189-346/377B: Number Theory Assignment 4

Due: Monday, February 26

1. Let d and p be primes. How many soltions to the equation $x^d = 1$ are there in $(\mathbf{Z}/p\mathbf{Z})^{\times}$? How many dth powers are there in $(\mathbf{Z}/p\mathbf{Z})^{\times}$?

2. Suppose p is a prime, and n and a are integers that are not divisible by p. Show that the number of solutions of the congruence equation

$$x^n \equiv a \pmod{p^e}, \quad 1 \le x \le p^e,$$

does not depend on e.

3. If the prime p does not divide the integer a, show that the sequence $a_n = a^{p^n}$ converges in \mathbf{Q}_p (i.e., is Cauchy for the p-adic distance.) Show that $\alpha := \lim_{n \to \infty} a_n$ is a (p-1)st root of unity, and that all solutions to $x^{p-1} - 1$ in \mathbf{Q}_p can be obtained in this way. Conclude that $i := \lim 2^{5^n}$ is a square root of -1 in \mathbf{Q}_5 .

4. Apply the Gauss Lemma to directly compute the value of the Legendre symbol $\left(\frac{-2}{p}\right)$ as a function of the prime p. Show that the result is consistent with the values for $\left(\frac{-1}{p}\right)$ and $\left(\frac{2}{p}\right)$ obtained in class.

5. Let p be a prime which is congruent to 3 modulo 4. Show that the square root of a mod p, if it exists, is equal to $a^{\frac{p+1}{4}}$. Conclude that there is a polynomial time algorithm (in $\log(p)$) for calculating square roots mod p. (377: What if $p \equiv 1 \pmod{4}$?)

6. Show that if p and q = 2p + 1 are both odd primes, then -4 is a primitive root mod q.

7. Evaluate the Legendre symbols $(\frac{503}{773})$ and $(\frac{501}{773})$ using the law of quadratic reciprocity.

8. Decide (by hand, without a computer!) which of the following congruences have a solution:

a) $x^2 \equiv 2455 \pmod{4993}$; b) $1709x^2 \equiv 2455 \pmod{4993}$; c) $x^2 \equiv 245 \pmod{27496}$; d) $x^2 \equiv 5473 \pmod{27496}$;

Try your hand at solving the congruence equations (either by hand, or, if you get tired, by computer.)

9. Show that for p > 3 prime, the congruence $x^2 \equiv -3 \pmod{p}$ is solvable if and only if p is of the form 3k + 1. **377:** Use this to show that there are infinitely many primes of the form 3k + 1.

10. **377**: Let *a* be an element of $(\mathbf{Z}/p\mathbf{Z})^{\times}$, and view the function $x \mapsto ax$ as a permutation on the p-1 elements in $(\mathbf{Z}/p\mathbf{Z})^{\times}$. Show that this permutation is even if $(\frac{a}{p}) = 1$, and is odd if $(\frac{a}{p}) = -1$. (This statement is known as Zolotarev's lemma.)