189-235A: Basic Algebra I Assignment 1

Due: Wednesday, September 21

Let S and T be the sets $\{a, b, c\}$ and $\{x, y\}$ respectively.

1. How many functions are there from S to T?

2. How many injective functions?

3. How many surjective functions?

Let X be a set, and let $\mathcal{F}(X)$ be the set of all functions from X to itself. This set is equipped with a natural binary operation $(f,g)\mapsto fg$, given by the composition of functions.

4. Show that f(gh) = (fg)h for all f, g, h in $\mathcal{F}(X)$. (In other words, the operation of composition of functions is *associative*.)

5. Show, by providing an example, that fg need not be equal to gf. 6. Prove that $\sum_{k=0}^{n} \left(\frac{n}{k}\right) = 2^{n}$, and that $\sum_{k=0}^{n} (-1)^{k} \left(\frac{n}{k}\right) = 0$, using the binomial theorem.

7. Using the Euclidean algorithm compute the gcd of 910091 and 3619. Show the steps in your calculation.

8. Using induction (or otherwise) show that 7 divides $8^n - 1$ for all $n \ge 0$. Use induction to show that 49 divides $8^n - 7n - 1$ for all $n \ge 0$.

9. Using induction, show that the addition law in N is associative directly from the axioms defining addition in **N**.

10. Show that the expression

$$1^k + 2^k + 3^k + \dots + n^k$$

can be written as a polynomial in n of degree at most k + 1.