189-346B /377B: Number Theory

Midterm Exam: Corrections
Friday, February 11

General remarks: Each question in the midterm was graded out of 20, for
a maximum possible score of 100. So that you know where you stand with
respect to the rest of the class, here is the grade distribution in each section.

Grade | Math 346 | Math 377
0-19 1 0
20-24 1 0
25-29 2 0
30-44 1 1
45-49 1 0
50-54 2 0
55-59 4 1
60-64 4 3
65-69 6 0
70-80 2 7
81-85 1 4
90-94 0 3
95-100 0 2

I thought that the grades were somewhat lower than I expected. Do go
over the solutions below carefully to find out where you went wrong and learn
from your mistakes.

1. Show that the ged of two integers a and b is a linear combination of a and
b, i.e., that if d = ged(a, b) then there exist integers m and n for which

d = ma + nb.



Solution: This is a proof that was done in class. The solution I prefer is to
let L be the set of all strictly positive linear combinations of a and b, and to
let d = ma + nb be the least element in this set. The remainder after the
division of a by d is strictly less than d, and is also a linear combination of
a and b. Hence, it must be 0, by the minimality of d. Therefore d divides a,
and, by the same argument, it also divides b. It follows that d is a common
divisor of a and b. It is also the greatest such, since any integer that divides
both a and b must necesarily divide anything in L. Hence d is the ged of a
and b, and, by its very construction, it is a linear combination of these two
integers.

A second solution, which I like less because it is less elegant, but still gave
full credit for, was to describe the Euclidean algorithm for calculating the
gcd of a and b and observe that this algorithm also leads to an expression
for the ged as a linear combination of a and b.

2. State two number-theoretic problems that are believed to be computa-
tionally intractable, and for each problem, name a cryptosystem that exploits
this presumed intractability. (This question is just to test your knowledge
of the salient points in the material covered in class. You do not need to
provide descriptions of the cryptosystems in question, only their names. If
you can’t remember the names, then a brief description will do...)

Solution. Almost everyone got this question right. The two problems are

1. The problem of finding the prime factors p and ¢ of an integer n =
pq when these factors are of size roughly 252, The RSA public-key
cryptosystem is based on the presumed intractability of this factoring
problem.

2. The problem of computing the discrete logarithm in (Z/pZ)*, for a
large prime p of size roughly 25'2. The Diffie-Hellman key exchange
protocol exploits the presumed intractability of this problem. Or, some-
what more precisely, the presumed intractability of the so-called Diffie-
Hellman problem, which is to efficiently calculate ¢g*° mod p given the
knowledge of p, g, g% and ¢°.



3. Compute
7408275023750023740523040602 (1114 1071).

You should express your answer as an integer between 0 and 100.

Solutions. The modulus 101 is prime and 7 is of course nonzero modulo 101.
Therefore, by Fermat’s little theorem,

7% =1 (mod 101),

and, more generally, if e = 100 - ¢ + r is any integer, with r its least residue
modulo 100, then

7¢ = 70T — (710 7T =19 x 7" = 7" (mod 101).
So least residue of 7 to that horrible exponent above is just
7 =49 (mod 101).

A useful hint in this question was the sheer size of the exponent, combined
with the knowledge that your instructor is basically kind and well-meaning,
and hence would not saddle you with a huge calculation in a one-hour exam!
So the solution had to be something computationally simple; in this case,
only the last two digits of the exponent mattered in the problem.

4. A Sophie Germain prime is a prime p of the form 14 2g where ¢ is also a
prime. Assume that p is such a prime. Show that a € (Z/pZ)* is a primitive
root modulo p if and only if

a#+1, a#b* (modp), for any b€ (Z/pZ)*.

Find the smallest primitive root modulo 23.

Solution. For the first part, note that the order of an element a € (Z/pZ)*
necessarily divides ¢(p) = p — 1 = 2¢. Since ¢ is prime, this order must
therefore be either 1, 2, ¢ or 2¢q. But it is clear that

1 iffa=1;

2  iffa=-1;

q iffa# +1and a?=aP V2 =1;

2q otherwise.

order(a) =



But by Euler’s criterion, a® /2 = 1 (mod p) if and only if a is a square
mod p, and the result follows.

For the second part of the question, you could observe that 2 is not a
primitive root modulo 23 because

2=25=5 (mod 23) (1)

and hence, (since 23 is a Sophie Germain prime) the order of 2 is 11. Likewise,
we observe that
3 =27=4=2% (mod 23),

and therefore 3 is also a quadratic residue modulo 23. On the other hand, 5
is a primitive root since its order is equal to 22 by equation (1).

5. Solve the equation

22+ 1=0 (mod 101?).

Solution: Any root modulo 1012 is necessarily a root modulo 101. Since 101
is prime, there are at most two roots modulo 101, which can easily be found
by inspection: they are s; = 10 and s = —10. We then note that, after
setting f(z) = 22 + 1,

f(s1) =20#0 (mod 101), f'(s2) = —=20#0 (mod 101).

Therefore, by Hensel’s lemma, there is (for each j = 1,2) a unique root r; of
f(x) modulo 101? which is congruent to s; modulo 101. The root 74 is given
by

101
f(51) =10— — =10+5-101 =515 (mod 101?),

 f(s1) 20
where the fact that —5 is the inverse of 20 modulo 101 has been used to
derive the penultimate equation. Likewise, the root ry is given by

101
fs2) _ 14 200y 5101 = —515 (mod 1012).

2 f(s2) 20

(Or you could just observe that the second root is necessarily the negative
of the first, since you are extracting a square root.)

T = S1

To = S




