” the quadratic residues (mod p), except those for which a ≡ 1/a (mod p). The only
solutions to a ≡ 1/a (mod p) (that is a2 ≡ 1 (mod p)) are a ≡ 1 and −1 (mod p).
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Therefore

p− 1

2
= #{a (mod p) : a is a quadratic residue (mod p)}

≡ #{a ∈ {1,−1} : a is a quadratic residue (mod p)} (mod 2)

=






2 if
(

−1
p

)
= 1;

1 if
(

−1
p

)
= −1

(mod 2)

and the result follows.

Proof #4. The first part of the last proof also shows us that the product of the quadratic
residues mod p is congruent to −(−1/p). On the other hand the roots of x

p−1
2 −1 (mod p)

are precisely the quadratic residues mod p, and so, taking x = 0, we see that the product
of the quadratic residues mod p is congruent to (−1)(−1)

p−1
2 (mod p). Comparing these

yields that (−1/p) ≡ (−1)
p−1
2 (mod p).

Proof #5. The number of quadratic non-residues (mod p) is p−1
2 , and so, by Wilson’s

Theorem, we have
(
−1

p

)
=

(
(p− 1)!

p

)
=

∏

a (mod p)

(
a

p

)
≡ (−1)

p−1
2 .

Theorem 8.5 implies that if p ≡ 1 (mod 4) then
(

−r
p

)
=

(
r
p

)
; and if p ≡ −1 (mod 4) then

(
−r
p

)
= −

(
r
p

)
.

Corollary 8.6. If n is odd then
(
−1

n

)
=

{
1 if n ≡ 1 (mod 4);

−1 if n ≡ −1 (mod 4).

Exercise 8.5.1. Prove this.

8.6. The law of quadratic reciprocity. We have already seen that if p is an odd prime
then (

−1

p

)
=

{
1 if p ≡ 1 (mod 4);

−1 if p ≡ −1 (mod 4).

In the next section we will show that
(
2

p

)
=

{
1 if p ≡ 1 or − 1 (mod 8);

−1 if p ≡ 3 or − 3 (mod 8).

To be able to evaluate arbitrary Legendre symbols we will also need the law of quadratic
reciprocity. This states that if p and q are distinct odd primes then

(
p

q

)(
q

p

)
=

{ −1 if p ≡ q ≡ −1 (mod 4)

1 otherwise.
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These rules, taken together, allow us to rapidly evaluate any Legendre symbol, as follows:
Suppose that we wish to evaluate (m/p). First we reduce m mod p, so that (m/p) = (n/p)
where n ≡ m (mod p) and |n| < p. Next we factor n and, by the multiplicativity of the
Legendre symbol, as discussed at the end of section 8.1, we can evaluate (n/p) in terms
of (−1/p), (2/p) and the (q/p) for those primes q dividing n. We can easily determine the
values of (−1/p) and (2/p) from determining p (mod 8), and then we need to evaluate
each (q/p) where q ≤ |n| < p. We do this by the law of quadratic reciprocity so that
(q/p) = ±(p/q) depending only on the values of p and q mod 4. We repeat the procedure
on each (p/q). Clearly this process will quickly finish as the numbers involved are always
getting smaller.Let us work through some examples.

(
111

71

)
=

(
−1

71

)(
31

71

)
as 111 ≡ −31 (mod 71)

= (−1) · (−1) ·
(
71

31

)
as 71 ≡ 31 ≡ −1 (mod 4)

=

(
9

31

)
= 1 as 71 ≡ 9 (mod 31).

Next we give an alternate evaluation, without explaining each step:

(
111

71

)
=

(
40

71

)
=

(
2

71

)3 ( 5

71

)
= 13 · 1 ·

(
71

5

)
=

(
1

5

)
= 1.

Another slightly larger example

(
869

311

)
=

(
247

311

)
=

(
13

311

)(
19

311

)
= 1 ·

(
311

13

)
· (−1) ·

(
311

19

)

= −
(
−1

13

)(
7

19

)
= −1 · (−1)

(
19

7

)
=

(
−2

7

)
= −1.

Although longer, this is a straightforward application of the steps above except for the step
in which we factored 247 = 13 × 19. This is probably not obvious to you, and imagine if
we were dealing with much larger numbers. Indeed, this is an efficient procedure provided
that one is capable of factoring the numbers n that arise. Although this may be the case
for small examples, it is not practical for large examples. We can by-pass this difficulty by
using the Jacobi symbol:

The three rules above hold just as well provided p and q are any two odd coprime
integers. Hence to evaluate (m/p) we find n ≡ m (mod p) with |n| < p as above, and
then write n = qN , where q = ± a power of 2, and N is an odd positive integer, so that
N ≤ |n| < p. Therefore (m/p) = (n/p) which may be evaluated in terms of (−1/p), (2/p)
and (N/p). This last equals ±(p/N) depending only on p and N mod 4, and then we
repeat the procedure with (p/N). This process only involves dividing out powers of 2 and
a possible minus sign, so goes fast and avoids serious factoring; in fact it is guaranteed to
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go at least as fast as the Euclidean algorithm since it involves very similar steps. A first
straightforward example using the Jacobi symbol, instead of the Legendre symbol:

(
106

71

)
=

(
35

71

)
= −

(
71

35

)
= −

(
1

35

)
= −1.

(Note that (71/35) cannot be the Legendre symbol since 35 is not prime.) Now let’s try
the example above that presented the difficulty of factoring 247 when using the Legendre
symbol: (

869

311

)
=

(
247

311

)
= (−1)

(
311

247

)
= −

(
64

247

)
= −1.

Here we did not need to factor 247; indeed the application of each step of the algorithm
was straightforward.

In the next few subsections we will prove the results used above. Our approach will
not be the one mostly seen in textbooks today (which we will present in section C8), but
rather (a version of) the original proof of Gauss.

8.7. The residues +2 and −2. By computing, one finds that the odd primes p < 100

for which
(

2
p

)
= 1 are p = 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97. These are exactly the

primes < 100 that are ≡ ±1 (mod 8). The values of p < 100 for which
(

−2
p

)
= 1 are

p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97. These are exactly the primes < 100 that are
≡ 1 or 3 (mod 8). These observations are established as facts in the following result.

Theorem 8.7. If n is odd then

(
2

n

)
=

{
1 if n ≡ 1 or − 1 (mod 8);

−1 if n ≡ 3 or − 3 (mod 8);

and (
−2

n

)
=

{
1 if n ≡ 1 or 3 (mod 8);

−1 if n ≡ 5 or 7 (mod 8).

Proof. Note that these two results are equivalent using Corollary 8.6, as
(−2

n

)
=

(−1
n

) (
2
n

)
.

We prove the result by induction on n. If n is composite with n ≡ ±1 (mod 8) then
write n = ab with 1 < a, b < n. Then b ≡ a2b = an ≡ ±a (mod 8), as a2 ≡ 1 (mod 8),
and so

(
2
a

)
=

(
2
b

)
by the induction hypothesis. Hence

(
2
n

)
=

(
2
a

) (
2
b

)
= 1.

Proceeding similarly when n ≡ ±3 (mod 8) we find that
(
2
a

)
= −

(
2
b

)
by the induction

hypothesis, and so
(
2
n

)
=

(
2
a

) (
2
b

)
= −1.

We may therefore assume that n = p is prime. For p ≡ 1 (mod 4) we have an element
r such that r2 ≡ −1 (mod p) by Theorem 8.5, and so (r+1)2 = r2+1+2r ≡ 2r (mod p).

Therefore
(

2
p

)(
r
p

)
=

(
2r
p

)
= 1, so that 2 is a square mod p if and only if r is a square

mod p: Now r is a residue of order 4 mod p, and so is a square mod p if and only if there
is an element of order 8 mod p. There is an element of order 8 mod p if and only 8|p− 1
by Theorem 7.7. The result thus follows when p ≡ 1 or 5 (mod 8).
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We now exhibit an argument that we will later use to prove the full law of quadratic

reciprocity. If the result is false for p ≡ ±3 (mod 8) then
(

2
p

)
= 1. Select a2 ≡ 2

(mod p) with a odd and minimal, so that 1 ≤ a ≤ p− 1.26 Write a2 − 2 = pr. Evidently
pr ≡ a2 − 2 ≡ −1 (mod 8) and so r ≡ ±3 (mod 8). But then a2 ≡ 2 (mod r) and so(
2
r

)
= 1 with r = a2−2

p < p, which contradicts the induction hypothesis.

If the result is false for p ≡ 5 or 7 (mod 8) then
(

−2
p

)
= 1. Select a2 ≡ −2 (mod p)

with aminimal and odd, so that 1 ≤ a ≤ p−1. Write a2+2 = pr. Evidently pr ≡ a2+2 ≡ 3
(mod 8) and so r ≡ 5 or 7 (mod 8). But then a2 ≡ −2 (mod r) and so

(−2
r

)
= 1 with

r = a2+2
p < p, which contradicts the induction hypothesis.

Combining these cases gives the result for all odd primes p, and hence for all odd
integers n.

Theorem 8.7, with n = p, can be easily deduced from Euler’s criterion, as we will
discuss in section C8.

8.8. Small residues and non-residues. 1 is always a quadratic residue mod p, as are
4, 9, 16, . . . If 2 and 3 are quadratic non-residues then 2 · 3 = 6 is a quadratic residue,
by Theorem 8.3(iii). Hence one is always guaranteed lots of small quadratic residues.
How about small quadratic non-residues mod p? Since half the residues are quadratic
non-residues one might expect to find lots of them, but a priori one is only guaranteed
to find one that is ≤p+1

2 . Can one do better? This is an important question in number
theory, and one where the best results known are surprisingly weak (see section F3 for
more discussion).
Exercise 8.8.1. Prove that the smallest quadratic non-residue mod p must be a prime.

Slightly more difficult is to bound, for prime p, the smallest prime q for which p is a
quadratic non-residue mod q:

Theorem 8.9. If p is a prime ≡ 1 (mod 4) there exists a prime q < p such that
(

p
q

)
= −1.

Actually we get the much better bound, q < 3
√
p, from our proof.

Part I. If p ≡ 5 (mod 8) then there exists a prime q < 2(
√
2p− 1) with

(
p
q

)
= −1.

Proof. Choose integer a as large as possible so that 2a2 < p; that is a = {
√

p/2} and so
a > (p/2)1/2 − 1. Now p − 2a2 ≡ 3 or 5 (mod 8) and so has a prime divisor q ≡ 3 or

5 (mod 8) (by exercise 3.1.4(b)). But then, by Theorem 8.7, we have
(

2
q

)
= −1 and so

(
p
q

)
=

(
2a2

q

)
= −1. Finally

q ≤ p− 2a2 < 2(
√
2p− 1).

The next case involves a remarkable proof given by Gauss:

26If b is the smallest positive integer for which b2 ≡ 2 (mod p), so that 1 ≤ b ≤ p− 1, then let a = b
if b is odd, and a = p− b if b is even.
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Part II. If p ≡ 1 (mod 8) then there exists an odd prime q < 2
√
p+ 1 with

(
p
q

)
= −1.

Proof. Let m = [
√
p] and consider the product (p − 12)(p − 22) . . . (p − m2), under the

assumption that
(

p
q

)
= 1 for all q ≤ 2m+ 1. Now since

(
p
q

)
= 1 there exists a such that

p ≡ a2 (mod q); in fact there exists aq such that p ≡ a2q (mod qn) for any given integer
n ≥ 1 (by exercise 8.2.1). Since this is true for each q ≤ 2m + 1, and since (2m + 1)! is
divisible only by powers of primes q ≤ 2m+1, we use the Chinese Remainder Theorem to
construct an integer A for which p ≡ A2 (mod (2m+ 1)!). Thus

(p− 12)(p− 22) . . . (p−m2) ≡ (A2 − 12)(A2 − 22) . . . (A2 −m2)

≡ (A+m)!

(A−m− 1)!
· 1
A

(mod (2m+ 1)!).

Now (p, (2m+ 1)!) = 1 and so (A, (2m+ 1)!) = 1; moreover

(
A+m
2m+ 1

)
is an integer,

and so

(A+m)!

(A−m− 1)!
· 1
A

=
1

A
· (2m+ 1)!

(
A+m

2m+ 1

)
≡ 0 (mod (2m+ 1)!).

Therefore (2m+ 1)! divides (p− 12)(p− 22) . . . (p−m2). However p < (m+ 1)2 and so

(2m+ 1)! ≤ (p− 12)(p− 22) . . . (p−m2)

< ((m+ 1)2 − 12)((m+ 1)2 − 22) . . . ((m+ 1)2 −m2) =
(2m+ 1)!

m+ 1

giving a contradiction.

One amusing problem is to find strings of consecutive quadratic residues. You might
develop the observation about 2, 3 and 6 in the first paragraph of this section to prove
the following:
Exercise 8.8.2. Prove that for every prime p ≥ 7 there exists an integer n = np ≤ 9 for which one has(

n
p

)
=

(
n+1
p

)
= 1. Can you extend this result to three consecutive quadratic residues?

8.9. Proof of the law of quadratic reciprocity. Gauss gave four proofs of the law
of quadratic reciprocity, and there are now literally hundreds of proofs. None of the
proofs are easy. For an elementary textbook like this one wishes to avoid any deeper
ideas, which considerably cuts down the number of choices. The one that has been long
preferred stems from an idea of Eisenstein and is discussed in section C8. It ends up with
an elegant lattice point counting argument though the intermediate steps are difficult to
follow and motivate. Gauss’s very first proof was long and complicated yet elementary and
the motivation is quite clear. Subsequent authors [Sav] have shortened Gauss’s proof and
we present a version of that proof here. We will prove that for any odd integers m and n
with (m,n) = 1 we have

(m
n

)( n

m

)
=

{ −1 if m ≡ n ≡ −1 (mod 4)

1 otherwise
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where we define
(

m
−n

)
=

(
m
n

)
. Note that we can write the right side as (−1)

m−1
2 ·n−1

2 .

We prove this by induction on max{|m|, |n|}. It is already proved if one of m and n
equals 1 or −1. If m = ab is composite with 1 < a, b < m then

(m
n

)( n

m

)
=

(a

n

)(n
a

)
·
(
b

n

)(n
b

)
= (−1)

a−1
2 ·n−1

2 · (−1)
b−1
2 ·n−1

2 ,

and the result follows since:
Exercise 8.9.1. Prove that a−1

2 + b−1
2 ≡ ab−1

2 (mod 2) for any odd integers a, b.

A similar proof works if n is composite. We can assume that m and n are positive for if
m < 0 then we can write m = −b with b > 0 and follow the above argument through with
a = −1. Therefore we are left with the case that m = p < n = q are primes, that is we
wish to prove that

(
p

q

)(
q

p

)
=

{ −1 if p ≡ q ≡ −1 (mod 4)

1 otherwise.

The proof is modeled on that of the last two cases in the proof of Theorem 8.7. There are
two cases here:

• When
(

p
q

)
= 1 or

(
−p
q

)
= 1, let $ = p or −p, respectively, so that

(
"
q

)
= 1. Then

there exists an even integer e, 1 ≤ e ≤ q−1 such that e2 ≡ $ (mod q), and therefore there
exists an integer s with

e2 = $+ qs.

Now |s| =
∣∣∣ e

2−"
q

∣∣∣ < (q−1)2+q
q < q, so the reciprocity law works for the pair $, s by the

induction hypothesis. Observing that e2 ≡ $ (mod s) and e2 ≡ qs (mod $) we deduce
that

(
"
s

)
=

( qs
"

)
= 1 assuming p = |$| does not divide s. We therefore deduce:

(
$

q

)(q
$

)
= 1 ·

(q
$

)
·
(qs
$

)
·
(
$

s

)
=

(s
$

)
·
(
$

s

)
= (−1)

!−1
2 · s−1

2

Now $+ qs = e2 ≡ 0 (mod 4), and the result follows as q ≡ s (mod 4) if $ ≡ −1 (mod 4).

If p|s we write s = $S, e = $E to obtain $E2 = 1 + qS, and so
(
"
S

)
=

(
−qS
"

)
= 1.

Therefore
(
$

q

)(q
$

)
=

(q
$

)
·
(
−qS

$

)
·
(
$

S

)
=

(
−S

$

)
·
(
$

−S

)
= (−1)

!−1
2 ·S+1

2

and the result follows since S ≡ −q (mod 4).

• When
(

p
q

)
=

(
−p
q

)
= −1, we have

(
−1
q

)
= 1 so that q ≡ 1 (mod 4). Therefore

there exists a prime $ <q such that
( q
"

)
= −1 by Theorem 8.9. If $ = p then the result

follows, so now assume that $ )= p. Moreover
(
"
q

)
= −1 else, since we have already proved
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the reciprocity law when
(
"
q

)
= 1, this would imply that

( q
"

)
= 1 as q ≡ 1 (mod 4), a

contradiction.
Therefore

(
p"
q

)
= 1 and so there exists an even integer e, 1 ≤ e ≤ q − 1 such that

e2 ≡ p$ (mod q), which implies that there exists an integer s with

e2 = p$+ qs.

Note that |s| =
∣∣∣ e

2−p"
q

∣∣∣ ≤
∣∣∣max{(q−1)2,p"}

q

∣∣∣ < q, so the reciprocity law works for any two of

$, p, s by the induction hypothesis.
We proceed much as above but now there are four possibilities for d = (p$, qs) = (p$, s),

which we handle all at once: Since d is squarefree and d|p$+ qs = e2, hence d|e. We write
e = dE, p$ = dL and s = dS so that dE2 = L+ qS, and dE2, L, qS are pairwise coprime.
But then (

−LqS

d

)
=

(
dqS

L

)
=

(
dL

q

)
=

(
dL

S

)
= 1.

Multiplying these all together and re-organizing, and using that p$ = dL, we obtain

(
p

q

)(
q

p

)
=

(q
$

)(
$

q

)
·
(
−L

d

)(
d

−L

)
·
(
S

p

)( p

S

)
·
(
S

$

)(
$

S

)

Now
( q
"

) (
"
q

)
= 1 by the choice of $. We use the induction hypothesis for the pairs

($, S), (p, S), and (−L, d) (and the cases where one of L and d is ±1 in the last pair) to
obtain (

p

q

)(
q

p

)
= 1 · (−1)

L+1
2 · d−1

2 + p−1
2 ·S−1

2 + !−1
2 ·S−1

2 .

Now S ≡ −qL ≡ −L (mod 4) and dp$ = d2L ≡ L (mod 4), so the above exponent is
≡ L+1

2 · dp"−1
2 ≡ L+1

2 · L−1
2 ≡ 0 (mod 2), and the result follows.

Another proof for (2/n). By induction on n. The result is easily proved for n = 1. For
odd n > 1 we have, using the law of quadratic reciprocity,

(
2

n

)
=

(
−1

n

)(
n− 2

n

)
=

(
−1

n

)(
n

n− 2

)
=

(
−1

n

)(
2

n− 2

)
,

as one of n and n− 2 is ≡ 1 (mod 4).
Exercise 8.9.2. Complete the proof, which proceeds via an analysis of the four cases mod 8.
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9. Quadratic equations

9.1. Sums of two squares. What primes are the sum of two squares? If we start
computing we find that

2 = 12+12, 5 = 12+22, 13 = 22+32, 17 = 12+42, 29 = 52+22, 37 = 12+62, 41 = 52+42, . . .

so we might guess that the answer is 2 and any prime ≡ 1 (mod 4).

Proposition 9.1. If p is an odd prime that is the sum of two squares then p ≡ 1 (mod 4).

Proof. If p = a2 + b2 then p ) |a, else p|p− a2 = b2 so that p|b and p2|a2 + b2 = p, which is
impossible. Similarly p ) |b. Now a2 ≡ −b2 (mod p) so that

1 =

(
a

p

)2

=

(
−1

p

)(
b

p

)2

=

(
−1

p

)
,

and therefore p ≡ 1 (mod 4).

The proof in the other direction is more complicated:

Theorem 9.2. Any prime p ≡ 1 (mod 4) can be written as the sum of two squares.

Proof. Since p ≡ 1 (mod 4) we know that there exists an integer b such that b2 ≡ −1
(mod p). Consider now the set of integers

{i+ jb : 0 ≤ i, j ≤ [
√
p]}

The number of pairs i, j used in the construction of this set is ([
√
p] + 1)2 > p, and so by

the pigeonhole principle, two of the numbers in the set must be congruent mod p; say that

i+ jb ≡ I + Jb (mod p)

where 0 ≤ i, j, I, J ≤ [
√
p] and {i, j} )= {I, J}. Let r = i− I and s = J − j so that

r ≡ bs (mod p)

where |r|, |s| ≤ [
√
p] <

√
p, and r and s are not both 0. Now

r2 + s2 ≡ (bs)2 + s2 = s2(b2 + 1) ≡ 0 (mod p),

and 0 < r2 + s2 <
√
p2 +

√
p2 = 2p. The only multiple of p between 0 and 2p is p, and

therefore r2 + s2 = p.

Exercise 9.1.1. Suppose that b (mod p) is given, and that R ≥ 1 and S are positive numbers such that

RS = p. Prove that there exist integers r, s with |r| ≤ R, 0 < s ≤ S such that b ≡ r/s (mod p).

What integers can be written as the sum of two squares? Note the identity

(9.1) (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.
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Exercise 9.1.2. Use this to show that the product of two or more integers that are the sum of two

squares is itself the sum of two squares.

We see that (9.1) is a useful identity, yet we simply gave it without indicating how
one might find such an identity. Let i be a complex number for which i2 = −1. Then we
have x2 + y2 = (x+ iy)(x− iy), a factorization in the set {a+ bi : a, b ∈ Z}. Therefore

(a2 + b2)(c2 + d2) = (a+ bi)(a− bi)(c+ di)(c− di) = (a+ bi)(c+ di)(a− bi)(c− di)

= ((ac− bd) + (ad+ bc)i)((ac− bd)− (ad+ bc)i)

= (ac− bd)2 + (ad+ bc)2,

and so we get (9.1). A different re-arrangement leads to a different identity:

(9.2) (a2 + b2)(c2 + d2) = (a+ bi)(c− di)(a− bi)(c+ di) = (ac+ bd)2 + (ad− bc)2.

Exercise 9.1.3. Prove that if prime p = a2 + b2 is coprime with c2 + d2 then ac−bd
ad+bc≡

a
b (mod p) in

(9.1); and ac+bd
ad−bc≡ − a

b ≡ b
a (mod p) in (9.2).

In Theorem 9.2 we saw that every prime p ≡ 1 (mod 4) can be written as the sum of
two squares. A few examples indicate that perhaps there is a unique such representation,
up to signs and changing the order of the squares. This will now be proved:
Exercise 9.1.4. Suppose that p is a prime ≡ 1 (mod 4) with p = a2 + b2 = c2 + d2 where a, b, c, d > 0.

(a) Prove that (a, b) = (c, d) = 1.
(b) Prove that a/b ≡ c/d or −c/d (mod p).
(c) Assuming that a/b ≡ c/d (mod p) in (b), use (9.2) to deduce that p|(ac+ bd).
(d) Deduce that ad = bc from (c) and (9.2), and then that a = c and b = d from (a).
(e) Work through the analogous case where a/b ≡ −c/d (mod p) using (9.1).

Exercise 9.1.4 tells us that any prime p ≡ 1 (mod 4) can be written as the sum of
two squares in a unique way, thus 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42 and there
are no other representations (other than trivial changes like swapping signs and changing
order). For a composite number like 65 we can use the formulae (9.1) and (9.2) to obtain
that 65 = 12 + 82 = 72 + 42, and indeed any composite that is the product of two distinct
primes ≡ 1 (mod 4) can be written as the sum of two squares in exactly two ways, for
examples, 85 = 72+62 = 92+22 and 221 = 13 ·17 = 142+52 = 112+102. We will discuss
the number of representations further in section F5.

Theorem 9.3. Positive integer n can be written as the sum of two squares of integers if
and only if for every prime p ≡ 3 (mod 4) which divides n, the exact power of p dividing
n is even.

Proof. Suppose that n = a2 + b2 where (a, b) = 1. This implies that (b, n) = 1 else if
prime q|(b, n) then q|(n − b2) = a2 and so q|a implying that q|(a, b). Therefore if odd
prime p divides n, and c is the inverse of b (mod n) (which exists as (b, n) = 1), then
(ca)2 = c2(n− b2) ≡ −(bc)2 ≡ −1 (mod p). Hence (−1/p) = 1 and so p ≡ 1 (mod 4).

Now suppose that N = A2 +B2 where g = (A,B), and suppose that p is a prime ≡ 3
(mod 4) which divides N . Writing A = ga,B = gb and n = N/g2, we have n = a2 + b2
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with (a, b) = 1 so that p) |n by the previous paragraph. Hence p|g, and so the power of p
dividing N is even, as claimed.

In the other direction, write n = mg2 where m is squarefree. By hypothesis m has
no prime factors ≡ 3 (mod 4). Now by Theorem 9.2 we know that every prime factor of
m can be written as the sum of two squares. Hence m can be written as the sum of two
squares by exercise 9.1.2, and so n can be, multiplying each square through by g2.

Exercise 9.1.5. Deduce that positive integer n can be written as the sum of two squares of rationals if

and only if n can be written as the sum of two squares of integers.

In section 6.1 we saw how to find all solutions to x2 + y2 = 1 in rationals x, y. How
about all rational solutions to x2 + y2 = n? It is not difficult to do this in the case that
n = p prime, and this argument can be generalized to arbitrary n:

Proposition 9.4. Suppose that prime p can be written as a2 + b2. Then all solutions in
rationals u, v to u2 + v2 = p are given by the parametrization:

(9.3) u =
2ars+ b(s2 − r2)

r2 + s2
, v =

2brs+ a(r2 − s2)

r2 + s2
,

or the same with b replaced by −b.

Proof sketch. Let u, v be rationals for which u2+v2 = p. Let z be the smallest integer such
that x = uz and y = vz are both integers, so that x2+y2 = pz2. Now (x, y)2|x2+y2 = pz2

so that (x, y)|z. Therefore Z := z/(x, y) is an integer with u := x/(x, y) = uZ, v :=
y/(x, y) = vZ both integers satisfying u2 + v2 = pZ2. By the minimality of z, we must
have z ≤ Z, which implies that (x, y) = 1.

Now x2 + y2 ≡ 0 (mod p), and so (x/y)2 ≡ −1 (mod p) as (x, y) = 1. But then
x/y ≡ a/b or −a/b (mod p), say ‘+’, so that p|(ay − bx). Now

p2z2 = (a2 + b2)(x2 + y2) = (ax+ by)2 + (ay − bx)2

and so p|(ax+ by). Hence z2 = ((ax+ by)/p)2+((ay− bx)/p)2, and so by (6.1) there exist
integers g, r, s such that

ax+ by = 2pgrs, ay − bx = pg(r2 − s2), and z = g(r2 + s2).

The result follows.

9.2. The values of x2 + dy2. What values does x2 + 2y2 take? We have the identity

(a2 + 2b2)(c2 + 2d2) = (ac+ 2bd)2 + 2(ad− bc)2,

analogous to (9.1), so we can focus on what primes are represented. Now if odd prime
p = x2 + 2y2 then (−2/p) = 1. On the other hand if (−2/p) = 1 then select b (mod p)
such that b2 ≡ −2 (mod p). We take R = 21/4

√
p, S = 2−1/4√p in exercise 9.1.1, so that

p divides r2 + 2s2, which is ≤ 23/2p < 3p. Hence r2 + 2s2 = p or 2p. In the latter case
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2|2p− 2s2 = r2 so that 2|r. Writing r = 2R we have s2 + 2R2 = p. Hence we have proved
that p can be written as m2 + 2n2 if and only if p = 2 or p ≡ 1 or 3 (mod 8).
Exercise 9.2.1. What integers can be written as x2 + 2y2?

Exercise 9.2.2. Fix integer d ≥ 1. Give an identity showing that the product of two integers of the form

a2 + db2 is also of this form.

Exercise 9.2.3. Try to determine what primes are of the form a2 + 3b2, and a2 + 5b2, a2 + 6b2, etc.

9.3. Solutions to quadratic equations. It is easy to see that there do not exist non-
zero integers a, b, c such that a2 + 5b2 = 3c2. For if we take the smallest non-zero solution
then we have

a2 ≡ 3c2 (mod 5)

and since (3/5) = −1 this implies that a ≡ c ≡ 0 (mod 5) and so b ≡ 0 (mod 5). Therefore
a/5, b/5, c/5 gives a smaller solution to x2 + 5y2 = 3z2, contradicting minimality.

Another proof stems from looking at the equation mod 4 since then a2 + b2 + c2 ≡ 0
(mod 4), and thus 2|a, b, c as 0 and 1 are the only squares mod 4, and so a/2, b/2, c/2 gives
a smaller solution, contradicting minimality.

In general there are an even number of proofs modulo powers of different primes that
a given quadratic equation has no solutions, if there are none. These are not difficult to
identify (since the odd primes involved divide the coefficients). On the other hand, what
is remarkable, is that if there are no such “mod pk obstructions”, then there are non-zero
integer solutions:

The Local-Global Principle for Quadratic Equations. Let a, b, c be given integers.
There are solutions in

Integers $,m, n to a$2 + bm2 + cn2 = 0

if and only if there are solutions in

Real numbers λ, µ, ν to aλ2 + bµ2 + cν2 = 0,

and, for all positive integers r, there exist

Residue classes u, v, w (mod r) to au2 + bv2 + cw2 ≡ 0 (mod r),

with u, v, w (mod r), not all ≡ 0 (mod r).

Notice the similarity with the Local-Global Principle for Linear Equations given in
section 3.4. Just as there, we can restrict our attention to just one modulus r. We may
also restrict the set of a, b, c without loss of generality:
Exercise 9.3.1.(a) Show that we may assume a, b and c are squarefree, without loss of generality. (Hint:

Suppose a = Ap2 for some prime p, and establish a 1-to-1 correspondence with the solutions for A, b, c.)

(b) Show that we may also assume that a, b and c are pairwise coprime.

In the final criteria we note that there are non-trivial solutions modulo every integer
r, if and only if there are non-trivial solutions modulo every prime power, by the Chinese



68 ANDREW GRANVILLE

Remainder Theorem. In exercise 8.1.2 we showed that there are non-trivial solutions
to au2 + bv2 + cw2 ≡ 0 (mod p) whenever p) |2abc (and these solutions can be “lifted” to
solutions for all powers of those primes — see section D2). Therefore we need to investigate
only the cases r is a power of a prime factor of 2abc.

Using these exercises we come up with a rather more compact way to write the result.27

The Local-Global Principle for Quadratic Equations. (Legendre, 1785) Suppose
that squarefree non-zero integers a, b, c are pairwise coprime. Then the equation

a$2 + bm2 + cn2 = 0

has solutions in integers, other than $ = m = n = 0 if and only if −bc is a square mod a,
−ac is a square mod b, and −ab is a square mod c, and a, b and c do not all have the same
sign.

We can again restate the criterion, asking only for solutions to a$2 + bm2 + cn2 ≡ 0
(mod abc) with ($mn, abc) = 1.

Proof =⇒ : We may assume that a, b, c do not all have the same sign, else a$2, bm2, cn2 all
have the same sign, so that a$2+bm2+cn2 ≥ 0 with equality if and only if $ = m = n = 0.

So suppose that we have the minimal non-zero solution, a$2 + bm2 + cn2 = 0.
We now show that (m, a) = 1: If not there exists a prime p|(m, a)|a$2 + bm2 = −cn2

and so p|n as (a, c) = 1. Moreover p2|bm2 + cn2 = −a$2 and so p|$ as a is squarefree. But
then $/p,m/p, n/p yields a smaller solution, contradicting minimality.

Now bm2 ≡ −cn2 (mod a) and, as (m, a) = 1, there exists r such that rm ≡ 1
(mod a). Therefore −bc ≡ −bc(rm)2 = cr2 · (−bm2) ≡ cr2 · cn2 = (crn)2 (mod a).

An analogous argument works mod b and mod c.

Proof⇐=: Interchanging a, b, c, and multiplying through by −1, as necessary, we can
assume that a, b > 0 > c.

Suppose that α,β, γ are integers such that

α2 ≡ −bc (mod a), β2 ≡ −ac (mod b), γ2 ≡ −ab (mod c).

Construct, using the Chinese Remainder Theorem integers u, v, w for which

u ≡
{
γ (mod c)

c (mod b)
, v ≡

{
α (mod a)

a (mod c)
, w ≡

{
β (mod b)

b (mod a)
.

Note that, by this definition, (a, vw) = (b, uw) = (c, uv) = 1.
Exercise 9.3.2.(a) Working mod a, b, c separately and then using the Chinese Remainder Theorem,
verify that

au2 + bv2 + cw2 ≡ 0 (mod abc).

27We are not presenting these two different formulations to be obtuse. The first formulation bet-
ter expresses the “local-global principle”, while the latter is more amenable to proof, even though both
formulations are equivalent.
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(b) Show that if x, y, z are integers for which aux+ bvy + cwz ≡ 0 (mod abc) then

ax2 + by2 + cz2 ≡ 0 (mod abc).

Now consider the set of integers

{aui+ bvj + cwk : 0 ≤ i ≤
√
|bc|, 0 ≤ j ≤

√
|ac|, 0 ≤ k ≤

√
|ab|}.

The number of i values is 1+ [
√
|bc|] >

√
|bc|; and similarly the number of j and k values,

so that the number of elements of the set is >
√

|bc| ·
√

|ac| ·
√

|ab| = |abc|. Hence two
different integers in the set are congruent mod abc, by the pigeonhole principle, say

aui+ bvj + cwk ≡ auI + bvJ + cwK (mod abc).

Then x = i− I, y = j − J, z = k −K are not all zero, and

aux+ bvy + cwz ≡ 0 (mod abc).

By the previous exercise we deduce that

ax2 + by2 + cz2 ≡ 0 (mod abc).

Now |x| ≤
√

|bc|, |y| ≤
√
|ac|, |z| ≤

√
|ab| and so

−|abc| = 0 + 0− |abc| ≤ ax2 + by2 + cz2 ≤ |abc|+ |abc|+ 0 = 2|abc|.

Since |bc|, |ac|, |ab| are squarefree integers by hypothesis, if we get equality in either in-
equality here then a = b = 1, but this case is settled by Theorem 9.3. Hence we may
assume that

ax2 + by2 + cz2 ≡ 0 (mod abc), and − |abc| < ax2 + by2 + cz2 < 2|abc|,

so that ax2 + by2 + cz2 = 0 as desired or ax2 + by2 + cz2 = |abc|. The first case gives us
the theorem with excellent bounds on the solutions. In the second we make an unintuitive
transformation to note that

a(xz + by)2 + b(yz − ax)2 + c(z2 − ab)2 = (z2 − ab)(ax2 + by2 + cz2 − abc) = 0,

which yields a solution and therefore completes the proof of Legendre’s Local-Global Prin-
ciple for Quadratic Equations.

In 1950, Holzer showed that if there are solutions then the smallest non-zero solution
satisfies

|a$2|, |bm2|, |cn2| ≤ |abc|.
In 1957, Selmer showed that the Local-Global Principle does not necessarily hold for

cubic equations since 3x3 + 4y3 + 5z3 = 0 has solutions in the reals, and mod r for all
r ≥ 1, yet has no integer solutions.
Exercise 9.3.3 Given one integer solution to ax2

0 + by20 + cz20 = 0, show that all other integer solutions
to ax2 + by2 + cz2 = 0 are given by the paramtrization,

x : y : z = (ar2 − bs2)x0 + 2brsy0 : 2arsx0 − (ar2 − bs2)y0 : (ar2 + bs2)z0 .

(Hint: Proceed as in the geometric proof of (6.1), or as in the proof of Proposition 9.4.)
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10. Square Roots and Factoring

10.1. Square roots mod p. How difficult is it to find square roots mod n? The first
question to ask is how many square roots does a square have mod n?

Lemma 10.1. If n is a squarefree odd integer with k prime factors, and A is a square mod
n with (A,n) = 1, then there are exactly 2k residues mod n whose square is ≡ A (mod n).

Proof. Suppose that b2 ≡ A (mod n) where n = p1p2 . . . pk, and each pi is odd and distinct.
If x2 ≡ A (mod n) then n|(x2− b2) = (x− b)(x+ b) so that p divides x− b or x+ b for each
p|n. Now p cannot divide both else p divides (x+ b)− (x+ b) = 2b and so 4A ≡ (2b)2 ≡ 0
(mod p), which contradicts that fact that (p, 2A)|(n, 2A) = 1. So let

d = (n, x− b), and therefore n/d = (n, x+ b).

Then x ≡ bd (mod n) where bd is that unique residue class mod n for which

bd ≡
{

b (mod d)

−b (mod n/d).

Note that the bd are well-defined by the Chinese Remainder Theorem, are distinct, and
that x2 ≡ b2d ≡ b2 ≡ A (mod n) for each d.

Now suppose that one has a fast algorithm for finding square roots mod n; that is,
given a square A mod n, the algorithm finds a square root, say b (mod n). One can
then rapidly find a non-trivial factor of n: Take a random number x (mod n) and let
A ≡ x2 (mod n). Apply the algorithm to obtain b (mod n) such that b2 ≡ A (mod n).
By the proof of the Lemma we know that x ≡ bd (mod n) for some d|n; and since x was
chosen at random, each d is possible with probability 1/2k. Note that d = (n, x − b) and
n/d = (n, x+b) so we have a non-trivial factorization of n provided d )= 1, n. This happens
with probability 1− 2/2k ≥ 1/2 for n composite. If one is unlucky, that is, if d = 1 or n.
then we repeat the process, choosing our new value of x independently of the first round.
The probability of failing in each round is ≤ 1/2, and so the probability of failing to find a
non-trivial factor after, say, 20 rounds is ≤ 1/220 which is no more than one-in-a-million.

On the other hand if we can find a non-trivial factor d of n and we already have a
square root b of A, then it is easy to find another square-root bd, and this is )≡ ±b (mod n).

Hence we have shown that finding square roots mod n, and factoring n are, more-or-
less, equally difficult problems.

10.2. Cryptosystems. Cryptography has been around for as long as the need to commu-
nicate secrets at a distance. Julius Caesar, on campaign, communicated military messages
by creating cyphertext by replacing each letter with that letter which is three further on
in the alphabet. Thus A becomes D, B becomes E, etc. For example,

THISISV ERY INTERESTING becomes WKLV LV Y HUBLQWHUHVWLQJ.

(Notice that Y became B, since we wrap around to the beginning of the alphabet. It
is essentially the map x → x + 3 (mod 26).) At first sight an enemy might regard
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WKLV . . .WLQJ as gibberish even if the message was intercepted. It is easy enough
to decrypt the cyphertext, simply by going back three places in the alphabet for each
letter, to reconstruct the original message. The enemy could easily do this if (s)he guessed
that the key is to rotate the letters by three places in the alphabet, or even if they guessed
that one rotates letters, since there would only be 26 possibilities to try. So in classical
cryptography it is essential to keep the key secret and probably even the general technique
by which the key was created.28

One can generalize to arbitrary substitution cyphers where one replaces the alphabet
by some permutation of the alphabet. There are 26! permutations of our alphabet, which
is around 4 × 1026 possibilities, enough one might think to be safe. And it would be if
the enemy went through each possibility, one at a time. However the clever cryptographer
will look for patterns in the cyphertext. In the above short message we see that L appears
four times amongst the 21 letters, and H,V,W three times each, so it is likely that these
letters each represent one of A,E, I, S, T . By looking for multiword combinations (like the
cyphertext for THE) one can quickly break any cyphertext of around one hundred letters.

To combat this, armies in the First World War used longer cryptographic keys, rather
than of length 1. That is they would take a word like ABILITY and since A is letter 1 in
the alphabet, B is letter 2, and ILITY are letters 9,12,9,20,25, respectively, they would
rotate on through the alphabet by 1, 2, 9, 12, 9,−6,−1 letters to encrypt the first seven
letters, and then repeat this process on the next seven. This can again be “broken” by
statistical analysis, though the longer the key length, the harder it is to do so. Of course
using a long key on a battlefield would be difficult, so one needed to compromise between
security and practicality. A one-time pad, where one uses such a long key that one never
repeats a pattern, is unbreakable by statistical analysis. This might have been used by
spies during the cold war, and was perhaps based on the letters in an easily obtained book,
so that the spy would not have to possess any obviously incriminating evidence.

During the Second World War the Germans came up with an extraordinary substi-
tution cypher that involved changing several settings on a specially built typewriter (an
Enigma machine). The number of possibilities were so large that the Germans remained
confident that it could not be broken, and even changed the settings every day so as to
ensure that it would be extremely difficult. The Poles managed to obtain an early Enigma
machine and send it to London during their short part in the war. This meant that the
Allies had a good idea how these machines worked, and so put a great amount of effort
into being able to break German codes quickly enough to be useful. Early successes led to
the Germans becoming more cautious, and thence to horrific decisions having to be made
by the Allied leaders to safeguard this most precious secret.29

28Steganography, hiding secrets in plain view, is another method for communicating secrets at a
distance. In 499 BC, Histiaeus shaved the head of his most trusted slave, tattooed a message on his bald
head, and then sent the slave to Aristagoras, once the slave’s hair had grown back. Aristagoras then
shaved the slave’s head again to recover the secret message telling him to revolt against the Persians. In
more recent times, cold war spies reportedly used “microdots” to transmit information, and Al-Qaeda
supposedly notifies its terrorist cells via messages hidden in images on certain webpages.

29The ability to crack the Enigma code might have allowed leaders to save lives, but had they done
so too often, making it obvious that they had broken the code, then the Germans were liable to have
moved on to a different cryptographic method, which the Allied codebreakers might have been unable to
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The Allied cryptographers would cut down the number of possibilities (for the settings
on the Enigma machine) to a few million, and then their challenge became to build a
machine to try out many possibilities very rapidly. Up until then one would have to
change, by hand, external settings on the machine to try each possibility; it became a
goal to create a machine in which one could change what it was doing, internally, by what
became known as a program, and this stimulated, in part, the creation of the first modern
computers.

10.3. RSA. In the theory of cryptography we always have two people, Alice and Bob,
attempting to share a secret over an open communication channel, and the evil Oscar
listening in, attempting to figure out what the message says. We will begin by describing a
private key scheme for exchanging secrets based on the ideas in our number theory course:

Suppose that prime p is given and integers d and e such that de ≡ 1 (mod p − 1).
Alice knows p and e but not d, whereas Bob knows p and d but not e. The numbers d
and e are kept secret by whoever knows them. Thus if Alice’s secret message is M , she
encrypts M by computing x ≡ Me (mod p). She sends the cyphertext x over the open
channel. Then Bob decrypts by raising x to the dth power mod p, since

xd ≡ (Me)d ≡ Mde ≡ M (mod p)

as de ≡ 1 (mod p − 1). As far as we know, Oscar will discover little by intercepting the
encrypted messages x, even if he intercepts many different x, and even if he can occasionally
make an astute guess at M . However, if Oscar is able to steal the values of p and e from
Alice, he will be able to determine d, since d is the inverse of e mod p− 1, and this can be
determined by the method of section 1.1. He will then be able to decipher Alice’s future
secret messages, in the same way as Bob does.

This is the problem with most classical cryptosystems; once one knows the encryption
method it is not difficult to determine the decoding method. In 1975 Diffie and Hellman
proposed a sensational idea: Can one find a cryptographic scheme in which the encryption
method gives no help in determining a decryption method? If one could, one would then
have a public key cryptographic scheme, which is exactly what is needed in our age of
electronic information, in particular allowing people to use passwords in public places (for
instance when using an ATM) without fear that any lurking Oscar will be able to figure
out how to impersonate them.30

In 1977 Rivest, Shamir and Adleman realized this ambition, via a minor variation
of the above private key cryptosystem: Now let p )= q be two large primes and n = pq.
Select integers d and e such that de ≡ 1 (mod φ(pq)). Alice knows pq and e but not d,
while Bob knows pq and d. Thus if Alice’s secret message is M , the cyphertext is x ≡ Me

(mod pq), and Bob decrypts this by taking xd ≡ (Me)d ≡ Mde ≡ M (mod pq) as de ≡ 1
(mod φ(pq)) using Euler’s Theorem.

decipher. Hence the leadership was forced to use its knowledge sparingly so that it would be available in
the militarily most advantageous situations.

30When Alice uses a password, a cryptographic protocol might append a timestamp to ensure that
the encrypted password (plus timestamp) is different with each use, and so Bob will get suspicious if the
same timestamp is used again later.
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Now, if Oscar steals the values of pq and e from Alice, will he be able to determine
d, the inverse of e mod (p− 1)(q − 1)? When the modulus was the prime p, Oscar had no
difficulty in determining p − 1. Now that the modulus is pq, can Oscar easily determine
(p − 1)(q − 1)? If so, then since he already knows pq, he would be able to determine
pq+1−φ(pq) = p+ q and hence p and q, since they are the roots of x2− (p+ q)x+pq = 0.
In other words, if Oscar could “break” the RSA algorithm, then he could factor pq, and
vice-versa.31

If breaking RSA is as difficult as factoring, then we believe that RSA is secure, only
if we believe that it is difficult to factor... Is it? No one knows. Certainly we do not know
any very efficient ways to factor large numbers, but that does not necessarily mean that
there is no quick way to do so. So why do we put our faith (and secrets and fortunes) in the
difficulty of factoring? The security of a cryptographic protocol must evidently be based on
the difficulty of resolving some mathematical problem,32 but we do not know how to prove
that any particular mathematical problem is necessarily difficult to solve.33 However the
problem of factoring efficiently has been studied by many of the greatest minds in history,
from Gauss onwards, who have looked for an efficient factoring algorithm and failed. Is
this a good basis to have faith in RSA? Probably not, but we have no better. (More on
this at the end of section A5.)

10.4. Certificates and the complexity classes P and NP. Algorithms are typically
designed to work on any of an arbitrarily large class of examples, and one wishes them to
work as fast as possible. If the example is input in $ characters, and the function calculated
is genuinely a function of all the characters of the input, then one cannot hope to compute
the answer any quicker than the length, $, of the input. A polynomial time algorithm is
one in which the answer is computed in no more than c$A steps, for some fixed c, A > 0,
no matter what the input. These are considered to be quick algorithms. There are many
simple problems that can be answered in polynomial time (the set of such problems is
denoted by P); see section A5 for more details. In modern number theory, because of the
intrinsic interest as well as because of the applications to cryptography, we are particularly
interested in the running times of factoring and primality testing algorithms.

At the 1903 meeting of the American Mathematical Society, F.N. Cole came to the
blackboard and, without saying a word, wrote down

267 − 1 = 147573952589676412927 = 193707721× 761838257287,

long-multiplying the numbers out on the right side of the equation to prove that he was
indeed correct. Afterwards he said that figuring this out had taken him “three years of

31This is a little misleading. We have not proved that the only way to determine d is via knowing
the value of (p− 1)(q − 1); however it is hard to imagine a method of finding d that would not also yield
the value of (p− 1)(q − 1), and thus allow Oscar to factor n.

32Here we are talking about cryptographic protocols on computers as we know them today. There is
a very active quest to create quantum computers, on which cryptographic protocols are based on a very
different set of ideas.

33This is a notoriously difficult open problem, and there have been no relevant advances on this
question. Surprisingly we do know that almost all mathematical problems are “difficult to solve”, but we
are unable to identify one specific problem that is difficult to solve!
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Sundays”. The moral of this tale is that although it took Cole a great deal of work and
perseverance to find these factors, it did not take him long to justify his result to a room
full of mathematicians (and, indeed, to give a proof that he was correct). Thus we see that
one can provide a short proof, even if finding that proof takes a long time.

In general one can exhibit factors of a given integer n to give a short proof that n is
composite. Such proofs, which can be checked in polynomial time, are called certificates
(The set of problems which can be checked in polynomial time is denoted by NP.) Note
that it is not necessary to exhibit factors to give a short proof that a number is composite.
Indeed, we already saw in the converse to Fermat’s Little Theorem, Corollary 7.4, that
one can exhibit an integer a coprime to n for which n does not divide an−1 − 1 to provide
a certificate that n is composite.

What about primality testing? If someone gives you an integer and asserts that it
is prime, can you quickly check that this is so? Can they give you better evidence than
their say-so that it is a prime number? Can they provide some sort of certificate that gives
you all the information you need to quickly verify that the number is indeed a prime? We
had hoped (see section 7.5) that we could use the converse of Fermat’s Little Theorem to
establish a quick primality test, but we saw that Carmichael numbers seem to stop that
idea from reaching fruition. Here we are asking for less, for a short certificate for a proof of
primality. It is not obvious how to construct such a certificate; certainly not so obvious as
with the factoring problem. It turns out that some old remarks of Lucas from the 1870’s
can be modified for this purpose:

First note that n is prime if and only if there are precisely n − 1 integers a in the
range 1 ≤ a ≤ n − 1 which are coprime to n. Therefore if we can show the existence of
n− 1 distinct values mod n which are coprime to n, then we have a proof that n is prime.
So to prove that n is prime we could exhibit a primitive root g, along with a proof that
it is indeed a primitive root. Corollary 7.10 shows that g is not a primitive root mod n if
and only if g(n−1)/q ≡ 1 (mod n) for some prime q dividing n− 1. Thus a “certificate” to
show that n is prime would consist of g and {q prime : q divides n− 1 }, and the checker
would need to verify that gn−1 ≡ 1 (mod n) whereas g(n−1)/q )≡ 1 (mod n) for all primes
q dividing n − 1, something that can be quickly accomplished using fast exponentiation
(as explained in section A5).

There is a problem though: One needs (the additional) certification that each such q
is prime. The solution is to iterate the above algorithm; and one can show that no more
than log n odd primes need to be certified prime in the process of proving that n is prime.
Thus we have a short certificate that n is prime.

At first one might hope that this also provides a quick way to test whether a given
integer n is prime. However there are several obstacles. The most important is that we
need to factor n − 1 in creating the certificate. When one is handed the certificate n − 1
is already factored, so that is not an obstacle to the use of the certificate; however it is a
fundamental impediment to the rapid creation of the certificate.

10.5. Polynomial time Primality testing. Although the converse to Fermat’s Little
Theorem does not provide a polynomial time primality test, one can further develop this
idea. For example, we know that a

p−1
2 ≡ −1 or 1 (mod p) by Euler’s criterion, and hence

if a
n−1
2 )≡ ±1 (mod n) then n is composite. This identifies even more composite n then
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Corollary 7.4 alone, but not necessarily all n. We develop this idea further in section D3
to find a criterion of this type that is satisfied by all primes but not by any composites.
However we are unable to prove that this is indeed a polynomial time primality test without
making certain assumptions that are, as yet, unproved.

There have indeed been many ideas for establishing a primality test, which is provably
polynomial time, but this was not achieved until 2002. This was of particular interest since
the proof was given by a professor, Manindra Agrawal, and two undergraduate students,
Kayal and Saxena, working together with Agrawal on a summer research project. Their
algorithm is based on the following elegant characterization of prime numbers.

Agrawal, Kayal and Saxena. For given integer n ≥ 2, let r be a positive integer < n,
for which n has order > (log n)2 modulo r. Then n is prime if and only if

• n is not a perfect power,
• n does not have any prime factor ≤ r,
• (x+ a)n ≡ xn + a mod (n, xr − 1) for each integer a, 1 ≤ a ≤

√
r log n.

The last equation uses “modular arithmetic” in a way that is new to us, but analogous
to what we have seen: (x+a)n ≡ xn+a mod (n, xr − 1) means that there exist f(x), g(x) ∈
Z[x] such that (x+ a)n − (xn + a) = nf(x) + (xr − 1)g(x).

At first sight this might seem to be a rather complicated characterization of the prime
numbers. However this fits naturally into the historical progression of ideas in this subject,
is not so complicated (compared to some other ideas in use), and has the great advantage
that it is straightforward to develop into a fast algorithm for proving the primality of large
primes.

10.6. Factoring methods.

“The problem of distinguishing prime numbers from composite numbers, and
of resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic. It has engaged the industry and wisdom of
ancient and modern geometers to such an extent that it would be superfluous to
discuss the problem at length. Nevertheless we must confess that all methods
that have been proposed thus far are either restricted to very special cases or
are so laborious and difficult that even for numbers that do not exceed the
limits of tables constructed by estimable men, they try the patience of even the
practiced calculator. And these methods do not apply at all to larger numbers
... It frequently happens that the trained calculator will be sufficiently rewarded
by reducing large numbers to their factors so that it will compensate for the
time spent. Further, the dignity of the science itself seems to require that every
possible means be explored for the solution of a problem so elegant and so
celebrated ... It is in the nature of the problem that any method will become
more complicated as the numbers get larger. Nevertheless, in the following
methods the difficulties increase rather slowly ... The techniques that were
previously known would require intolerable labor even for the most indefatigable
calculator.” — from article 329 of Disquisitiones Arithmeticae (1801)
. by C.F. Gauss.
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The first factoring method, other than trial division, was given by Fermat: His goal
was to write n as x2 − y2, so that n = (x − y)(x + y). He started with m, the smallest
integer ≥

√
n, and then looked to see if m2 − n is a square. Fermat simplified this, by

testing whether m2 −n is a square modulo various small primes. If m2 −n is not a square
then he tested whether (m+ 1)2 − n is a square; if that failed, whether (m+ 2)2 − n is a
square, or (m+ 3)2 − n, . . . , etc. Since Fermat computed by hand he also noted the trick
that (m+ 1)2 − n = m2 − n+ (2m+ 1), (m+ 2)2 − n = (m+ 1)2 − n+ (2m+ 3), etc., so
that, at each step he only needed to do a relatively small addition.

For example, Fermat factored n = 2027651281 so that m = 45030. Then

450302 − n = 49619 which is not a square mod 100;

450312 − n = 49619 + 90061 = 139680 which is divisible by 25, not 26;

450322 − n = 139680 + 90063 = 229743 which is divisible by 33, not 34;

450332 − n = 229743 + 90065 = 319808 which is not a square mod 3; etc

...

up until 450412 − n = 10202, so that n = 2027651281 = 450412 − 10202 = 44021× 46061,
that is (45041− 1020)× (45041 + 1020).

Gauss and other authors further developed Fermat’s ideas, most importantly realizing
that if x2 ≡ y2 (mod n) with x )≡ ±y (mod n) and (x, n) = 1, then

gcd(n, x− y) · gcd(n, x+ y)

gives a non-trivial factorization of n.
Several factoring algorithms work by generating a pseudo-random sequence of integers

a1, a2, ..., with each
ai ≡ b2i (mod n),

for some known integer bi, until some subsequence of the ai’s has product equal to a square;
say

y2 = ai1 · · · air .

Then one sets x2 = (bi1 · · · bir )2 to obtain x2 ≡ y2 (mod n), and there is a good chance
that gcd(n, x− y) is a non-trivial factor of n.

We want to generate the ais so that it is not so difficult to find a subsequence whose
product is a square; to do so, we need to be able to factor the ai. This is most easily done
by only keeping those ai that have all of their prime factors ≤ y. Suppose that the primes
up to y are p1, p2, . . . , pk. If ai = p

ai,1

1 p
ai,2

2 · · · pai,k

k then let vi = (ai,1, ai,2, . . . , ai,k), which
is a vector with entries in Z.
Exercise 10.6.1. Show that

∏
i∈I ai is a square if and only if

∑
i∈I vi ≡ (0, 0, . . . , 0) (mod 2).

Hence to find a non-trivial subset of the ai whose product is a square, we simply need to
find a non-trivial linear dependency mod 2 amongst the vectors vi. This is easily achieved
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through the methods of linear algebra, and guaranteed to exist once we have generated
more than k such integers ai.

The quadratic sieve factoring algorithm selects the bi so that it is easy to find the
small prime factors of the ai, using Corollary 2.3. There are other algorithms that attempt
to select the bi so that the ai are small and therefore more likely to have small prime
factors. The best algorithm, the number field sieve, is an analogy to the quadratic sieve
algorithm, over number fields (which we discuss in section *).

There are many other cryptographic protocols based on ideas from number theory.
Some of these will be discussed in sections D5 and D6.
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11. The pigeonhole principle

11.1. Rational approximations to real numbers. We are interested in how close the
integer multiples of a given real number α can get to an integer; that is, are there integers
m,n such that nα − m is small? It is obvious that if α = p/q is rational then nα = m
whenever n = kq for some integer k, so that m = kp. How about irrational α?

Dirichlet’s Theorem. Suppose that α is a given real number. For every integer N ≥ 1
there exists a positive integer n ≤ N such that

|nα−m| < 1

N
,

for some integer m.

Proof. The N +1 numbers {0 ·α}, {1 ·α}, {2 ·α}, . . . , {N ·α} all lie in the interval [0, 1).
The intervals [

0,
1

N

)
,

[
1

N
,
2

N

)
, . . . ,

[
N − 1

N
, 1

)

partition [0, 1),34 and so each of our N + 1 numbers lies in exactly one of the N intervals.
Hence some interval contains at least two of our numbers, say {iα} and {jα} with 0 ≤
i < j ≤ N , so that |{iα} − {jα}| < 1

N . Therefore, if n = j − i then 1 ≤ n ≤ N , and if
m := [jα]− [iα] ∈ Z then

nα−m = (jα− iα)− ([jα]− [iα]) = {jα}− {iα},

and the result follows.

Corollary 11.1. If α is a real irrational number then there are infinitely many pairs m,n
of coprime positive integers for which

∣∣∣α−
m

n

∣∣∣ <
1

n2
.

Proof. Suppose that there are given a list, (mj , nj), 1 ≤ j ≤ k of solutions to this inequal-
ity, and let N be the smallest integer ≥ 1/min1≤j≤k{|njα−mj |}. By Dirichlet’s Theorem
there exists n ≤ N such that

∣∣∣α−
m

n

∣∣∣ <
1

nN
≤ 1

n2
.

Now

|nα−m| < 1

N
≤ |njα−mj | for all j,

and so (n,m) is another solution to the inequality, not included in the list we already have.

34That is each point of [0, 1) lies in exactly one of these intervals, and the union of these intervals
exactly equals [0, 1).
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Exercise 11.1.1. How can we guarantee that min1≤j≤k{|njα−mj |} $= 0 so that N is well-defined?

Another Proof of Corollary 3.7. Take m ≥ 2. Let α = a
m and N = m − 1 in Dirichlet’s

Theorem so that there exist integers r ≤ m − 1 and s such that |ra/m − s| < 1/(m− 1);
that is |ra − sm| < m/(m − 1) ≤ 2. Hence ra − sm = −1, 0 or 1. It cannot equal 0 else
m|sm = ar and (m, a) = 1 so that m|r which is impossible as r < m. Hence ra ≡ ±1
(mod m) and so ±r is the inverse of a (mod m).

For irrational α one might ask how the numbers {α}, {2α}, . . . , {Nα} are distributed
in [0, 1) as N → ∞, for α irrational. In an section G3 we will show that the values are
dense and even (roughly) equally distributed [0, 1). This ties in with the geometry of the
torus, and exponential sum theory.

We saw an important use of the pigeonhole principle in number theory in the proof
of Theorem 9.2, and this idea was generalized significantly by Minkowski and others.

11.2. Pell’s equation. Perhaps the most researched equation in the early history of
number theory is the so-called Pell’s equation: Are there non-trivial integer solutions x, y
to

x2 − dy2 = 1?

We will show in Theorem 11.2 that the answer is “yes” for any non-square positive integer
d. In section C2.5 we will see that solutions can always be found using the continued
fraction for

√
d. This was evidently known to Brahmagupta in India in 628 A.D., and one

can guess that it was well understood by Archimedes, judging by his “Cattle Problem”:

The Sun god’s cattle, friend, apply thy care
to count their number, hast thou wisdom’s share.
They grazed of old on the Thrinacian floor
of Sic’ly’s island, herded into four,
colour by colour: one herd white as cream,
the next in coats glowing with ebon gleam,
brown-skinned the third, and stained with spots the last.
Each herd saw bulls in power unsurpassed,
in ratios these: count half the ebon-hued,
add one third more, then all the brown include;
thus, friend, canst thou the white bulls’ number tell.
The ebon did the brown exceed as well,
now by a fourth and fifth part of the stained.
To know the spottedall bulls that remained
reckon again the brown bulls, and unite
these with a sixth and seventh of the white.
Among the cows, the tale of silver-haired
was, when with bulls and cows of black compared,
exactly one in three plus one in four.
The black cows counted one in four once more,
plus now a fifth, of the bespeckled breed

when, bulls withal, they wandered out to feed.
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The speckled cows tallied a fifth and sixth
of all the brown-haired, males and females mixed.
Lastly, the brown cows numbered half a third
and one in seven of the silver herd.
Tell’st thou unfailingly how many head
the Sun possessed, o friend, both bulls well-fed
and cows of ev’ry colourno-one will
deny that thou hast numbers’ art and skill,
though not yet dost thou rank among the wise.
But come! also the foll’wing recognise.

Whene’er the Sun god’s white bulls joined the black,
their multitude would gather in a pack
of equal length and breadth, and squarely throng
Thrinacia’s territory broad and long.
But when the brown bulls mingled with the flecked,
in rows growing from one would they collect,
forming a perfect triangle, with ne’er
a diff’rent-coloured bull, and none to spare.
Friend, canst thou analyse this in thy mind,
and of these masses all the measures find,
go forth in glory! be assured all deem

thy wisdom in this discipline supreme!

— from an epigram written to Eratosthenes (of Cyrene)
by Archimedes (of Alexandria), 250 B.C.

The first paragraph involves only linear equations. To resolve the second, one needs to
find a non-trivial solution in integers u, v to

u2 − 609 · 7766v2 = 1.

The first solution is enormous, the smallest herd having about 7.76 × 10206544 cattle: It
wasn’t until 1965 that anyone was able to write down all 206545 decimal digits! How did
Archimedes know that the solution would be ridiculously large? We don’t know, though
presumably he did not ask this question by chance.

Theorem 11.2. Let d ≥ 2 be a given non-square integer. There exist integers x, y for
which

x2 − dy2 = 1,

with y )= 0. If x1, y1 are the smallest solutions in positive integers, then all other solutions
are given by the recursion xn+1 = x1xn + dy1yn and yn+1 = x1yn + y1xn for n ≥ 1.

Proof. We begin by showing that there exists a solution with y )= 0. By Corollary 11.1,
there exists infinitely many pairs of integers (mj , nj), j = 1, 2, . . . such that |

√
d− m

n | < 1
n2 .

Therefore

|m2 − dn2| = n2
∣∣∣
√
d− m

n

∣∣∣ ·
∣∣∣
√
d+

m

n

∣∣∣ <
∣∣∣
√
d+

m

n

∣∣∣ ≤ 2
√
d+

∣∣∣
√
d− m

n

∣∣∣ < 2
√
d+ 1.

Since there are only finitely many possibilities for m2 − dn2 there must be some integer r,
with |r| ≤ 2

√
d + 1 such that there are infinitely many pairs of positive integers m,n for

which m2 − dn2 = r.
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Since there are only r2 pairs of residue classes (m mod r, n mod r) there must be
some pair of residue classes a, b such that there are infinitely many pairs of integers m,n
for which m2 − dn2 = r with m ≡ a (mod r) and n ≡ b (mod r). Let m1, n1 be the
smallest such pair, and m,n any other such pair, so that m2

1 − dn2
1 = m2 − dn2 = r with

m1 ≡ m (mod r) and n1 ≡ n (mod r). This implies that r|(m1n− n1m) and

(m1m− dn1n)
2 − d(m1n− n1m)2 = (m2

1 − dn2
1)(m

2 − dn2) = r2,

so that r2 divides r2 + d(m1n − n1m)2 = (m1m − dn1n)2, and thus r|(m1m − dn1n).
Therefore x = |m1m−dn1n|/r and y = |m1n−n1m|/r are integers for which x2−dy2 = 1.
Exercise 11.2.1. Show that y $= 0 using the fact that (m,n) = 1 for each such pair m,n.

Let x1, y1 be the solution to x2−dy2 = 1 in positive integers with x1+
√
dy1 minimal.

Note that this is ≥ 1 +
√
d > 1. We claim that all other such solutions take the form

(x1+
√
dy1)n. If not let x, y be the counterexample with x+

√
dy smallest. Note that since

x+
√
dy > 0 and (x−

√
dy)(x+

√
dy) > 0, so x >

√
dy (and similarly x1 >

√
dy1).

Define X = x1x−dy1y and Y = x1y−y1x. Then X2−dY 2 = (x2
1−dy21)(x

2−dy2) = 1
with X > 0, and

X +
√
dY = (x1 −

√
dy1)(x+

√
dy) =

x+
√
dy

x1 +
√
dy1

< x+
√
dy.

Since x, y was the smallest counterexample, hence X +
√
dY = (x1 +

√
dy1)n for some

integer n ≥ 1, and therefore x +
√
dy = (x1 +

√
dy1)(X +

√
dY ) = (x1 +

√
dy1)n+1, a

contradiction.
Finally note that if we define xn +

√
dyn = (x1 +

√
dy1)n then we immediately obtain

the recursion given in the Theorem.

Exercise 11.2.2. This proof is not quite complete since we have not shown Y is positive. Remedy this

problem. (One might prove that Y > 0 by establishing that x1/y1 −
√
d > x/y −

√
d.)

One of the fascinating things about Pell’s equation is the size of the smallest solution,
as we saw in the example given by Archimedes. We will indicate in section E4, that the
smallest solution is ≤ dc

√
d for some constant c > 0. However what is surprising is that

the smallest solution is usually this large. This is not something that has been proved;
indeed understanding the distribution of sizes of the smallest solutions to Pell’s equation
is an outstanding open question in number theory.

Another issue is whether there is a solution to u2 − dv2 = −1. Notice, for example,
that 22 − 5 · 12 = −1. Evidently if there is a solution then −1 is a square mod d, so that d
has no prime factors ≡ −1 (mod 4). Moreover d is not divisible by 4 else u2 ≡ −1 (mod 4)
which is impossible. We saw that x2 − dy2 = 1 has solutions for every non-square d > 1,
and one might have guessed that there would be some simple criteria to decide whether
there are solutions to u2 − dv2 = −1, but there does not appear to be. Even the question
of whether there are solutions for “many” d has only recently been resolved [FoKl].

11.3. Transcendental numbers. In section 3.2 we showed that
√
d is irrational if d is

an integer that is not the square of an integer. We can also show that there exist irrational
numbers simply by how well they can be approximated by rationals:
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Proposition 11.3. Suppose that α is a given real number. If for every integer q ≥ 1 there
exist integers m,n such that

0 < |nα−m| <1

q
,

then α is irrational.

Proof. If α is rational then α = p/q for some coprime integers p, q with q ≥ 1. For any
integers m,n we then have nα−m = (np−mq)/q. Now, the value of np−mq is an integer
≡ np (mod q). Hence |np−mq| = 0 or is an integer ≥ 1, and therefore |nα−m| = 0 or is
≥ 1/q.

There are several other methods to prove that numbers are irrational, but more chal-
lenging is to prove that a number is transcendental; that is, that it is not the root of a
polynomial with integer coefficients (such a root is called an algebraic number).

Liouville’s Theorem. Suppose that α is the root of an irreducible polynomial f(x) ∈ Z[x]
of degree d ≥ 2. There exists a constant cα > 0 (which depends only on α) such that for
any rational p/q with (p, q) = 1 and q ≥ 1 we have

∣∣∣∣α−
p

q

∣∣∣∣ ≥ cα
qd

.

Proof. Since I := [α − 1,α + 1] is a closed interval, there exists a bound B ≥ 1 for which
|f ′(t)| ≤ B for all t ∈ I. We will prove the result with cα = 1/B. If p/q )∈ I then
|α− p/q| ≥ 1 ≥ cα ≥ cα/qd as desired. Henceforth we may assume that p/q ∈ I.

If f(x) =
∑d

i=0 fix
i with each fi ∈ Z then qdf(p/q) =

∑d
i=0 fip

iqd−i ∈ Z. Now
f(p/q) )= 0 since f is irreducible of degree ≥ 2 and so |qdf(p/q)| ≥ 1.

The mean value theorem tells us that there exists t lying between α and p/q, and
hence in I, such that

f ′(t) =
f(α)− f(p/q)

α− p/q
.

Therefore ∣∣∣∣α−
p

q

∣∣∣∣ =
|qdf(p/q)|
qd|f ′(t)| ≥ 1

Bqd
=

cα
qd

.

One usually proves that there exist transcendental numbers by showing that the set of
real numbers is uncountable, and the set of algebraic numbers is countable, so that the vast
majority of real numbers are transcendental. This method yields that most real numbers
are transcendental, without actually constructing any! As a consequence of Liouville’s
Theorem it is not difficult to construct transcendental numbers, for example

α =
1

10
+

1

102!
+

1

103!
+ . . .

since if p/q with q = qn := 10(n−1)! is the sum of the first n− 1 terms then 0 < α− p/q <
2/qn, and α cannot be an algebraic number by Liouville’s Theorem.
Exercise 11.3.1 Show the details of our proof that α is transcendental.

Liouville’s Theorem has been improved to its, more-or-less, final form:
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Roth’s Theorem. (1955) Suppose that α is a real algebraic number. For any fixed ε > 0
there exists a constant cα,ε > 0 such that for any rational p/q with (p, q) = 1 and q ≥ 1 we
have ∣∣∣∣α−

p

q

∣∣∣∣ ≥ cα,ε
q2+ε

.

Evidently this cannot be improved much since, by Corollary 11.1, we know that if α is

real, irrational then there are infinitely many p, q with
∣∣∣α− p

q

∣∣∣ ≤ 1
q2 . In Corollary C2.2 we

will show that all p/q for which
∣∣∣α− p

q

∣∣∣ ≤ 1
2q2 can be easily identified from the continued

fraction of α. Moreover we will see that if α is a quadratic, real irrational then there exists

a constant cα > 0 such that
∣∣∣α− p

q

∣∣∣ ≥ cα
q2 for all p/q. The most amusing example is where

α = 1+
√
5

2 , for which the best approximations are given by Fn+1/Fn where Fn is the nth
Fibonacci numbers (see section A1 for details). One can show (in exercise C2.3.8) that

∣∣∣∣∣
1 +

√
5

2
− Fn+1

Fn
+

(−1)n√
5F 2

n

∣∣∣∣∣ ≤ 1

2F 4
n

.
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12. Binary quadratic forms

12.1. Representation of integers by binary quadratic forms. We have already
seen (in Corollary 1.6) that the integers that can be represented by the binary linear form
ax+ by are those integers divisible by gcd(a, b).
Exercise 12.1.1. Show that if N can be represented by ax+ by then there exist coprime integers m and

n such that am+ bn = N . (Hint: You might use Theorem 3.8.) This is called a proper representation.

Now we let a, b, c be given integers, and ask what integers can be represented by the
binary quadratic form ax2+bxy+cy2? That is, for what integers N do there exist coprime
integers m,n such that

(12.1) N = am2 + bmn+ cn2 ?

We may reduce to the case that gcd(a, b, c) = 1 by dividing though by gcd(a, b, c). One
idea is to complete the square to obtain

4aN = (2am+ bn)2 − dn2

where the discriminant d := b2−4ac. Hence d ≡ 0 or 1 (mod 4). When d < 0 the right side
of the last displayed equation can only take positive values, which makes our discussion
easier than when d > 0. For this reason we will restrict ourselves to the case d < 0 here,
and revisit the case d > 0 in section C4. In section 9 we already worked with a few basic
examples, and we will now see how this theory develops.
Exercise 12.1.2.(a) Show that if d < 0 then am2 + bmn + cn2 has the same sign as a, no matter what

the choices of integers m and n.

(b) Show that if ax2 + bxy + cy2 is positive definite then a, c > 0.

We replace a, b, c by−a,−b,−c if necessary, to ensure that the value of am2+bmn+cn2

is always ≥ 0, and so we call this a positive definite binary quadratic form.
The key idea stems from the observation that x2 + y2 represents the same integers as

X2+2XY +2Y 2. This is easy to see for ifN = m2+n2 thenN = (m−n)2+2(m−n)n+2n2,
and similarly if N = u2 + 2uv + 2v2 then N = (u + v)2 + v2. The reason is that the
substitution (

x
y

)
= M

(
X
Y

)
where M =

(
1 1
0 1

)

transforms x2 + y2 into X2 + 2XY + 2Y 2, and the transformation is invertible, since
detM = 1. Much more generally define

SL(2,Z) =
{(

α β
γ δ

)
: α,β, γ, δ ∈ Z and αδ − βγ = 1

}
.

Exercise 12.1.3.(a) Prove that the binary quadratic form ax2 + bxy + cy2 represents the same integers

as the binary quadratic form AX2 +BXY +CY 2 whenever

(
x
y

)
= M

(
X
Y

)
with M ∈ SL(2,Z). We say

that these two quadratic forms are equivalent. This yields an equivalence relation and splits the binary

quadratic forms into equivalence classes.
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(b) Show that two equivalent binary quadratic forms represent each integer in the same number of

different ways. (That is, there is a 1-to-1 correspondence between the proper representations by these

forms.)

We can write ax2+ bxy+ cy2 = (x y )

(
a b/2
b/2 c

)(
x
y

)
and note that the discrim-

inant is −4 times the determinant of

(
a b/2
b/2 c

)
. We deduce that

AX2 +BXY + CY 2 = (X Y )MT

(
a b/2
b/2 c

)
M

(
X
Y

)
,

and so A = aα2 + bαγ + cγ2 and C = aβ2 + bβδ + cδ2 as

(12.2)

(
A B/2

B/2 C

)
= MT

(
a b/2
b/2 c

)
M.

Exercise 12.1.4. Use (12.2) to show that two equivalent binary quadratic forms have the same discrim-

inant.

12.2. Equivalence classes of binary quadratic forms. One can show that 29X2 +
82XY + 58Y 2 is equivalent to x2 + y2. When we are considering representations, it is
surely easier to work with the latter form rather than the former. Gauss observed that
every equivalence class of binary quadratic forms (with d < 0) contains a unique reduced
representative, where the quadratic form ax2+bxy+cy2 with discriminant d < 0 is reduced
if

−a < b ≤ a ≤ c, and b ≥ 0 whenever a = c.

For a reduced binary quadratic form, |d| = 4ac− (|b|)2 ≥ 4a · a− a2 = 3a2 and hence

a ≤
√
|d|/3.

Therefore for a given d < 0 there are only finitely many a, and so b (as |b| ≤ a), but then
c = (b2−d)/4a is determined, and so there are only finitely many reduced binary quadratic
forms of discriminant d. Hence h(d), the class number, which is the number of equivalence
classes of binary quadratic forms of discriminant d, is finite when d < 0. Moreover we have
described an algorithm to easily find all the reduced binary quadratic forms of a given
discriminant d < 0.

Example: If d = −163 then |b| ≤ a ≤
√
163/3 < 8. But b is odd, since b ≡ b2 = d+4ac ≡ d

(mod 2), so |b| = 1, 3, 5 or 7. Therefore ac = (b2 + 163)/4 = 41, 43, 47 or 53, a prime, with
0 < a < c and hence a = 1. Since b is odd and −a < b ≤ a, we deduce that b = 1 and so
c = 41. Hence x2 + xy + 41y2 is the only reduced binary quadratic form of discriminant
−163, and therefore h(−163) = 1.
Exercise 12.2.1. Determine all of the reduced binary quadratic forms of discriminant d for −20 ≤ d ≤ −1

as well as for d = −43 and −67.
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In fact h(d) ≥ 1 since we always have the principal form (for both positive and negative
discriminants),

{
x2 − (d/4)y2 when d ≡ 0 (mod 4),

x2 + xy+ (1−d)
4 y2 when d ≡ 1 (mod 4).

Exercise 12.2.2. Show that there are no other binary quadratic forms x2 + bxy + cy2 with leading

coefficient 1, up to equivalence.

Theorem 12.1. Every positive definite binary quadratic form is properly equivalent to a
reduced form.

Proof. We will define a sequence of properly equivalent forms; the algorithm terminates
when we reach one that is reduced. Given a form (a, b, c):35

i) If c < a the transformation

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
, yields the form (c,−b, a)

which is properly equivalent to (a, b, c).

ii) If b > a or b ≤ −a then select b′ to be the least residue, in absolute value, of b
(mod 2a), so that −a < b′ ≤ a, say b′ = b− 2ka. Hence the transformation matrix will be(
x
y

)
=

(
1 −k
0 1

)(
x′

y′

)
. The resulting form (a, b′, c′) is properly equivalent to (a, b, c).

iii) If c = a and −a < b < 0 then we use the transformation

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)

yielding the form (a,−b, a).

If the resulting form is not reduced then repeat the algorithm. If none of these
hypotheses holds then one can easily verify that the form is reduced. To prove that the
algorithm terminates in finitely many steps we follow the leading coefficient a: a starts
as a positive integer. Each transformation of type (i) reduces the size of a. It stays the
same after transformations of type (ii) or (iii), but after a type (iii) transformation the
algorithm terminates, and after a type (ii) transformation we either have another type (i)
transformation, or else the algorithm stops after at most one more transformation. Hence
the algorithm finishes in no more than 2a+ 1 steps.

Example: Applying the reduction algorithm to the form (76, 217, 155) of discriminant
−31, one finds the sequence of forms (76, 65, 14), (14,−65, 76), (14,−9, 2), (2, 9, 14), (2, 1, 4),
the sought after reduced form. Similarly the form (11, 49, 55) of discriminant −19, gives
the sequence of forms (11, 5, 1), (1,−5, 11), (1, 1, 5).

The very precise condition in the definition of “reduced” were so chosen because every
positive definite binary quadratic form is properly equivalent to a unique reduced form,
which the enthusiastic reader will now prove in the following exercise:
Exercise 12.2.3. (a) Show that the least values taken by the reduced form am2 + bmn + cn2 with
(m,n) = 1, are a ≤ c ≤ a − |b| + c, each represented twice (the last four times if b = 0). (Hint: One

35Which we write for convenience in place of ax2 + bxy + cy2.
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might use the inequality am2 + bmn + cn2 ≥ am2 − |b|max{m,n}2 + cn2, to show that if the value is
am2 + bmn+ cn2 ≤ a− |b|+ c then |m|, |n| ≤ 1.)

(b) Use this, and exercise 12.1.3(b), to show that if two different reduced forms are equivalent then
they must be ax2 + bxy + cy2 and ax2 − bxy + cy2, and thus a < c since these are both reduced.

(c) Suppose that M ∈ SL(2,Z) transforms one into the other. Given that we know all the represen-
tations of a and c by ax2 + bxy + cy2, use (12.2) to deduce that M = ±I.

(d) Deduce that b = −b so that b = 0. Therefore no two reduced forms can be equivalent.

Together with Theorem 12.1 this implies that every positive definite binary quadratic form is properly

equivalent to a unique reduced form.

What restrictions are there on the values that can be taken by a binary quadratic
form? (In analogy to Theorem 9.3)

Proposition 12.2. Suppose d = b2 − 4ac with (a, b, c) = 1, and p is a prime. (i) If
p = am2+bmn+cn2 for some integers m,n then d is a square mod 4p. (ii) If d is a square
mod 4p then there exists a binary quadratic form of discriminant d that represents p.

Proof. (i) Note that (m,n)2|am2 + bmn+ cn2 = p so that (m,n) = 1.
Now d = b2 − 4ac ≡ b2 (mod 4), and even mod 4p if p|ac. If p|d then d is a square

mod p and the result then follows unless p = 2. But if 2|d = b2 − 4ac then b is even;
therefore d = b2 − 4ac ≡ 0 or 4 (mod 8) and hence is a square mod 8.

If p = 2) |acd then b is odd, and so am2 + bmn+ cn2 ≡ m2 +mn+ n2 )≡ 0 (mod 2) as
(m,n) = 1.

Finally suppose that p) |2ad and p = am2+bmn+cn2. Therefore 4ap = (2am+bn)2−
dn2 and so dn2 is a square mod 4p. Now p ) |n else p|4ap+dn2 = (2am+bn)2 so that p|2am
which is impossible as p ) |2a and (m,n) = 1. We deduce that d is a square mod p.

(ii) If d ≡ b2 (mod 4p) then d = b2 − 4pc for some integer c, and so px2 + bxy + cy2

is a quadratic form of discriminant d which represents p = p · 12 + b · 1 · 0 + c · 02.

12.3. Class number one.

Corollary 12.3. Suppose that h(d) = 1. Then p is represented by the form of discriminant
d if and only if d is a square mod 4p.

Proof. This follows immediately from Proposition 12.2, since there is just one equivalence
class of quadratic forms of discriminant d, and forms in the same equivalence class represent
the same integers by exercise 12.1.3(a).

In the example in section 12.2 we showed that x2 + xy + 41y2 is the only binary
quadratic form of discriminant −163. This implies, by Corollary 12.3, that if prime p )= 2
or 163 then it can be represented by the binary quadratic form x2 + xy+41y2 if and only
if (−163/p) = 1.

Typically one restricts attention to fundamental discriminants, which means that if
q2|d then q = 2 and d ≡ 8 or 12 (mod 16). We saw nine fundamental discriminants d < 0
with h(d) = 1 in exercise 12.2.1, namely d = −3,−4,−7,−8,−11,−19,−43,−67 as well
as −163. It turns out these are the only ones with class number 1. Therefore, as in the
example above, if p) |2d then

p is represented by x2 + y2 if and only if (−1/p) = 1;
p is represented by x2 + 2y2 if and only if (−2/p) = 1;
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p is represented by x2 + xy + y2 if and only if (−3/p) = 1;
p is represented by x2 + xy + 2y2 if and only if (−7/p) = 1;
p is represented by x2 + xy + 3y2 if and only if (−11/p) = 1;
p is represented by x2 + xy + 5y2 if and only if (−19/p) = 1;
p is represented by x2 + xy + 11y2 if and only if (−43/p) = 1;
p is represented by x2 + xy + 17y2 if and only if (−67/p) = 1;
p is represented by x2 + xy + 41y2 if and only if (−163/p) = 1.

Euler noticed that the polynomial x2+x+41 is prime for x = 0, 1, 2, . . . , 39, and similarly
the other polynomials above. Rabinowiscz proved that this is an “if and only if” condition:

Rabinowiscz’s criterion. We have h(1− 4A) = 1 for A ≥ 2 if and only if x2 + x+A is
prime for x = 0, 1, 2, . . . , A− 2.

Note that (A− 1)2 + (A− 1) +A = A2. We will prove Rabinowiscz’s criterion below.

The proof that the above list gives all of the d < 0, for which h(d) = 1, has an interesting history. By

1934 it was known that there is no more than one further such d, but that putative d could not be ruled

out by the method. In 1952, Kurt Heegner, a German school teacher proposed an extraordinary proof

that there are no further d. At the time his paper was ignored since it was based on a result from an old

book (of Weber) whose proof was known to be incomplete. In 1966 Alan Baker gave a very different proof

that was acknowledged to be correct. However, soon afterwards Stark realized that the proofs in Weber

are easily corrected, so that Heegner’s work had been fundamentally correct. Heegner was subsequently

given credit for solving this famous problem, but sadly only after he had died. Heegner’s paper contains

a most extraordinary construction, widely regarded to be one of the most creative and influential in the

history of number theory, that we will discuss again in section H2 on elliptic curves.

What about when the class number is not one? In example with d = −20 we have
h(−20) = 2, the two reduced forms are x2 + 5y2 and 2x2 + 2xy + 3y2. By Proposition
12.2(i), p is represented by at least one of these two forms if and only if (−5/p) = 0 or 1,
that is, if p ≡ 1, 3, 7 or 9 (mod 20) or p = 2 or 5. Can we decide which of these primes are
represented by which of the two forms? Note that if p = x2 +5y2 then (p/5) = 0 or 1 and
so p = 5 or p ≡ ±1 (mod 5), and thus p ≡ 1 or 9 (mod 20). If p = 2x2 + 2xy + 3y2 then
2p = (2x+ y)2 +5y2 and so p = 2 or (2p/5) = 1, that is (p/5) = −1, and hence p ≡ 3 or 7
(mod 20). Hence we have proved

p is represented by x2 + 5y2 if and only if p = 5, or p ≡ 1 or 9 (mod 20);
p is represented by 2x2 + 2xy + 3y2 if and only if p = 2, or p ≡ 3 or 7 (mod 20).

That is, we can distinguish which primes can be represented by which binary quadratic
form of discriminant −20, through congruence conditions, despite the fact that the class
number is not one. However we cannot always do this; that is, we cannot always distinguish
which primes are represented by which binary quadratic form of discriminant d. It is
understood how to recognize those discriminants for which this is the case, indeed these
idoneal numbers were recognized by Euler. He found 65 of them, and no more are known
– it is an open conjecture as to whether Euler’s list is complete. It is known that there
can be at most one further undiscovered idoneal number.
Exercise 12.3.1 (a) Determine the two reduced binary quadratic forms of discriminant −15.

(b) The primes in which congruence classes can be represented by some form of discriminant −15?
(c) Distinguish which primes are represented by which form (with proof).
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Proof of Rabinowiscz’s criterion. We begin by showing that f(n) := n2 + n + A is prime
for n = 0, 1, 2, . . . , A − 2, if and only if d = 1 − 4A is not a square mod 4p for all
primes p < A. For if n2 + n + A is composite, let p be its smallest prime factor so that
p ≤ f(n)1/2 < f(A − 1)1/2 = A. Then (2n + 1)2 − d = 4(n2 + n + A) ≡ 0 (mod 4p) so
that d is a square mod 4p. On the other hand if d is a square mod 4p where p is a prime
≤ A − 1, select n to be the smallest integer ≥ 0 such that d ≡ (2n + 1)2 mod 4p. Then
0 ≤ n ≤ p − 1 ≤ A − 2, and p divides n2 + n + A with p < A = f(0) < f(n) so that
n2 + n+A is composite.

Now we show that h(d) = 1 if and only if d = 1 − 4A is not a square mod 4p for all
primes p < A. If h(d) > 1 then there exists a reduced binary quadratic ax2 + bxy+ cy2 of
discriminant d with 1 < a ≤

√
|d|/3 < A. If p is a prime factor of a then p ≤ a < A and

d = b2 − 4ac is a square mod 4p. On the other hand if d is a square mod 4p, and h(d) = 1
then p is represented by x2+xy+Ay2 by Proposition 12.2(ii). However the smallest values
represented by this form are 1 and A, by exercise 12.2.3(a), and this gives a contradiction
since 1 < p < A. Hence h(d) > 1.
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