
Algebra 1 Assignment 8 Solutions

Problem 1 Let F be a field, we check the group axioms for G = F − {1}
equipped with the binary operation ∗.

1. For any a ∈ G we have:

0 ∗ a = 0 + a− 0× a = 0

G has an identity element, 0.

2. Let a ∈ G be arbitrary, then we can solve for b such that a ∗ b = 0 indeed,

a ∗ b = 0 ⇔
a + b− ab = 0 ⇔

b− ab = −a ⇔
b = −a

1−a which is well defined because a 6= 1

So it follows that every element has an inverse.

3. We finally verify (a ∗ b) ∗ c = a ∗ (b ∗ c).

(a ∗ b) ∗ c = (a + b− ab) + c− (a + b− ab)c
= a + b− ab + c− ac− bc + abc
= a + (b + c− bc)− (ab + ac− abc)
= a + (b + c− bc)− a(b + c− bc)
= a ∗ (b ∗ c)

So (G, ∗) is a group.

The next two problems are counting problems, the next three facts are key:

1. Any σ ∈ Sn can be essentially uniquely written as a product of disjoint
cycles.

2. A k-cycle, i.e. some σ = (123 . . . k) ∈ Sn, has order k, i.e. σk = 1.

3. Disjoint cycles commute

From this we get that the order of an element σ ∈ Sn is determined by the
“shape” of its cycle decomposition. e.g.

σ = (123)︸ ︷︷ ︸
=x

(45678)︸ ︷︷ ︸
=y

Then since x and y are disjoint we have that they commute so σn = (xy)n =
xnyn. It follows that the order of σ is lcm(3, 5) = 15.
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Problem 2 It is fairly clear that that the only elements of order 3 in S3 are
three cycles, first we count how many “different looking” three cycles there are

( ∗ ∗ ∗ )
↑ ↑ ↑

3 choices 2 choices 1 choice

and since every 3-cycle has 3 different presentations e.g.(123) = (231) = (312)
then we divide through our result by three (to avoid counting a cycle more than
once) we find that there are 3!/3 = 2 elements of order 3 in S3.

Problem 3 An element of order six is either a 6-cycle or a product disjoint of
2-cycles and 3-cycles, adopting the convention of writing shorter cycles on the
left (to avoid counting things more than once) we have that elements of order 6
in S5 look like

(∗∗)(∗ ∗ ∗)
We immediately see that there are 5×4×3×2×1 = 5! different looking products
of this form. Now each 2-cycle has 2 presentations and every 3-cycle has three
presentations, so there are 5!/(2× 3) = 20 distinct elements of order 6 in S5.

For the record, counting problems are notoriously tricky, it’s easy to forget
to divide by something or add things instead of multiplying, but it sure beats
checking all 120 elements of S5.

Problem 4 First notice that any ring is a group under the binary operation
+. Indeed, zero is our identity element, each element has an inverse (i.e. its
additive inverse) and associativity holds. So for any n ∈ N (Zn,+) is a group
with n elements.

Now if G and H are groups finite then G × H the cartesian product is a
group with order(G) ∗ order(H) elements (count the possibilities). Also the
subset S = {(g, 1H) ∈ G × H|g ∈ G} is in fact a subgroup of G × H that is
isomorphic to G (these two claims should be checked).

If a group G is abelian, i.e. for all x, y ∈ G, xy = yx, then all its subgroups
must also be abelian.

Now S3 is a nonabelian group, (12)(23) = (123) 6= (132) = (23)(12), with 6
elements (in fact it is the smallest possible nonabelian group). And the groups
S3 × Z2 and S3 × Z5 are groups with orders 12 and 30 respectively and since
they have nonabelian subgroups they themselves are nonabelian.

Other examples (with completely different structures) are the groups of sym-
metries (i.e. reflections and rotations) of a hexagon, D12 (though some will write
D6 instead), and a regular polygon with 15 edges, D30. One may check that
they have the right number of elements and verify that rotation and reflection
do not commute by making the polygons out of construction paper, numbering
the vertices and applying the said symmetries.

Problem 5. If every element in G is of order two, then (ab)2 = abab = 1.
Multiplying this relation on the left by a and on the right by b gives ba = ab
(using the fact that a2 = b2 = 1.)
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A non-abelian group of exponent 3 is the set G of 3 × 3 upper-triangular
matrices with entries in Z3 and 1’s on the diagonal. There are clearly 27 such
matrices. The set G is closed under product, and inverses, and therefore forms
a subgroup of GL3(Z3), which can be checked to be non-abelian. Finally, note
that if M is in G it can be written as I + n, where n is a matrix satisfying
n3 = 0, and I is the identity matrix. But then, since 3 = 0,

M3 = (I + n)3 = I3 + 3n + 3n2 + n3 = I.

(Using the binomial theorem is vaid in this context because I and n commute
and generate a commutative subring of M3(Z3).) It follows that every M ∈ G
is of order 3.

Problem 6 To show these two groups are isomorphic, note that any matrix in
GL2(Z2) acts by left multiplication on the 2 × 1 column vectors with entries
in Z2, and therefore gives rise to a permutation on the set X consisting of
the three non-zero such column vectors. This gives a homomorphism from
GL2(Z2) −→ SX , which is easily seen to be injective (since a matrix which fixes
all non-zero vectors can only be the identity matrix.) Since both groups have
the same cardinality, 6, the homomorphism is actually an isomorphism.

Problem 7 It follows from the identity between permuations (i1i2 · · · ir) =
(i1i2)(i2i3)(i3i4) · · · (ir−1ir) than any cyclic permutations (i1 · · · ir) can be ex-
pressed as a product of transpositions. The general case follows from the fact
that any permuation is a product of cyclic permutations.
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