Solutions of Assignment 7
Basic Algebra I

November 21, 2005

Solution of the problem 1. Recall that a field F' has only two ideals: {0}, F.
Also recall that the kernel of any ring homomorphism is an ideal. Now back
to the problem, in order to show that f is injective, it is enough to show that
ker(f) = {0}. If not, then ker(f) = F. So 1 €ker(f), i.e., f(1) = 0, which is a
contradiction. Thus f is injective. The first isomorphism theorem now implies
the other part of the problem:

F = F/{0} = F/ker(f) = f(F).

Solution of the problem 2. Let the ideal I =ker(f) be the kernel of f, which
is principal because Z,, is a field (F field = every ideal of F[z] is principal) .
And let p(z) be a generator for I. By the first isomorphism theorem we know
that S is isomorphic to the quotient ring R/I. If p(x) = 0 (the zero polynomial),
then I = (p(x)) = (o) and hence S is isomorphic to R/(0) = R. So, suppose
that p(x) is not the zero polynomial, and that it has degree n. We then assert
that R/I has at most p" elements. For this, let P(z) represents a class (mod
p(z)) in R/I. Using division algorithm, we can write

P(x) = p(z)q(z) +r(2);

where r(z) = ap+ a1z +- -+ a,_12" "1 is the remainder. We may replace P(z)
(as one representative) with r(x). Hence the total number of classes in R/T is <
the total number of such r(x)’s, which is px px - - - x p = p"—each p corresponds
to the number of possibilities for each coefficient a; € Z, (0 < j <n —1)—and
we are done.

Solution of the problem 3. This is false. For example, Z is an integral
domain, however, its quotient by the ideal 6Z, namely Zg, is not an integral
domain.

Solution of the problem 4. This is true. Let J be an ideal of R/I. Recall
that the natural homomorphism 7 : R — R/I, n(a) = a + I, is a surjective



ring homomorphism. We now claim that the inverse image 7=1(J) := {a €
R: w(a) € J} is an ideal of R:

If a,b € 7= 1(J), then 7(a + b) = w(a) + 7(b) € J,s0 a+ b€ 7 1(J).

If a € 771(J), r € R, then 7(ra) = 7(r)n(a) € J, so ra € 7~ 1(J).
Every ideal of R is assumed to be principal, so 77 1(J) = (ag) = agR, for some
aop € R. Now since 7 is onto, we conclude that

J=7(r"YJ)) = n((aoR)) = {r(agr) : € R} ={aor +1: r € R}

={(ap+I)(r+1): r€ R} = (ap+1I).
This means that J is generated by the element ag 4+ I. Done.

Solution of the problem 5. False. Let R = Z[x] and let I = (x), the ideal
generated by z. We first claim that R/I = Z. To see this, define

¢:R—Z, ¢(f(x)) = f(0).

Tt is apparent that ¢ is a ring homomorphism. ¢ is also surjective (every integer
can be regarded as a polynomial). Also note that

ker(¢) = {f(2) : o(f(2)) =0} = {f(z): f(0) =0} ={f(z): «| f(z)} =L

So, R/I = Z, and the claim is proved.

Since every ideal of Z is principal, this in fact shows that every ideal of R/T
is so. We now assert that the same is not true for R by showing that the ideal
J ={f(z): 2] f(0)} is not principal (it is left to you to check that J is in
fact an ideal). On the contrary, suppose that J principal and that is generated
by some polynomial g(z). Since 2,z € J, we would have g(x) | 2, g(z) | z. So,
g(x) = £1 (why?), which is a contradiction (again:why?).

Solution of the problem 6. Our first claim is that for any prime p,

Zlx] . Zplz]

(P2 +1) (2 +1)

Y/
o see this, define ¢ : x—>7m]bytherule
T his, define ¢ : Z (2p[+1)

x

lag + a1z 4 - + apx™) = Gg + @12 4 - - + apx” + (22 + 1),

where a denotes the congruence class of a mod p. It is readily seen that ¢ is
a surjective ring homomorphism (check this!). To find the kernel, notice that
since any f(x) can be written as f(z) = a + bx + g(x)(z? + 1) for some g(x)
(division algorithm), so f(x) is in the kernel <= a+bx =0 < p|a,p |
b < f(z) € (p,2%> +1). The first isomorphism theorem now concludes the

proof of our first claim.



Now we specialize to the case where p=5 or p=7.

(I) For p = 5, we have the factorization 2% + 1 = (z — 3)(x — 2). Let us now
define

Y Ls[w] — Zs X Zs, P(f(x)) = (f(3), f(2)).

1) is clearly a ring homomorphism with the kernel

ker(v) = {f(z): f(3)=f(2)=0}
= {f(@): 2 =3[ f(2), v -2| f(z)}
= {f(2): 2®+1] f(=)}
= (2 41).

It remains to show that ¢ is surjective. Given any (o, ) € Zs X Zs, take
f(z) = (38 —2a) + (o — B)x. We then have

v(f(@) = (f3), f(2)
= (38 —2a+3a—38, 36— 2a+2a—20)
= (o, B).

Hence, by the first isomorphism theorem, we deduce that

Zx] . Zs[r]
G D) @ S B s

(IT) Now suppose that p = 7. In contrast to 5, 22 + 1 does not factor in
ZLr|z]
(z? +1)
this, we have to show that every nonzero class has an inverse. So, suppose
that f(x) ¢ (2% + 1). Thus ged(f(x), 2% + 1) = 1, and since Z; is a field,
we can find g(z), h(z) € Zr[x] so that f(x)g(z) + h(z)(2* + 1) = 1. Therefore
(f(z) + (22 + 1)) (g9(x) + (22 + 1)) = 1 + (2% + 1). In other words, the class
g(z) + (% + 1) is the inverse of f(x) + (z* + 1). And finally we count the
Zr[x]
(@2 +1)
of the form a + bz + (2 + 1) with 0 < a,b < 6 (could you explain why?), we

conclude that the total number of classes is 7 x 7 = 49. Done!

Z7x], i.e., it is irreducible. Now we claim that is a field. To prove

number of classes in Since every class has a unique representative

Solution of the problem 7. As usual, we define the right map and will exploit
it to conclude the desired result. So, consider the

¢:Flla]] — F, ¢ anz™) = ao.

n=0

Now we check in details that ¢ is a surjective ring homomorphism.



(i) ¢ respects addition:

¢ <Z anz" + Z b,ﬂ?”) = ¢ (Z(an + bn)x”>
n=0 n=0

n=0

= ag+bo

= ¢ (Z amc”) +¢ (Z bnx”> :
n=0 n=0

(ii) ¢ respects multiplication:

10) ( 3 apx™ - i bnx">
0 n=0

n=

¢ (Z (aObn + albn—l +-- anbO) $n>

n=0

= aO'bO

(o) o(E)

(iii) The identity element of the ring F[[z]] is the formal power series

1=1+0zx+0z%+0z3+---,
and we have ¢(1) = 1.
(iv) ¢ is surjective: for any a € F, we have
¢(a+ 0z + 02% + 02° + - --) = a.

(v) The kernel of ¢ is the ideal generated by x:
flx)= Zanx” €ker(¢) <= ap=0 <= f(z) =29(z) <= f(z) € (v).
n=0

Therefore, the first isomorphism theorem implies that

F[z]]
()

To prove the second part, suppose now that

R= = F.

p(z) = Zanx" Z (z)
n=0

which is equivalent to ag # 0. We are looking for a formal power series ¢(z) =
Yoo o bpa™ such that

p(z)q(z) = 1. (1)



Notice that (1) holds if and only if the following system of equations has a
solution in b,’s:
aobo = 1,

apby + a1by = 0,
agbs + aiby + azbg = 0,

Since ag # 0, there is a solution for by, namely by = ay L Applying this in the
next equation we easily find

b1 = —aal(albo).

Continuing this way, one can inductively find all b,’s, the only requirement
that guarantees the existence of the solutions being ag # 0. So, given any
ap + a1r + azx® + - - - with ag # 0, there exits a (unique) by + by + box? + - -
such that their product is 1.

And now the last part is immediate: if an ideal of R is not contained in
I = (z), it has to have an invertible element, hence it is the entire ring F[[z]].
Done!

Solution of the problem 8a. We show that R/T = R x R, the direct product
of R with itself. To do this, let us define

¢:R—RxR, o(f)=(f(1), f(2)).

We leave it for the reader to verify that ¢ is a surjective ring homomorphism
whose kernel is readily seen to be the given ideal I. Now the first isomorphism
theorem yields the affirmation.

Solution of the problem 8b. We show R/I & Z,[x].
Once again, it is just the matter of defining the right mapping:

¢:R— L], ¢lag+ a1z +---+ apa®) = ag + arx + - - + apa’,

where a denotes the congruence class of a mod n. The details are left to the
reader!

Solution of the problem 8c. Here is the claim: R/I 2 C, the field of complex
numbers. To this end, we set

¢:R—C, o(p(x)) =a+bi,



where the coefficients a and b are the result of performing the division algorithm
p(z) = (2% + 1)g(@) +a + b,

and 4 is the imaginary number /—1. Tt is again(!) a routine matter to check
the details!

Solution of the problem 8d. This time the quotient ring R/I is isomorphic
to something less familiar! We assert that

R/I = 72y,

where Z ) (not to be confused with Zy) stands for the subring of Q consisting
of all rational numbers whose denominator is a power of 2. Coming up with the
right mapping is again easy! One defines

1
¢:R— L), ¢p)=p <2> :
Note that if p(x) = ap + a1z + - - - + apa™, then
1 a2 +a12" 1+ 4 a,
o(5) = < Zoy

One readily verifies that ¢ is a surjective ring homomorphism whose kernel is

k() = {ple) €2Zla] © ply) =0}
{p(z) : 20 —1|p(x)}
= (22 —1)Z[z]
I.

The result follows.



