189-235A: Basic Algebra I Assignment 6 Due: Wednesday, October 27

1. Show that the polynomial $x^3 - 2$ is irreducible in $\mathbf{Q}[x]$.

2. List all the monic irreducible polynomials of degree 3 in $\mathbf{Z}_2[x]$.

3. For which odd primes $p \leq 23$ is the polynomial $x^2 + 1$ irreducible in $\mathbb{Z}_p[x]$? Can you detect a pattern?

4. Find a polynomial of degree 2 in $\mathbb{Z}_6[x]$ that has four roots in \mathbb{Z}_6 . Why does this not contradict the theorem shown in class that a polynomial in F[x] of degree d has at most d roots?

5. Show that the ring $\mathbf{Z}_3[x]/(x^3+2x+1)$ is a field with 27 elements.

6. Show that two polynomials f(x) and g(x) in $\mathbf{R}[x]$ belong to the same congruence class in $\mathbf{R}[x]/(x^2)$ if and only if f(0) = g(0) and f'(0) = g'(0), where f'(x) is the derivative of f with respect to x.

7. Find the inverse of $[x^2 + x + 1]$ in the ring $\mathbb{Z}_2[x]/(x^3 + x + 1)$.

8. Write down all the powers of [x] in the finite ring $\mathbf{Z}_2[x]/(x^3+x+1)$. What is the smallest j > 1 such that $[x]^j = 1$?

Bonus Questions.

9. If p is an odd prime of the form 3 + 4m, show that the polynomial $x^2 = 1$ is irreducible in $\mathbf{Z}_p[x]$, so that $\mathbf{Z}_p[x]/(x^2 + 1)$ is a field.

10. If p is an odd prime of the form 1 + 4m, use Wilson's Theorem to show that a = (2m)! is a root in \mathbb{Z}_p of the polynomial $x^2 + 1$ in $\mathbb{Z}_p[x]$.

11. If p is a prime of the form 1 + 4m, show that the ring $\mathbf{Z}_p[x]/(x^2 + 1)$ is isomorphic to the ring $\mathbf{Z}_p \times \mathbf{Z}_p$.