
Basic Algebra 1
Solutions to Assignment 3

Problem 1 The simplest way to do this is to check all the cases, but to do
less work we make the following observation: ax ≡ b mod (n) and ay ≡ b
mod (n) ⇔ a(x − y) ≡ 0 mod (b) (check it!). So if x is a solution of ax ≡ b
mod (n) then the other solutions of the equation are of the form x + a′ where
n | aa′. We have,
(a) 3 ∗ 4 ≡ 12 ≡ 5 mod (7) and there are no other solutions because 7 is prime.
(b) 3 ∗ 4 ≡ 12 ≡ 1 mod (11) and x = 4 is the only solution.
(c) 3 ∗ 2 ≡ 6 mod (15) so we have x = 2 is a solution but notice that 15 | 3 ∗ 5
and 15 | 3 ∗ 10 so we have that x = 2 + 5 = 7 is a solution and x = 12 is also a
solution (moreover they are the only ones)
(d) We try for x = 0, 1, 2, 3, 4, 5, 6 and notice that none of these work, we can
stop, why? We have that 6 ∗ 7 ≡ 6 ∗ 14 ≡ 0 mod (21) so it follows that if y is a
solution to our equation, we can chose y < 21 and we also have that y−7, y−14
is a solution, thus if there is a solution 21 > y > 6 then there exists a solution
0 ≤ y′ ≤ 6 but we checked that there were none.

Remark In general one has the following result.

(i) The equation ax ≡ b mod m is soluble iff gcd(a,m) | b.
(ii) If this is so, then there are exactly d =gcd(a,m) solutions.
(iii) Given x0 is one solution, then

x0 +
m

d
, x0 + 2

m

d
, · · · , x0 + (d− 1)

m

d

are the other solutions.

Problem 2 We compute the squares in Z8

02 = 0
12 = 1
22 = 4
32 = 9 = 1
42 = 16 = 0
52 = 25 = 1
62 = 36 = 4
72 = 49 = 1

We see that the possible sums of three squares are:

0 + 0 + 0 = 0; 0 + 0 + 1 = 1; 0 + 1 + 1 = 2;

1 + 1 + 1 = 3; 0 + 0 + 4 = 4; 0 + 1 + 4 = 5; 1 + 1 + 4 = 6.

So seven can not be expressed as a sum of three squares in Z8.
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Now suppose towards a contradiction that every integer could be expressed
as a sum of three squares. Let n ∈ [7]8 ⊂ Z where [7]8 is the equivalence class
of integers congruent to 7 mod(8). Then by our supposition n = a2 + b2 + c2 for
some a, b, c ∈ Z, hence we have the congruence equation a2 + b2 + c2 ≡ n ≡ 7
mod (8). This is a contradiction, it follows that some integers (in particular 7)
can not be expressed as a sum of three squares. Note that 7 is the smallest
integer that can not be expressed as the sum of three squares!

Problem 3 Show that a5 ≡ a mod (30) for all integers a. We have the following
equivalencies

a5 ≡ a mod (30)
⇔ a5 − a ≡ 0 mod (30)
⇔ 30 | a5 − a

We also have that 30 | (a5−a) if and only if 2, 3 and 5 divide a5−a. One side of
this implication is clear i.e. if 30 | x then 2, 3 and 5 also divide x. On the other
hand suppose that 2, 3 and 5 divide x. Then by the fundamental theorem of
arithmetic we have the unique prime factorization x = ±1∗2ε1 ∗3ε2∗5ε3 ∗ . . . and
in particular we find that ε1, ε2, ε3 are all at least 1. So 30 = 2∗3∗5 divides x as
well. (It is sometimes useful to think that a divides b if and only if b “contains”
a’s prime factorization.)

So if we show that n | a5 − a for all a when n = 2, 3, 5, we’re done. So we
check for each of them. I’ll only do the case for n = 5, we need to check for
a = 0, 1, 2, 3, 4. When a = 0, 1 the equation clearly holds. For the rest:

45 = 42 ∗ 42 ∗ 4 ≡ 1 ∗ 1 ∗ 4 ≡ 4 mod (5)
35 = 32 ∗ 32 ∗ 3 ≡ (−1) ∗ (−1) ∗ 3 ≡ 3 mod (5)

25 = 4 ∗ 23 ≡ (−1) ∗ 3 ≡ 2 mod (5)

So we have that for each a ∈ Z, a5 ≡ a mod (5). Similarly the equations also
hold for all a modulo 2 and 3. We can therefore infer that for all a ∈ Z, a5 ≡ a
mod (30).

Problem 4 We first consider Z11. We start checki and find that in Z11:

2 = 2
22 = 4
23 = 8
24 = 16 = 5
25 = 2 ∗ 5 = 10
26 = 2 ∗ 10 = 9
27 = 2 ∗ 9 = 7
28 = 2 ∗ 7 = 3
29 = 2 ∗ 3 = 6
210 = 2 ∗ 6 = 1

So 2 is a primitive root mod 11. And for the record, there is not really a nice
way to find such roots.
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For Z24 a totally different approach is in order, checking every elements will
do the trick but it is too much work, especially because Z24 has no such primitive
roots. The two next propositions illustrate what’s going on.

Proposition 1: Let R be a commutative ring and suppose that a, b ∈ R are
such that a, b 6= 0 but ab = 0, then a may not have a multiplicative inverse.
Proof: Suppose that a 6= 0 did have a multiplicative inverse a−1 but that there
was some b 6= 0 such that ab = 0.

b = 1 ∗ b
= (a−1a)b
= a−1(ab) = a−1 ∗ 0 = 0

⇒ b = 0

Which is a contradiction.2

Proposition 2: If every non-zero element of Zn is a power of some a ∈ Zn,
then all non-zero elements of Zn have multiplicative inverses.
Proof: Let x ∈ Zn be any nonzero element. Then for some l, m ∈ N, x = al and
am = 1. We may assume that l < m if not then for some k, l ≤ km and we
have akm = (am)k = 1k = 1 so we may replace m by km. Let j = m − l ≥ 0
then we have that xaj = al+j = 1, hence x has a multiplicative inverse. Since
x is arbitrary the Proposition is proved. 2

Now we have in Z24 that 2 ∗ 12 = 0 so by Proposition 1, 2 or 12 may not
have a multiplicative inverses. It then follows from Proposition 2 that Zn has
no primitive root.

Problems 5 and 6 If x2 ≡ 1 in Zn this means in particular that n | (x2 − 1)
(look at Problem 3 if this isn’t clear) which implies n | (x + 1)(x− 1).

For Problem 5 suppose we can take Z80. Notice that 92 = 81 = 1 but that
9 6= 1,−1. So we have a counterexample. By the way I picked 80 because
80 = (9 + 1)(9− 1).

If n > 2 is prime, notice the following: Suppose there was some [x] ∈ Zn

such that [x]2 = [1]. If [x] 6= [1] or [−1] then [x + 1], [x − 1] 6= [0]. Picking
a representative x0 ∈ Z from [x] such that x0 < n gives us that in Z, n |
(x0 − 1)(x0 + 1), and since n is prime it must divide one of the factors on the
right, but notice that x0 − 1 and x0 + 1 are both nonzero and less than n, so n
can’t divide them which is a contradiction. We infer that the only possibilities
for [x] are [1] and [−1].

Problem 7 Suppose that gcd(a, n) = 1 then there exist p, q ∈ Z such that
pa + qn = 1. It follows that pa + qn ≡ 1 mod (n) so we can write

[pa] + [qn] = [1] (?)

in Zn. But note that the term [qn] = [q][n] = [0][n] = [0]. So in fact (?) yields
[p][a] = [1] therefore [a] has the multiplicative inverse [p].

On the other hand, suppose that [a] ∈ Zn had a multiplicative inverse [a′],
then picking a representative a′0 ∈ Z of the equivalence class [a′] we get the
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congruence relation aa′0 ≡ 1 mod (n). So applying the division algorithm in
Z we get aa′0 = pn + 1 for some p ∈ Z which implies aa′0 − pn = 1. We know
that gcd(a, n) is the smallest strictly positive integer representable as a linear
combination of a and n, so it follows that gcd(a, n) = 1.

Problem 8 By Problem 7, the invertible elements in Z5 correspond to equiva-
lence classes of elements relatively prime to 5, so they are [1], [2], [3], [4]. Simi-
larly for Z12 the invertible elements are [1], [5], [7], [11] i.e. everything relatively
prime to 12.

Problem 9 First suppose that p is prime, and let 1 ≤ k ≤ p − 1. Since the
binomial coefficient

(
p
k

)
= p!

k!(p−k)! is an integer, therefore k!(p−k)! | p×(p−1)!.
Now since p - k!(p − k)! (convince yourself of this!), we infer that gcd(k!(p −
k)!, p) = 1. Thus k!(p− k)! | (p− 1)!, and hence the binomial coefficient(

p

k

)
= p× (p− 1)!

k!(p− k)!

is a multiple of p, and we are done. [Note that we have used the fact that if
a | bc and if gcd(a, b) = 1 then a | c.]

Now conversely, we suppose that all the binomial coefficients(
n

k

)
, (1 ≤ k ≤ n− 1)

are multiples of n, and then prove that n must be prime. If not, let p < n be a
prime divisor of n. It follows from what we have assumed that

1
n

(
n

p

)
=

(n− 1)!
p!(n− p)!

=
(n− 1)(n− 2) · · · (n− p + 1)

p!

is an integer. This in turn implies that for some 1 ≤ j ≤ p − 1, p | n − j. On
the other hand p | n, hence p | j which is a contradiction!

Problem 10 Let f(x) = xp−x. It is clear that p | f(0) and that p | f(1). Now
we prove by induction that p | f(n) for all n. For this let us look at f(n + 1):

f(n + 1) = (n + 1)p − (n + 1) = f(n) +
(

p

1

)
np−1 +

(
p

2

)
np−2 + · · ·+

(
p

p− 1

)
n.

It follows from previous problem and from our induction hypothesis that the
right-hand side is divisible by p, so is the left-hand side and we are done!

Problem 11 First note that since 1729 = 7 × 13 × 19, it is enough to prove
separately

a1729 ≡ a mod (7), a1729 ≡ a mod (13), a1729 ≡ a mod (19).
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The idea is to repeatedly use Fermat’s little theorem. We only do it for the first
congruence relation as a sample and leave the other two for you. It is a good
practice!

a1729 = (a247)7 ≡ a247 = a2(a35)7 ≡ a2a35 = a2(a5)7 ≡ a2a5 ≡ a mod (7).
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