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Solution of the problem 1. Recall that a field F has only two ideals: {0}, F.
Also recall that the kernel of any ring homomorphism is an ideal. Now back
to the problem, in order to show that f is injective, it is enough to show that
ker(f) = {0}. If not, then ker(f) = F . So 1 ∈ker(f), i.e., f(1) = 0, which is a
contradiction. Thus f is injective. The first isomorphism theorem now implies
the other part of the problem:

F ∼= F/{0} ∼= F/ker(f) ∼= f(F ).

Solution of the problem 2. Let the ideal I =ker(f) be the kernel of f , which
is principal because Zp is a field (F field ⇒ every ideal of F [x] is principal) .
And let p(x) be a generator for I. By the first isomorphism theorem we know
that S is isomorphic to the quotient ring R/I. If p(x) = 0 (the zero polynomial),
then I = (p(x)) = (o) and hence S is isomorphic to R/(o) = R. So, suppose
that p(x) is not the zero polynomial, and that it has degree n. We then assert
that R/I has at most pn elements. For this, let P (x) represents a class (mod
p(x)) in R/I. Using division algorithm, we can write

P (x) = p(x)q(x) + r(x);

where r(x) = a0 +a1x+ · · ·+an−1x
n−1 is the remainder. We may replace P (x)

(as one representative) with r(x). Hence the total number of classes in R/I is ≤
the total number of such r(x)’s, which is p×p×· · ·×p = pn—each p corresponds
to the number of possibilities for each coefficient aj ∈ Zp (0 ≤ j ≤ n− 1)—and
we are done.

Solution of the problem 3. This is false. For example, Z is an integral
domain, however, its quotient by the ideal 6Z, namely Z6, is not an integral
domain.

Solution of the problem 4. This is true. Let J be an ideal of R/I. Recall
that the natural homomorphism π : R −→ R/I, π(a) = a + I, is a surjective
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ring homomorphism. We now claim that the inverse image π−1(J) := {a ∈
R : π(a) ∈ J} is an ideal of R:

If a, b ∈ π−1(J), then π(a+ b) = π(a) + π(b) ∈ J , so a+ b ∈ π−1(J).
If a ∈ π−1(J), r ∈ R, then π(ra) = π(r)π(a) ∈ J , so ra ∈ π−1(J).

Every ideal of R is assumed to be principal, so π−1(J) = (a0) = a0R, for some
a0 ∈ R. Now since π is onto, we conclude that

J = π(π−1(J)) = π((a0R)) = {π(a0r) : r ∈ R} = {a0r + I : r ∈ R}

= {(a0 + I)(r + I) : r ∈ R} = (a0 + I).

This means that J is generated by the element a0 + I. Done.

Solution of the problem 5. False. Let R = Z[x] and let I = (x), the ideal
generated by x. We first claim that R/I ∼= Z. To see this, define

φ : R −→ Z, φ(f(x)) = f(0).

It is apparent that φ is a ring homomorphism. φ is also surjective (every integer
can be regarded as a polynomial). Also note that

ker(φ) = {f(x) : φ(f(x)) = 0} = {f(x) : f(0) = 0} = {f(x) : x | f(x)} = I.

So, R/I ∼= Z, and the claim is proved.
Since every ideal of Z is principal, this in fact shows that every ideal of R/I

is so. We now assert that the same is not true for R by showing that the ideal
J = {f(x) : 2 | f(0)} is not principal (it is left to you to check that J is in
fact an ideal). On the contrary, suppose that J principal and that is generated
by some polynomial g(x). Since 2, x ∈ J , we would have g(x) | 2, g(x) | x. So,
g(x) = ±1 (why?), which is a contradiction (again:why?).

Solution of the problem 6. Our first claim is that for any prime p,

Z[x]
(p, x2 + 1)

∼=
Zp[x]

(x2 + 1)
.

To see this, define φ : Z[x] −→ Zp[x]
(x2 + 1)

by the rule

φ(a0 + a1x+ · · ·+ anx
n) = ā0 + ā1x+ · · ·+ ānx

n + (x2 + 1),

where ā denotes the congruence class of a mod p. It is readily seen that φ is
a surjective ring homomorphism (check this!). To find the kernel, notice that
since any f(x) can be written as f(x) = a + bx + g(x)(x2 + 1) for some g(x)
(division algorithm), so f(x) is in the kernel ⇐⇒ ā + b̄x = 0 ⇐⇒ p | a, p |
b ⇐⇒ f(x) ∈ (p, x2 + 1). The first isomorphism theorem now concludes the
proof of our first claim.
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Now we specialize to the case where p = 5 or p = 7.

(I) For p = 5, we have the factorization x2 + 1 = (x− 3)(x− 2). Let us now
define

ψ : Z5[x] −→ Z5 × Z5, ψ(f(x)) = (f(3), f(2)).

ψ is clearly a ring homomorphism with the kernel

ker(ψ) = {f(x) : f(3) = f(2) = 0}
= {f(x) : x− 3 | f(x), x− 2 | f(x)}
= {f(x) : x2 + 1 | f(x)}
= (x2 + 1).

It remains to show that ψ is surjective. Given any (α, β) ∈ Z5 × Z5, take
f(x) = (3β − 2α) + (α− β)x. We then have

ψ(f(x)) = (f(3), f(2))
= (3β − 2α+ 3α− 3β, 3β − 2α+ 2α− 2β)
= (α, β).

Hence, by the first isomorphism theorem, we deduce that

Z[x]
(5, x2 + 1)

∼=
Z5[x]

(x2 + 1)
∼= Z5 × Z5.

(II) Now suppose that p = 7. In contrast to 5, x2 + 1 does not factor in

Z7[x], i.e., it is irreducible. Now we claim that
Z7[x]

(x2 + 1)
is a field. To prove

this, we have to show that every nonzero class has an inverse. So, suppose
that f(x) /∈ (x2 + 1). Thus gcd(f(x), x2 + 1) = 1, and since Z7 is a field,
we can find g(x), h(x) ∈ Z7[x] so that f(x)g(x) + h(x)(x2 + 1) = 1. Therefore
(f(x) + (x2 + 1))(g(x) + (x2 + 1)) = 1 + (x2 + 1). In other words, the class
g(x) + (x2 + 1) is the inverse of f(x) + (x2 + 1). And finally we count the

number of classes in
Z7[x]

(x2 + 1)
. Since every class has a unique representative

of the form a + bx + (x2 + 1) with 0 ≤ a, b ≤ 6 (could you explain why?), we
conclude that the total number of classes is 7× 7 = 49. Done!

Solution of the problem 7. As usual, we define the right map and will exploit
it to conclude the desired result. So, consider the

φ : F [[x]] −→ F, φ(
∞∑

n=0

anx
n) = a0.

Now we check in details that φ is a surjective ring homomorphism.
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(i) φ respects addition:

φ

( ∞∑
n=0

anx
n +

∞∑
n=0

bnx
n

)
= φ

( ∞∑
n=0

(an + bn)xn

)
= a0 + b0

= φ

( ∞∑
n=0

anx
n

)
+ φ

( ∞∑
n=0

bnx
n

)
.

(ii) φ respects multiplication:

φ

( ∞∑
n=0

anx
n ·

∞∑
n=0

bnx
n

)
= φ

( ∞∑
n=0

(a0bn + a1bn−1 + · · ·+ anb0)xn

)
= a0 · b0

= φ

( ∞∑
n=0

anx
n

)
· φ

( ∞∑
n=0

bnx
n

)
.

(iii) The identity element of the ring F [[x]] is the formal power series

1 = 1 + 0x+ 0x2 + 0x3 + · · · ,

and we have φ(1) = 1.

(iv) φ is surjective: for any a ∈ F , we have

φ(a+ 0x+ 0x2 + 0x3 + · · ·) = a.

(v) The kernel of φ is the ideal generated by x:

f(x) =
∞∑

n=0

anx
n ∈ ker(φ) ⇐⇒ a0 = 0 ⇐⇒ f(x) = xg(x) ⇐⇒ f(x) ∈ (x).

Therefore, the first isomorphism theorem implies that

R =
F [[x]]
(x)

∼= F.

To prove the second part, suppose now that

p(x) =
∞∑

n=0

anx
n 6∈ (x)

which is equivalent to a0 6= 0. We are looking for a formal power series q(x) =∑∞
n=0 bnx

n such that

p(x)q(x) = 1. (1)
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Notice that (1) holds if and only if the following system of equations has a
solution in bn’s:

a0b0 = 1,

a0b1 + a1b0 = 0,

a0b2 + a1b1 + a2b0 = 0,

· · · · · ·

a0bn + · · ·+ anb0 = 0,

· · · · · · · · · · · ·

Since a0 6= 0, there is a solution for b0, namely b0 = a−1
0 . Applying this in the

next equation we easily find

b1 = −a−1
0 (a1b0).

Continuing this way, one can inductively find all bn’s, the only requirement
that guarantees the existence of the solutions being a0 6= 0. So, given any
a0 + a1x+ a2x

2 + · · · with a0 6= 0, there exits a (unique) b0 + b1x+ b2x
2 + · · ·

such that their product is 1.

And now the last part is immediate: if an ideal of R is not contained in
I = (x), it has to have an invertible element, hence it is the entire ring F [[x]].
Done!

Solution of the problem 8a. We show that R/I ∼= R×R, the direct product
of R with itself. To do this, let us define

φ : R −→ R× R, φ(f) = (f(1), f(2)).

We leave it for the reader to verify that φ is a surjective ring homomorphism
whose kernel is readily seen to be the given ideal I. Now the first isomorphism
theorem yields the affirmation.

Solution of the problem 8b. We show R/I ∼= Zn[x].
Once again, it is just the matter of defining the right mapping:

φ : R −→ Zn[x], φ(a0 + a1x+ · · ·+ akx
k) = ā0 + ā1x+ · · ·+ ākx

k,

where ā denotes the congruence class of a mod n. The details are left to the
reader!

Solution of the problem 8c. Here is the claim: R/I ∼= C, the field of complex
numbers. To this end, we set

φ : R −→ C, φ(p(x)) = a+ bi,
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where the coefficients a and b are the result of performing the division algorithm

p(x) = (x2 + 1)q(x) + a+ bx,

and i is the imaginary number
√
−1. It is again(!) a routine matter to check

the details!

Solution of the problem 8d. This time the quotient ring R/I is isomorphic
to something less familiar! We assert that

R/I ∼= Z(2),

where Z(2) (not to be confused with Z2) stands for the subring of Q consisting
of all rational numbers whose denominator is a power of 2. Coming up with the
right mapping is again easy! One defines

φ : R −→ Z(2), φ(p(x)) = p

(
1
2

)
.

Note that if p(x) = a0 + a1x+ · · ·+ anx
n, then

p

(
1
2

)
=
a02n + a12n−1 + · · ·+ an

2n
∈ Z(2).

One readily verifies that φ is a surjective ring homomorphism whose kernel is

ker(φ) = {p(x) ∈ Z[x] : p(
1
2
) = 0}

= {p(x) : 2x− 1 | p(x)}
= (2x− 1)Z[x]
= I.

The result follows.
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