189-346/377B: Number Theory Assignment 4

Due: Monday, March 7

1. Solve the equation

 $6^x = 11 \pmod{5^{12}}$

by using the power series expansion for the logarithm, as seen in class. Some of this calculation is a bit tedious so you may want to do it on the computer. Check that the value of x you obtain is the correct one by computing $6^x \pmod{5^{12}}$ directly.

2. Show that $10^{101^{j}}$ converges to a square root of -1 in the field \mathbf{Q}_{101} of 101-adic numbers.

3. Show that, if $\zeta = e^{(2\pi i)/5} = \cos 2\pi/5 + i \sin 2\pi/5$ is the primitive 5th root of unity, and if $\omega = \frac{-1+\sqrt{5}}{2}$ is the golden ratio, then

$$\zeta + \zeta^{-1} = \omega.$$

Use this to show that, if p is an odd prime, the Legendre symbol $\left(\frac{5}{p}\right)$ is equal to 1 if and only $p \equiv \pm 1 \pmod{5}$.

4. Let p be a prime which is congruent to 3 modulo 4. Show that the square root of a mod p, if it exists, is equal to $a^{\frac{p+1}{4}}$. Conclude that there is a polynomial time algorithm (in $\log(p)$) for calculating square roots mod p.

5. Evaluate the Legendre symbols $\left(\frac{503}{773}\right)$ and $\left(\frac{501}{773}\right)$ using the law of quadratic reciprocity.

6. Decide (by hand, without a computer!) which of the following congruences have a solution:

a) $x^2 \equiv 2455 \pmod{4993}$; b) $1709x^2 \equiv 2455 \pmod{4993}$; c) $x^2 \equiv 245 \pmod{27496}$; d) $x^2 \equiv 5473 \pmod{27496}$;

Try your hand at solving the congruence equations (either by hand, or, if you get tired, by computer.)

7. If n is an integer that is prime to 3, show that the all the odd primes dividing $n^2 + 3$ are congruent to 1 modulo 3. Use this to show that there are infinitely many primes of the form 3k + 1.

For Math 377 students only.

8. What can you say about exercise 4 when $p \equiv 1 \pmod{4}$?

9. Let *a* be an element of $(\mathbf{Z}/p\mathbf{Z})^{\times}$, and view the function $x \mapsto ax$ as a permutation on the p-1 elements in $(\mathbf{Z}/p\mathbf{Z})^{\times}$. Show that this permutation is even if $(\frac{a}{p}) = 1$, and is odd if $(\frac{a}{p}) = -1$. (This statement is known as Zolotarev's lemma.)

10. Can Hensel's lemma, which is used to solve equations of the form f(x) = 0 over the *p*-adic numbers when *f* is a polynomial, be extended to the setting where *f* is a *power series* with rational coefficients? Discuss. Use what you have learned to solve the equation

$$x + \log(x) = 4 \pmod{3^{10}}$$

numerically (on the computer). (Here $\log(x)$ refers to the 3-adic logarithm, which is given on $1 + 3\mathbf{Z}$ by the formula

$$\log(1+t) = \sum_{j=1}^{\infty} (-1)^{j+1} t^j / j.)$$