
189-235A: Basic Algebra I

Solutions for the Midterm Exam

1. Let (un)n≥0 be the sequence of real numbers defined recursively by the
rule

u0 = 0, un+1 = 2un + 1.

Show that un = 2n − 1 for all n ≥ 0.
This question was a straight application of induction. Most of you were able
to do it correctly.

2. Compute the greatest common divisor of 121 and 77 and express the result
as a linear combination of 121 and 77.
Apply the gcd algorithm as explained in class; one finds this greatest common
divisor is 11 = 2 · 121− 3 · 77.

3. Solve the congruence equation 6x ≡ 10 (mod 14).
There are two distinct solutions to this equation in Z14, namely x = 4 and
x = 11. Most people who lost points on this one did so by only listing one of
the solutions.

4. Show that if p ∈ Z is a prime, then the ring Zp of congruence classes
modulo p is a field.
This proof was done in class: given [a] 6= 0 in Zp, one may consider the gcd
of the integers a and p. This gcd divides p, so it is either 1 or p; but it can’t be
p since a is not divisible by p (because [a] 6= 0) so gcd(a, p) = 1. Now, writing
the gcd as a linear combination of a and p, we get 1 = au + pv for some
integers u and v. The corresponding equation in Zp becomes [1] = [a][u].
Hence [a] is invertible in Zp, therefore Zp is a field.

5. Give an example of two finite rings R1 and R2 which have the same
cardinality but are not isomorphic. (You should justify your assertion.)
There were two possible solutions here that I came across most often. The
first was to take a prime p and consider the rings R1 = Zp × Zp, and the
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ring R2 = Zp2. These rings are non-isomorphic, because (for example) R2

contains a non-zero solution of the equation x2 = 0, namely, [p], while R1

does not—yet an isomorphism from R2 to R1 would have to carry a solution
to such an equation to a solution of the corresponding equation in R1. One
could also reason on the number of solutions to the equation px = 0 (there
are p2 such solutions in R1, and only p in R2) or of the equation x2 = 1
(which has four solutions in R1, and only two solutions in R2.)

A second solution was to take R1 = M2(Zn), and R2 = Zn×Zn×Zn×Zn,
for n and integer > 1. The most immediate way to see that these two rings
are not isomorphic is to note that the matrix ring R1 is not commutative,
while R2 is.

Now that we’ve seen more about quotient rings, one could also take as a
third possible solution, R1 to be one of the “new” finite fields that we saw in
class, having 4 or 8 or p2 elements, say, and take R2 to be any ring of the
same cardinality that is not a field. I leave you to work out the details...

6. Show that the ring C of complex numbers is not isomorphic to the Carte-
sian product R×R of the real numbers with itself.

Alot of people lost points on this question by writing down the first bijec-
tion f from C to R ×R that came to mind—typically this was f(a + bi) =
(a, b)—and showing that this function is not a homomorphism because it does
not respect the multiplication on C. This is not enough of course (how do you
know that f(a+ bi) = (b, a), or f(a+ bi) = (a+17b, 3a−187b), or any of an-
other myriad functions you could write down, might not be an isomorphism?
The key to the solution was to reason as in the previous problem, by finding
a ring-theoretic feature of C that is not shared by R×R. There are various
ways to do this, here are a few: (1) by noting that every non-zero element
of C is invertible, so that C is a field, while the same is not true of R ×R
(try inverting (0, 1), or (1, 0)!); (2) focussing on the equation x2 + 1 = 0,
which has two solutions in C, but none in R×R; (3) by noting that R×R
has (infinitely many) zero divisors, while C has none; (4) by noting that the
equation x2 − 1 has two solutions in C, but 4 solutions in R×R; and so on
and so forth.

The next two problems are Bonus Questions

7. Let f be a polynomial in Z[x] of degree d and let p ∈ Z be a prime
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number. Show that the set

S = {n ∈ Z such that p divides f(n)}

is the union of at most d congruence classes modulo p.
Mea culpa! There was a mistake in the wording of this question, which I
corrected during the writing of the exam. Of course one had to assume that
f is not divisible by p, so that the natural image f̄ of f in the ring Zp[x]
is a non-zero polynomial; its degree, of course, is then ≥ 0 and less than or
equal to d. Therefore f̄ has at most d roots in Zp, since Zp is a field. (Here
is where we use the serious theorem, that a non-zero polynomial of degree d
with coefficients in a field F has at most d roots in F .) Each of the roots of
f̄ is a congruence class modulo p, and the set S is (by definition) the union
of these classes, of which there are at most d.

8. Let p = 2m + 1 be an odd prime. Show that

11 · 22 · 33 · · · (p− 1)p−1 ≡ (−1)[m/2]m! (mod p).

The idea is to write the expression on the left—a product of 2m terms, viewed
as an element in Zp—by grouping together the j-th and the (p− j)-th term.
Together they give a contribution to the product of

jj(p− j)p−j = jj(−j)p−j = (−1)p−jjp = −(−1)jj,

where we’ve used Fermat’s Little theorem to get the last equality. Hence our
expression is equal to the product of the terms −(−1)jj, as j = 1, 2, . . . ,m.
The product of signs gives (−1)[m/2], and the product of the j’s from 1 to m
is of course just m! (m-factorial).
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