
Basic Algebra
Solutions to Assignment 1

Let S and T be the sets {a, b, c} and {x, y} respectively.
Question 1 Saying how many functions there are from S to T amounts to
counting how many ways we can “send” the elements of S into T . So we have
that if f : S → T then:

f(a) = two choices i.e. x or y
f(b) = two choices
f(c) = two choices

which means that there are 8 possible functions from S to T .

Question 2 We try “build” injective functions. Let f : S → T , then f(a) =
either x or y. So let’s suppose that f(a) = x then because f is injective f(b) 6=
f(a) so we must have f(b) = y. Now f(c) is either x or y, both choices yield a
non injective function. Similarly if f(a) = y we find that it is also impossible to
build an injective function. Having exhausted all the possibilities we have that
there are no injective functions from S to T .

Question 3 Here it’s easier to count how many functions are not surjective.
Suppose f : S → T . Then if f(a) = x then both f(b) and f(c) must be also be
x, otherwise we have that f is surjective. Similarly if f(a) = y, f(b) = f(c) = y.
There being no other choices, we have that there are only two non-surjective
functions from S to T , which means all the other ones must be surjective. So
there are 8− 2 = 6 surjective functions from S to T .

Question 4 Let f, g and h be function from X to X. Claim: f(gh) = (fg)h.
(By the way, in calculus some may have seen the composition of f and g denoted
by f ◦ g. In that notation f(gh) = f ◦ (g ◦ h)).
proof of claim: We fix an arbitrary x ∈ X, we compute f(gh)(x). First, we
find gh(x). Let h(x) = y and g(y) = z, then gh(x) = z. Now let f(z) = w,
since gh(x) = z and f(z) = w we get that the composition f(gh)(x) = w.

Now we compute (fg)h(x). We already have that h(x) = y. To find fg(y),
we use g(y) = z, f(z) = w from the previous part to get fg(y) = w. It follows
that the composition (fg)h(x) = w = f(gh)(x).

Since x ∈ X is arbitrary, we infer that for each x ∈ X f(gh)(x) = (fg)h(x),
which means that f(gh) and (fg)h are equal as functions from X to X.2

Question 5 Let f and g be functions from N to N given by the rules:

f(n) =
{

43 if n > 20
1 otherwise ; g(n) = n + 10

These are clearly well defined (but silly) functions. Now for n = 11, we compute
gf(11) = g(1) = 11 and fg(11) = f(21) = 43. For n = 11, gf(n) 6= fg(n), so
fg 6= gf .
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Question 6 The binomial theorem states that for all a, b in a commutative ring
(e.g Z, Q, R, C) and n, a positive integer we have the identity:

(a + b)n =
n∑

k=0

(n

k

)
akbn−k

Letting a = 1, b = 1 we get (1 + 1)n = 2n =
∑n

k=0

(n

k

)
∗ 1k ∗ 1n−k =

∑n
k=0

(n

k

)
.

Similarly setting a = −1, b = 1 gives you the other equality.

Question 7 Compute the gcd of 910091 and 3619 using the Euclidian algorithm.

910091 = 251 ∗ 3619 +1722
3619 = 2 ∗ 1722 +175
1722 = 9 ∗ 175 +147
175 = 1 ∗ 147 +28
147 = 5 ∗ 28 +7
28 = 4 ∗ 7 +0← zero!

So gcd(910091, 3619) = 7

Question 8 (i) Using induction (or otherwise) show that 7 divides 8n − 1 for
all n ≥ 0.
We give two different proofs.
(Proof by induction) We first verify the statement for n = 0:

80 − 1 = 1− 1 = 0 = 0× 7.
√

We now suppose that 7 | 8n − 1. It follows from this that 7 | 8(8n − 1), and
since obviously 7 | 7, we conclude that

7 | 8(8n − 1) + 7 = 8n+1 − 1,

and we are done.

One can also apply the identity

an − bn = (a− b)(an−1 + an−2b + an−3b2 + · · ·+ abn−2 + bn−1)

to get the result at one stroke by replacing a with 8 and b with 1:

8n − 1 = 8n − 1n = (8− 1)(8n−1 + · · ·+ 1n−1).

(ii) Use induction to show that 49 divides 8n − 7n− 1 for all n ≥ 0.
Once again we first verify the statement for n = 0:

80 − 7× 0− 1 = 1− 1 = 0 = 0× 49.
√

Now we assume that the statement to be proved is true for n ≥ 0 and then
prove it for n + 1. Quite akin to what we did in previous case, it is enough to
notice that

8n+1 − 7(n + 1)− 1 = 8(8n − 7n− 1) + 49n.
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Question 9 We must show that for all a, b, n that a + (b + n) = (a + b) + n.
The proof is by induction on n.

For n = 0 we have that a + (b + 0) = a + b and (a + b) + 0 = a + b by the
fact that x + 0 = x for all x.

Now suppose that this was true for all m ≤ n, then for S(n) we have:

(a + b) + S(n) = S((a + b) + n) (by definition of +)
= S(a + (b + n)) (by induction hypothesis)
= a + S(b + n) (by definition of +)
= a + (b + S(n)) (by definition of +)

So associativity also holds for S(n). Thus, by induction, associativity holds for
all n.
Question 10 Show that the expression 1k + . . . + nk can be written as a poly-
nomial in n of degree at most k + 1.

We start by proving this proposition: If F : N→ N is a function such that
F (n + 1) − F (n) is a polynomial of degree k then F itself is a polynomial of
degree k + 1.
Proof of proposition: This is done by induction on k. If k = 0 then we have
that F (n + 1) − F (n) = b a constant. Suppose F (0) = a then we have that
F (n) = bn + a (check this, it’s a straightforward inductive proof.) So the claim
is true for k = 0

Now suppose that this was not true in general, let k > 0 be the smallest
positive integer such that there exist F : N → N such that F (n + 1) − F (n) is
a polynomial of degree k but F (n) is not itself a polynomial of degree k + 1.
Let f(n) = aknk + ak−1n

k−1 + . . . a0 = F (n + 1) − F (n). Let b = ak

k+1 and let
G(n) = F (n) + bnk+1. Consider g(n) = G(n + 1)−G(n) = F (n + 1)− F (n)−
b(n + 1)k+1 + bnk+1 with the binomial theorem this expands to:

g(n) = aknk + . . . + a0︸ ︷︷ ︸
=F (n+1)−F (n)

−b
( k+1∑

i=0

(k+1

i

)
ni

)
+ bnk+1

We see that the coefficient for nk+1 in g(n) is zero. For nk we have that the
coefficient in g(n) is ak − b ∗

(k+1

k

)
and we have that

(k+1

k

)
= k + 1 and since

b = ak

k+1 , the coefficient for nk is also zero. So G(n + 1)−G(n) is a polynomial
of degree j for some j < k, since k was chosen to be minimal we have that G(n)
is a polynomial of degree j +1. But we have that F (n) = G(n)+bnk+1 is a sum
of polynomials so therefore itself a polynomial, moreover it is of degree k + 1,
which is a contradiction. So the proposition is true. 2

It now suffices to notice that if we set F (n) = 1k + . . . nk then we have that
F is a function such that F (n + 1) − F (n) = (n + 1)k which, by the binomial
theorem, is a polynomial of degree k (notice that the coefficients are independent
of n). So we may apply our proposition and it follows that F (n) is a polynomial
of degree k + 1.
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As for the “at most” part suppose that F (n) = 1k + . . . + nk = ak+1n
k+1 +

. . . a0 = bmnm + . . . b0 with m > k + 1 and bm 6= 0. Then we have:

ak+1n
k+1 + . . . + a0 = bmnm + bm−1n

m−1 + . . . + b0

⇐⇒ bmnm + . . . + (bk+1 − ak+1)nk+1 + . . . + (b0 − a0) = 0
(dividing through by nm) bm + . . . + (b0−a0)

nm = 0 (?)

for all n. Picking n′ sufficiently large, will yield a contradiction. You can also
take the limit of (?) as n→∞. The left hand side tends to bm.
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