
189-346/377B: Number Theory

Correction to assignment 2

1. Compute the greatest common divisor of 4655 and 12075 and express the
result as a linear combination with coefficients in Z of these two integers.

A direct application of the algorithm for gcd seen in class.

2. Compute the multiplicative inverse of 2 in Z/65537Z.

Using the gcd algorithm, and the fact that gcd(2, 65537) = 1, we can write
1 as a linear combination of 2 and 65537:

1 = a · 2 + b · 65537.

Then a (or rather, its residue class mod 65537) is the sought-for inverse.
Of course, in this case there is an easy short-cut: you can just take a =
(65537 + 1)/2...

3. If a and b are two relatively prime integers, and p is an odd prime, show
that a+ b divides ap + bp, and that gcd(a+ b, (ap + bp)/(a+ b)) is equal either
to 1 or p.

If you carry out the polynomial division, viewing a + b and ap + bp as poly-
nomials in a and b, you will see that

ap + bp = (a + b)(ap−1 − ap−2b + ap−3b2 − · · · + bp−1).

Now, if you attempt to divide the second factor h(a, b), in the factorisation
above by (a + b), viewing these objects again as polynomials in a and b, by
constantly eliminating the terms involving powers of a, you are left with a
remainder of pbp−1. So if a prime ` divides (a + b) and h(a, b), it must also
divide pbp−1. But the prime ` cannot divide b, for otherwise it would also
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have to divide a, since it divides a + b, but this is impossible since a and b
are assumed relatively prime. So any common divisor of a + b and h(a, b)
must necessarily divide p.

Suppose that (a, b, c) is a solution to Fermat’s equation ap + bp = cp, and
that p does not divide c. What can you conclude about a + b?
If p does not divide c, then it does not divide (a + b), and therefore the
gcd of (a + b) and h(a, b) must be 1. But since the product (a + b)h(a, b)
is a perfect pth power, it then follows from unique factorisation in Z that
(a + b) (viewed now as an integer, not a polynomial!!) is itself a perfect p-th
power, i.e., a + b = dp for some integer d. This type of observation was the
starting point for the most ambitious attacks on Fermat’s Last Theorem that
were launched in the 19th century and throughout the first half of the 20th
century.

4. The Euclidean algorithm for computing the gcd of a and b, with a > b,
relies on the fact that gcd(a, b) = gcd(an, bn), where the sequences an and bn

are defined recursively by the conditions (a0, b0) = (a, b) and

bn+1 = remainder in the division of an by bn; an+1 = bn.

Show that bn+2 ≤ bn/2, and conclude that the Euclidean algorithm termi-
nates before the N -th step, where N = 2 log(|b|)/ log(2). (Recall the conven-
tion that log is the natural logarithm–to the base e–although this does not
matter here.)

The key observation is that, given (an+1, bn+1) with an+1 ≥ bn+1, the remain-
der bn+2 is smaller than an+1/2. If bn+1 ≤ an+1/2, this follows from the fact
that bn+2 < bn+1. If bn+1 > an+1/2, then the remainder in the division of
an+1 by bn+1 is just an+1 − bn+1, which is less than an+1/2. The result now
follows from the fact that an+1 = bn.

5. Let f ∈ Z[x] be a polynomial with coefficients in Z. Fix an integer N and
denote by [a] the remainder after division of a by N . Show that the sequence
[f(0)], [f(1)], [f(2)], . . . , is periodic and that its smallest period divides N .
What about the exponential sequence [a1], [a2], [a3], . . .?

The first statement is a direct property of congruences. As for the second,
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the key point to observe was that, if a is relatively prime to N , then the
period in the sequence divides ϕ(N).

6. Show that if N = 2p − 1, with p a prime, then N divides 2N − 2.

By considering the powers of 2 modulo N , you see that

2p ≡ 1 (mod N).

Hence, the value of 2N mod N depends only on the value of N modulo p and
is equal to 2a where a is the least residue of N mod p. But by Fermat’s little
theorem,

N = 2p − 1 = 2 − 1 = 1 (mod p).

Hence
2N − 2 = 21 − 2 = 0 (mod N),

as was to be shown.

7. Let N = 225

+ 1. Find an integer a such that a2 ≡ 1 (mod N) but such
that a 6= ±1 (mod N).
The key idea here was to use the factorisation of N = pq into a product of
two primes, and then, to use the Chinese remainder theorem to find an a
which is congruent to 1 mod p and congruent to −1 mod q. This a will have
the sought-for properties.

8. Simplify the expression φ(1) + φ(2) + · · · + φ(n), where φ is the Euler φ-
function. Deduce a simple formula (in terms of n) for the number of fractions
a/b in lowest terms satisfying 1 ≤ a < b ≤ n.
This question was an embarassing mistake on my part. I was thinking of the

well-known fact that ∑

d|n
φ(d) = n.

As far as I know, there is no simple formula for φ(1) + · · · + φ(n). Mea

maxima culpa!

9. Show that the set Z5 of 5-adic numbers contains an element i satisfying
i2 = −1, 5|(2 − i). Compute i to 5 significant digits (i.e., modulo 55.)
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This is a direct consequence of Hensel’s lemma.

10. According to the RSA cryptography scheme, a message M—described
as a string of digits, with the convention that “a” corresponda to “01”, “b”
to “02”, ... “z” to “6”, and a blank space to “00” - is replaced by its coded
version C = M e (mod n), where e and n are publicly available, but the
factorization of n is kept secret. Consider the coded message

C = 14572353050570834605889731500015117386453891958889990

encoded with the RSA public key

n = 17025863870545887144908490224619062098783164408077639, e = 5.

Knowing that the prime factorization of n is pq, where

p = 14732265321145317331353282383, q = 1155685395246619182673033,

find the secret message M . (Caveat: In the course of your calculation, you
will need to compute xy mod z, where x, y and z are large. This calculation,
done properly, should take a fraction of a second on a PC. If your calculation
takes longer than this, beware that your machine is not first computing the
number xy, and only then reducing mod z (once it gets to that stage, which
of course it never will...).

The next questions are intended only for students in Math 377.

11. Returning to question 4, show that the constant 2/ log(2) = 2.88...
that appears in the running time analysis of the Euclidean algorithm can be
improved to 1/ log( 1+

√
5

2
) = 2.07808....

12. Describe an improvement of the Euclidean algorithm which is guaranteed
to terminate in at most log(n)/ log(2) = 1.4427... log(n) steps.
The idea here is to allow the remainder at the nth stage after division by bn

to be possibly negative, but less than |bn/2| in absolute value.

13. Let n be an integer. Show that the decimal (base 10) expansion of 1/n
is ultimately periodic, and that the length of the smallest period divides the
value φ(n) of the Euler φ-function at n. What if base 10 is replaced by some
other base?
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