
Solutions of Assignment 10

Basic Algebra I

November 25, 2004

Solution of the problem 1. Let |a| = m, |bab−1| = n. Since

(bab−1)m = (bab−1)(bab−1) · · · (bab−1)
= bamb−1

= b1b−1

= 1,

we have n ≤ m. Conversely, since

an = b−1banb−1b

= b−1(bab−1)nb

= b−11b
= 1,

we have m ≤ n. Thus m = n.

Solution of the problem 2. Recall A non-empty subset H of a group G is
a subgroup iff it satisfies the following property:

∀h1, h2 ∈ H ⇒ h1h
−1
2 ∈ H. (?)

Now back to our problem, we check that H = H1 ∩ H2 satisfies (?): Take
h1, h2 ∈ H. So, h1, h2 ∈ H1; h1, h2 ∈ H2. Since both H1 and H2 are assumed
to be subgroups of G, then (?) tells us that

h1h
−1
2 ∈ H1, h1h

−1
2 ∈ H2.

Therefore h1h
−1
2 ∈ H.

For the union, we shall prove the following:

H1 ∪H2 is a subgroup of G iff either H1 ⊆ H2 or H2 ⊆ H1.

Proof Sufficiency is clear. So, suppose that H1∪H2 is a subgroup of G, and, on
the contrary, assume that H1 6⊂ H2 and that H2 6⊂ H1. These in return imply
that

∃h1 ∈ H1, s.t. h1 6∈ H2; ∃h2 ∈ H2, s.t. h2 6∈ H1.
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Since h1h2 ∈ H1 ∪H2 (why?), then we would have either h1h2 ∈ H1 or h1h2 ∈
H2, and both are impossible (why?). Done.

Solution of the problem 3. Let |a| = m. By Lagrange’s theorem, m | n. So,

an = (am)
n
m = 1

n
m = 1.

For the second part, if a ≡ 0 (mod p), then it is evident that

p | a(ap−1 − 1) = ap − a.

And if a 6≡ 0 (mod p), then a ∈ Z×p , and since Z×p is a group of order p− 1, by
what we proved above, ap−1 = 1 (in Z×p ), so

p | a(ap−1 − 1) = ap − a.

Solution of the problem 4. We verify that Z(S) satisfies (?) in the solution
of problem 2: Let a, b ∈ Z(S). So, as = sa, bs = sb for s ∈ S. First note that
sb−1 = b−1bsb−1 = b−1sbb−1 = b−1s. Therefore

(ab−1)s = ab−1s = asb−1 = sab−1 = s(ab−1),

hence ab−1 ∈ Z(S).

Solution of the problem 5. Define φ : G1 −→ G2, φ(x) = ln(x). φ is clearly
bijective. Also note that

φ(xy) = ln(xy) = ln(x) + ln(y) = φ(x) + φ(y).

So, φ is homomorphism, hence an isomorphism.

Solution of the problem 6. Let |a| = m, |f(a)| = n. Since f is a homomor-
phism, we have

f(a)m = f(am) = f(1G1) = 1G2 .

So, n ≤ m. If f is also injective, we have

f(an) = f(a)n = 1G2 = f(1G1).

So, an = 1G1 , since f is injective. Thus m ≤ n and we are done.

Solution of the problem 7. Note that:
(i) G is closed under multiplication (check this);
(ii) G contains the identity element 1 (clear);
(iii) G contains the inverse of all its elements:

(±1)−1 = ±1, (±i)−1 = ∓i, (±j)−1 = ∓j, (±k)−1 = ∓k.
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Hence G is a (sub)group of the multiplicative group of non-zero elements of H.
For the second part, enough to see that the dihedral group D4 has two

elements of order 4, namely r1 and r3, whereas in the group G above, there are
six elements of order 4, namely ±i, ± j, ± k. So, G 6∼= D4.

Extra Credit

Solution of the problem 9. Let V = Z2 ×Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} =
{o, e1, e2, e3}, where o = (0, 0), e1 = (1, 0), e2 = (0, 1), e3 = (1, 1). We will view
V as a vector space of dimension 2 over the field Z2. Fix the basis {e1, e2} for
V . Now each matrix (

a b

c d

)
∈ GL2(Z2)

may be viewed as a bijective linear transformation from V into itself (by mul-

tiplication from left to ei’s). Each
(
a b

c d

)
permutes e1, e2, e3. For example

(
1 1
0 1

)
e1 =

(
1 1
0 1

)(
1
0

)
=

(
1
0

)
= e1,

(
1 1
0 1

)
e2 =

(
1 1
0 1

)(
0
1

)
=

(
1
1

)
= e3,(

1 1
0 1

)
e3 =

(
1 1
0 1

)(
1
1

)
=

(
0
1

)
= e2.

So,
(
1 1
0 1

)
can be corresponded to the permutation σ =

(
1 2 3
1 3 2

)
.

In general, we can define a well-defined map, ψ say, from the group GL2(Z2)
into the group S3: (

a b

c d

)
7→ σ =

(
1 2 3

σ(1)σ(2)σ(3)

)
,

where (
a b

c d

)
ei = eσ(i) (1 ≤ i ≤ 3).

ψ is clearly an injective group homomorphism (check this). On the other
hand, since |S3| = |GL2(Z2)| = 6, we conclude that ψ is also onto, hence an
isomorphism.

Solution of the problem 10. Let G be a group, and let a, b ∈ G. b is said to
be conjugate to a if b = gag−1 for some g ∈ G. Notice that

(i) Every a is conjugate to itself: a = 1a1−1;
(ii) If b is conjugate to a, then a is also conjugate to b:

b = gag−1 ⇒ a = g−1b(g−1)−1;
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(iii) If b is conjugate to a, and if c is conjugate to b, then c is also conjugate
to a:

b = g1ag
−1
1 , c = g2bg

−1
2 ⇒ c = (g2g1)a(g2g1)−1.

So, conjugacy is an equivalence relation in G. Denote the conjugacy class of
a ∈ G by cl[a]:

cl[a] := {gag−1 : g ∈ G}.

Now suppose that N � G, i.e., N is a normal subgroup of G. Given any
a ∈ N , it is obvious that cl[a] ⊆ N (why?). Thus N is the disjoint union of the
conjugacy classes of its elements. Conversely, if a subgroup of G is a union of
some conjugacy classes in G, that subgroup is clearly normal. So, one way to
find all normal subgroups of G is to look at those unions of conjugacy classes
in G which constitute a subgroup.

To determine the conjugacy classes in the symmetric group Sn, we will ex-
ploit the following useful fact:

Permutations α, β ∈ Sn are conjugate iff the have the same cyclic struc-
ture, i.e., iff their complete factorization into disjoint cycles have the same
number of r-cycles for each r.

Example Let
α = (2 3 1)(4 5)(6);

β = (5 6 2)(3 1)(4);

γ = (2 3 1)(4 5 6).

α and β are conjugate, since they have the same cyclic structure. In fact the

permutation δ =
(

1 2 3 4 5 6
2 5 6 3 1 4

)
does what we want: δαδ−1 = β (check this). In

complete contrast, α and γ are not conjugate, because they don’t have the same
cyclic structure.

Using the above fact, now listing the set of all conjugacy classes in S4 is an
easy(!) task:

C1 = {(1)};

C2 = {(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)};

C3 = {(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)};

C4 = {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)};

C5 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Examining all the possibilities, one can find all the normal subgroups of S4:

{1} = C1; V = C1 ∪ C5; A4 = C1 ∪ C3 ∪ C5; S4 = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5.

As for S5, the following is the complete list of all conjugacy classes:

cl[(1)]; cl[(1 2)]; cl[(1 2 3)]; cl[(1 2 3 4)];
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cl[(1 2 3 4 5)]; cl[(1 2)(3 4)]; cl[(1 2 3)(4 5)].

And finally, one can find all normal subgroups of S5. Here you are:

{1}; A5; S5.

Conclusion A5 is the only proper non-trivial normal subgroup of S5. In fact,
this holds for any n 6= 4.
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