Algebra 1 Assignment 3 Solutions

Problem 1 The simplest way to do this is to check all the cases, but to do less work we make the following observation: $ax \equiv b \mod (n)$ and $ay \equiv b \mod (n) \Leftrightarrow a(x-y) \equiv 0 \mod (b)$ (check it!). So if x is a solution of $ax \equiv b \mod (n)$ then the other solutions of the equation are of the form x + a' where $n \mid aa'$. We have,

(a) $3 * 4 \equiv 12 \equiv 5 \mod (7)$ and there are no other solutions because 7 is prime. (b) $3 * 4 \equiv 12 \equiv 1 \mod (11)$ and x = 4 is the only solution.

(c) $3 * 2 \equiv 6 \mod (15)$ so we have x = 2 is a solution but notice that $15 \mid 3 * 5$ and $15 \mid 3 * 10$ so we have that x = 2 + 5 = 7 is a solution and x = 12 is also a solution (moreover they are the only ones)

(d) We try for x = 0, 1, 2, 3, 4, 5, 6 and notice that none of these work, we can stop, why? We have that $6 * 7 \equiv 6 * 14 \equiv 0 \mod (21)$ so it follows that if y is a solution to our equation, we can chose y < 21 and we also have that y - 7, y - 14 is a solution, thus if there is a solution 21 > y > 6 then there exists a solution $0 \le y' \le 6$ but we checked that there were none.

Problem 2 We compute the squares in \mathbb{Z}_8

$$0^{2} = 0$$

$$1^{2} = 1$$

$$2^{2} = 4$$

$$3^{2} = 9 = 1$$

$$4^{2} = 16 = 0$$

$$5^{2} = 25 = 1$$

$$6^{2} = 36 = 4$$

$$7^{2} = 49 = 1$$

We see that the possible sums of three squares are: 1 + 1 + 1 = 3; 1 + 1 + 4 = 6; 1 + 4 + 4 = 9 = 1; 4 + 4 + 4 = 12 = 4. So seven can not be expressed as a sum of three squares in \mathbb{Z}_8 .

Now suppose towards a contradiction that every integer could be expressed as a sum of three squares. Let $n \in [7]_8 \subset \mathbb{Z}$ where $[7]_8$ is the equivalence class of integers congruent to 7 mod(8). Then by our supposition $n = a^2 + b^2 + c^2$ for some $a, b, c \in \mathbb{Z}$, hence we have the congruence equation $a^2 + b^2 + c^2 \equiv n \equiv 7$ mod (8). This is a contradiction, it follows that some integers (in particular 7) can not be expressed as a sum of three squares.

Problem 3 Show that $a^5 \equiv a \mod (30)$ for all integers a. We have the following equivalencies

$$a^{5} \equiv a \mod (30)$$

$$\Rightarrow a^{5} - a \equiv 0 \mod (30)$$

$$\Rightarrow 30 \mid a^{5} - a$$

We also have that $30 \mid (a^5 - a)$ if and only if 2, 3 and 5 divide $a^5 - a$. One side of this implication is clear i.e. if $30 \mid x$ then 2, 3 and 5 also divide x. On the other

hand suppose that 2,3 and 5 divide x. Then by the fundamental theorem of arithmetic we have the unique prime factorization $x = \pm 1 * 2^{\epsilon_1} * 3^{\epsilon_2} * 5^{\epsilon_3} * \ldots$ and in particular we find that $\epsilon_1, \epsilon_2, \epsilon_3$ are all at least 1. So 30 = 2 * 3 * 5 divides x as well. (It is sometimes useful to think that a divides b if and only if b "contains" a's prime factorization.)

So if we show that $n \mid a^5 - a$ for all a when n = 2, 3, 5, we're done. So we check for each of them. I'll only do the case for n = 5, we need to check for a = 0, 1, 2, 3, 4. When a = 0, 1 the equation clearly holds. For the rest:

$$\begin{array}{rcl}
4^{5} = 4^{2} * 4^{2} * 4 & \equiv & 1 * 1 * 4 \equiv 4 \mod (5) \\
3^{5} = 3^{2} * 3^{2} * 3 & \equiv & (-1) * (-1) * 3 \equiv 3 \mod (5) \\
2^{5} = 4 * 2^{3} & \equiv & (-1) * 3 \equiv 2 \mod (5)
\end{array}$$

So we have that for each $a \in \mathbb{Z}$, $a^5 \equiv a \mod (5)$. Similarly the equations also hold for all $a \mod 2$ and 3. We can therefore infer that for all $a \in \mathbb{Z}$, $a^5 \equiv a \mod (30)$.

Problem 4 We first consider \mathbb{Z}_{11} . We start checki and find that in \mathbb{Z}_{11} :

 $\begin{array}{l} 2=2\\ 2^2=4\\ 2^3=8\\ 2^4=16=5\\ 2^5=2*5=10\\ 2^6=2*10=9\\ 2^7=2*9=7\\ 2^8=2*7=3\\ 2^9=2*3=6\\ 2^{10}=2*6=1 \end{array}$

So 2 is a primitive root of \mathbb{Z}_{11} . And for the record, there is not really a nice way to find such roots.

For \mathbb{Z}_{24} a totally different approach is in order, checking every elements will do the trick but it is too much work, especially because \mathbb{Z}_{24} has no such primitive roots. The two next propositions illustrate what's going on.

Proposition 1: Let R be a commutative ring and suppose that $a, b \in R$ are such that $a, b \neq 0$ but ab = 0, then a may not have a multiplicative inverse. Proof: Suppose that $a \neq 0$ did have a multiplicative inverse a^{-1} but that there was some $b \neq 0$ such that ab = 0.

$$b = 1 * b$$

= $(a^{-1}a)b$
= $a^{-1}(ab) = a^{-1} * 0 = 0$
 $\Rightarrow b = 0$

Which is a contradiction. \Box

Proposition 2: If \mathbb{Z}_n has a primitive root, then all its non-zero elements have multiplicative inverses.

Proof: Let $x \in \mathbb{Z}_n$ be any nonzero element and let a be a primitive root. Then for some $l, m \in \mathbb{N}$, $x = a^l$ and $a^m = 1$. We may assume that l < m if not then for some $k, l \leq km$ and we have $a^{km} = (a^m)^k = 1^k = 1$ so we may replace mby km. Let $j = m - l \geq 0$ then we have that $xa^j = a^{l+j} = 1$, hence x has a multiplicative inverse. Since x is arbitrary the Proposition is proved. \Box

Now we have in \mathbb{Z}_{24} that 2 * 12 = 0 so by Proposition 1, 2 or 12 may not have a multiplicative inverses. It then follows from Proposition 2 that \mathbb{Z}_n has no primitive root.

Problems 5 and 6 If $x^2 \equiv 1$ in \mathbb{Z}_n this means in particular that $n \mid (x^2 - 1)$ (look at Problem 3 if this isn't clear) which implies $n \mid (x+1)(x-1)$.

For Problem 5 suppose we can take \mathbb{Z}_{80} . Notice that $9^2 = 81 = 1$ but that $9 \neq 1, -1$. So we have a counterexample. By the way I picked 80 because 80 = (9+1)(9-1).

If n > 2 is prime, notice the following: Suppose there was some $[x] \in \mathbb{Z}_n$ such that $[x]^2 = [1]$. If $[x] \neq [1]$ or [-1] then $[x + 1], [x - 1] \neq [0]$. Picking a representative $x_0 \in \mathbb{Z}$ from [x] such that $x_0 < n$ gives us that in $\mathbb{Z}, n \mid (x_0 - 1)(x_0 + 1)$, and since n is prime it must divide one of the factors on the right, but notice that $x_0 - 1$ and $x_0 + 1$ are both nonzero and less than n, so n can't can't divide them which is a contradiction. We infer that the only possibilities for [x] are [1] and [-1].

Problem 7 Suppose that gcd(a, n) = 1 then there exist $p, q \in \mathbb{Z}$ such that pa + qn = 1. It follows that $pa + qn \equiv 1 \mod (n)$ so we can write $[pa] + [qn] = [1](\star)$ in Z_n . But note that the term [qn] = [q][n] = [0][n] = [0]. So in fact (\star) yields [p][a] = [1] therefore [a] has the multiplicative inverse [p].

On the other hand, suppose that $[a] \in \mathbb{Z}_n$ had a multiplicative inverse [a'], then picking a representative $a'_0 \in \mathbb{Z}$ of the equivalence class [a'] we get the congruence relation $aa'_0 \equiv 1 \mod (n)$. So applying the division algorithm in \mathbb{Z} we get $aa'_0 = pn + 1$ for some $p \in \mathbb{Z}$ which implies $aa'_0 - pn = 1$. We know that gcd(a, n) is the smallest strictly positive integer representable as a linear combination of a and n, so it follows that gcd(a, n) = 1.

Problem 8 By Problem 7, the invertible elements in \mathbb{Z}_5 correspond to equivalence classes of elements relatively prime to 5, so they are [1], [2], [3], [4]. Similarly for \mathbb{Z}_{12} the invertible elements are [1], [5], [7], [11] i.e. everything relatively prime to 12.