Algebra 1 Assignment 3 Solutions

Problem 1 The simplest way to do this is to check all the cases, but to do less work we make the following observation: $a x \equiv b \bmod (n)$ and $a y \equiv b$ $\bmod (n) \Leftrightarrow a(x-y) \equiv 0 \bmod (b)($ check it!). So if x is a solution of $a x \equiv b$ $\bmod (n)$ then the other solutions of the equation are of the form $x+a^{\prime}$ where $n \mid a a^{\prime}$. We have,
(a) $3 * 4 \equiv 12 \equiv 5 \bmod (7)$ and there are no other solutions because 7 is prime.
(b) $3 * 4 \equiv 12 \equiv 1 \bmod (11)$ and $x=4$ is the only solution.
(c) $3 * 2 \equiv 6 \bmod (15)$ so we have $x=2$ is a solution but notice that $15 \mid 3 * 5$ and $15 \mid 3 * 10$ so we have that $x=2+5=7$ is a solution and $x=12$ is also a solution (moreover they are the only ones)
(d) We try for $x=0,1,2,3,4,5,6$ and notice that none of these work, we can stop, why? We have that $6 * 7 \equiv 6 * 14 \equiv 0 \bmod (21)$ so it follows that if y is a solution to our equation, we can chose $y<21$ and we also have that $y-7, y-14$ is a solution, thus if there is a solution $21>y>6$ then there exists a solution $0 \leq y^{\prime} \leq 6$ but we checked that there were none.

Problem 2 We compute the squares in \mathbb{Z}_{8}

$$
\begin{aligned}
& 0^{2}=0 \\
& 1^{2}=1 \\
& 2^{2}=4 \\
& 3^{2}=9=1 \\
& 4^{2}=16=0 \\
& 5^{2}=25=1 \\
& 6^{2}=36=4 \\
& 7^{2}=49=1
\end{aligned}
$$

We see that the possible sums of three squares are: $1+1+1=3 ; 1+1+4=$ $6 ; 1+4+4=9=1 ; 4+4+4=12=4$. So seven can not be expressed as a sum of three squares in \mathbb{Z}_{8}.

Now suppose towards a contradiction that every integer could be expressed as a sum of three squares. Let $n \in[7]_{8} \subset \mathbb{Z}$ where $[7]_{8}$ is the equivalence class of integers congruent to $7 \bmod (8)$. Then by our supposition $n=a^{2}+b^{2}+c^{2}$ for some $a, b, c \in \mathbb{Z}$, hence we have the congruence equation $a^{2}+b^{2}+c^{2} \equiv n \equiv 7$ $\bmod (8)$. This is a contradiction, it follows that some integers (in particular 7) can not be expressed as a sum of three squares.
Problem 3 Show that $a^{5} \equiv a \bmod (30)$ for all integers a. We have the following equivalencies

$$
\begin{aligned}
& a^{5} \equiv a \quad \bmod (30) \\
\Leftrightarrow & a^{5}-a \equiv 0 \quad \bmod (30) \\
\Leftrightarrow & 30 \mid a^{5}-a
\end{aligned}
$$

We also have that $30 \mid\left(a^{5}-a\right)$ if and only if 2,3 and 5 divide $a^{5}-a$. One side of this implication is clear i.e. if $30 \mid x$ then 2,3 and 5 also divide x. On the other
hand suppose that 2,3 and 5 divide x. Then by the fundamental theorem of arithmetic we have the unique prime factorization $x= \pm 1 * 2^{\epsilon_{1}} * 3^{\epsilon_{2} *} 5^{\epsilon_{3}} * \ldots$ and in particular we find that $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ are all at least 1 . So $30=2 * 3 * 5$ divides x as well. (It is sometimes useful to think that a divides b if and only if b "contains" a 's prime factorization.)

So if we show that $n \mid a^{5}-a$ for all a when $n=2,3,5$, we're done. So we check for each of them. I'll only do the case for $n=5$, we need to check for $a=0,1,2,3,4$. When $a=0,1$ the equation clearly holds. For the rest:

$$
\begin{aligned}
4^{5}=4^{2} * 4^{2} * 4 & \equiv 1 * 1 * 4 \equiv 4 \quad \bmod (5) \\
3^{5}=3^{2} * 3^{2} * 3 & \equiv(-1) *(-1) * 3 \equiv 3 \bmod (5) \\
2^{5}=4 * 2^{3} & \equiv(-1) * 3 \equiv 2 \bmod (5)
\end{aligned}
$$

So we have that for each $a \in \mathbb{Z}, a^{5} \equiv a \bmod$ (5). Similarly the equations also hold for all a modulo 2 and 3 . We can therefore infer that for all $a \in \mathbb{Z}, a^{5} \equiv a$ $\bmod (30)$.

Problem 4 We first consider \mathbb{Z}_{11}. We start checki and find that in \mathbb{Z}_{11} :

$$
\begin{aligned}
& 2=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16=5 \\
& 2^{5}=2 * 5=10 \\
& 2^{6}=2 * 10=9 \\
& 2^{7}=2 * 9=7 \\
& 2^{8}=2 * 7=3 \\
& 2^{9}=2 * 3=6 \\
& 2^{10}=2 * 6=1
\end{aligned}
$$

So 2 is a primitive root of \mathbb{Z}_{11}. And for the record, there is not really a nice way to find such roots.

For \mathbb{Z}_{24} a totally different approach is in order, checking every elements will do the trick but it is too much work, especially because \mathbb{Z}_{24} has no such primitive roots. The two next propositions illustrate what's going on.

Proposition 1: Let R be a commutative ring and suppose that $a, b \in R$ are such that $a, b \neq 0$ but $a b=0$, then a may not have a multiplicative inverse.
Proof: Suppose that $a \neq 0$ did have a multiplicative inverse a^{-1} but that there was some $b \neq 0$ such that $a b=0$.

$$
\begin{aligned}
b= & 1 * b \\
= & \left(a^{-1} a\right) b \\
= & a^{-1}(a b)=a^{-1} * 0=0 \\
& \Rightarrow b=0
\end{aligned}
$$

Which is a contradiction.
Proposition 2: If \mathbb{Z}_{n} has a primitive root, then all its non-zero elements have multiplicative inverses.

Proof: Let $x \in \mathbb{Z}_{n}$ be any nonzero element and let a be a primitive root. Then for some $l, m \in \mathbb{N}, x=a^{l}$ and $a^{m}=1$. We may assume that $l<m$ if not then for some $k, l \leq k m$ and we have $a^{k m}=\left(a^{m}\right)^{k}=1^{k}=1$ so we may replace m by $k m$. Let $j=m-l \geq 0$ then we have that $x a^{j}=a^{l+j}=1$, hence x has a multiplicative inverse. Since x is arbitrary the Proposition is proved.

Now we have in \mathbb{Z}_{24} that $2 * 12=0$ so by Proposition 1,2 or 12 may not have a multiplicative inverses. It then follows from Proposition 2 that \mathbb{Z}_{n} has no primitive root.
Problems 5 and 6 If $x^{2} \equiv 1$ in \mathbb{Z}_{n} this means in particular that $n \mid\left(x^{2}-1\right)$ (look at Problem 3 if this isn't clear) which implies $n \mid(x+1)(x-1)$.

For Problem 5 suppose we can take \mathbb{Z}_{80}. Notice that $9^{2}=81=1$ but that $9 \neq 1,-1$. So we have a counterexample. By the way I picked 80 because $80=(9+1)(9-1)$.

If $n>2$ is prime, notice the following: Suppose there was some $[x] \in \mathbb{Z}_{n}$ such that $[x]^{2}=[1]$. If $[x] \neq[1]$ or $[-1]$ then $[x+1],[x-1] \neq[0]$. Picking a representative $x_{0} \in \mathbb{Z}$ from $[x]$ such that $x_{0}<n$ gives us that in $\mathbb{Z}, n \mid$ $\left(x_{0}-1\right)\left(x_{0}+1\right)$, and since n is prime it must divide one of the factors on the right, but notice that $x_{0}-1$ and $x_{0}+1$ are both nonzero and less than n, so n can't can't divide them which is a contradiction. We infer that the only possibilities for $[x]$ are $[1]$ and $[-1]$.

Problem 7 Suppose that $\operatorname{gcd}(a, n)=1$ then there exist $p, q \in \mathbb{Z}$ such that $p a+q n=1$. It follows that $p a+q n \equiv 1 \bmod (n)$ so we can write $[p a]+[q n]=$ $[1](\star)$ in Z_{n}. But note that the term $[q n]=[q][n]=[0][n]=[0]$. So in fact (\star) yields $[p][a]=[1]$ therefore $[a]$ has the multiplicative inverse $[p]$.

On the other hand, suppose that $[a] \in \mathbb{Z}_{n}$ had a multiplicative inverse $\left[a^{\prime}\right]$, then picking a representative $a_{0}^{\prime} \in \mathbb{Z}$ of the equivalence class [a^{\prime}] we get the congruence relation $a a_{0}^{\prime} \equiv 1 \bmod (n)$. So applying the division algorithm in \mathbb{Z} we get $a a_{0}^{\prime}=p n+1$ for some $p \in \mathbb{Z}$ which implies $a a_{0}^{\prime}-p n=1$. We know that $\operatorname{gcd}(a, n)$ is the smallest strictly positive integer representable as a linear combination of a and n, so it follows that $\operatorname{gcd}(a, n)=1$.

Problem 8 By Problem 7, the invertible elements in \mathbb{Z}_{5} correspond to equivalence classes of elements relatively prime to 5 , so they are [1], [2], [3], [4]. Similarly for \mathbb{Z}_{12} the invertible elements are [1], [5], [7], [11] i.e. everything relatively prime to 12 .

