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Solution of the problem 1. It need not be the case. Here are two counterex-
amples: a = 2, b = c = 1; or a = 5, b = 2, c = 3.

Solution of the problem 2. Here are again two counterexamples: a = 6, b =
2, c = 3; or a = 9, b = 6, c = 15.
Remark The statement will be true if we assume that a is a prime in Z.

Solution of the problem 3. First of all, it is readily seen that R = {a +
b
√
−5 : a, b ∈ Z}, usually denoted by Z[

√
−5], with usual addition and multi-

plication of complex numbers, is a ring whose identity element is 1. Also let us
recall that in any ring R with identity element 1R, an element α is called a unit
if αβ = 1R for some β in R. We now identify all the units in Z[

√
−5].

To do this, it is useful to introduce the norm of an element. For α =
a + b

√
−5 ∈ Z[

√
−5], the norm of α is defined by N(α) = a2 + 5b2 = αᾱ, where

ᾱ is the usual complex conjugate of α. The norm function enjoys the following
properties:

(1) N(α) ∈ {0, 1, 2, 3, · · ·}; and N(α) = 0 iff α = 0.
(2) α is a unit iff N(α) = 1 iff α = ±1.
(3) α | β implies N(α) | N(β). Note that the first divisibility is in Z[

√
−5],

whoever, the second one is in Z.
We shall now show that p = 3 is irreducible in Z[

√
−5], i.e., its only divisors

are ±1, ± 3. To see this, assume that β | α. So α = βγ for some γ. Taking
the norms of both sides, we deduce that 9 = N(β)N(γ). If N(β) = 1, namely
if β is a unit, we are done. Likewise we are on the safe side if N(γ) = 1. Thus
suppose that N(β) = N(γ) = 3. Writing β = a + b

√
−5, this is equivalent to

a2 + 5b2 = 3, which is impossible for a, b ∈ Z. This concludes the assertion.
For the second part of the problem, note that

3 | 6 = (1 +
√
−5)(1−

√
−5).

However, 3 divides neither 1 +
√
−5 nor 1−

√
−5. For assume that for example

3 | 1 +
√
−5, so 1 +

√
−5 = 3(c + d

√
−5). This in turn implies that 3c = 3d = 1

which is absurd in Z.
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Remark All these show that Z[
√
−5] is not a unique factorization domain.

Solution of the problem 4. First of all notice that 1 < 2 ≤ 1! + 1, and
2 < 3 ≤ 2! + 1. So, we actually don’t need to require that n be > 2. Let us now
recall the following well-known fact:

Every m > 1 has a prime divisor.

We now proceed the proof. By the above fact, it will suffice to show that no
prime p ≤ n can divide m = n! + 1. So, suppose that p ≤ n. Therefore
p | 1 × 2 × · · · × p × · · · × n = n!. Now if p | n! + 1, then it has to divide
(n! + 1)− n! = 1, which is a contradiction.

To conclude that there are infinitely many primes, note that if we had only
a finite number of them, and if p were the largest one, then by what we have
shown above, there would be a prime p < q ≤ p! + 1, which is nonsense.

Solution of the problem 5. Let p1 = 2, p2 = 3, · · · , pk be the complete list of
all primes ≤ N , and let n be an N -smooth number. Thus n = pα1

1 pα2
2 · · · pαk

k , for
some nonzero αi’s, and note that this factorization is unique by Fundamental
Theorem of Arithmetic. Now let us recall that for −1 < x < 1,

1
1− x

= 1 + x + x2 + x3 + · · · .

So, for any prime number p, since 0 < 1
p < 1, we have

1
1− 1

p

= 1 +
1
p

+
1
p2

+ · · · .

Therefore, ∏
p≤N

1
1− 1

p

=
k∏

i=1

1
1− 1

pi

=
k∏

i=1

(
1 +

1
pi

+
1
p2

i

+ · · ·
)

.

Now if we expand the right-hand side, we obtain all the fractions of the form
1

pα1
1 pα2

2 · · · pαk

k

, where αi’s are ≥ 0. What we get is in fact the sum of reciprocals

of all N -smooth numbers. Hence∏
p≤N

1
1− 1

p

=
∑

all N−smooth
n′s

1
n

.

Solution of the problem 6. Let us write

SN :=
∏

p≤N

1
1− 1

p

.
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¿From the previous problem we know that SN =
∑

all N−smooth
n′s

1
n

. On the other

hand, since any n ≤ N is clearly N -smooth, so we immediately deduce that

SN ≥
∑
n≤N

1
n

.

Now taking the limit when N → ∞ and observing that the sum on the right-
hand sude of the above inequality is in fact the N -th partial sum of the harmonic
series (which is divergent), we infer that

lim
N→∞

 ∏
p≤N

1
1− 1

p

 = lim
N→∞

SN = ∞.

Solution of the problem 7. If we take the natural logarithm of SN , and if
we use the well-know expansion

log
1

1− x
= x +

x2

2
+

x3

3
+ · · · , − 1 < x < 1

we deduce that

log SN = log
∏

p≤N

1
1− 1

p

=
∑
p≤N

log
1

1− 1
p

=
∑
p≤N

(
1
p

+
1

2p2
+

1
3p3

+ · · ·
)

=
∑
p≤N

1
p

+
∑
p≤N

(
1

2p2
+

1
3p3

+ · · ·
)

. (?)

However, the very last sum is bounded above:∑
p≤N

(
1

2p2
+

1
3p3

+ · · ·
)

≤
∑
p≤N

(
1
p2

+
1
p3

+ · · ·
)

≤
∑

all p′s

(
1
p2

+
1
p3

+ · · ·
)

=
∑

all p′s

1
p(p− 1)

≤
∑

all n≥2

1
n(n− 1)

= 1.

3



Now if N tends to ∞, then SN will go to ∞, so does log SN as well. So the
right-hand side of (?) has infinite limit when N →∞, and since the second sum
in (?) has a finite contribution, we conclude that∑

all p′s

1
p

= lim
N→∞

∑
p≤N

1
p

= ∞.
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