
A duality on simplicial complexes

Michael Barr

18.03.2002

Dedicated to Hvedri Inassaridze on the occasion of his 70th birthday

Abstract

We describe a duality theory for finite simplicial complexes that gives
isomorphisms between the (reduced) homology of the complex and the
(reduced) cohomology of the dual.
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1 Finite simplicial complexes

The usual definition of finite simplicial complex is a set of non-empty subsets of
a finite set, closed under non-empty subset formation. For our purposes here,
we will omit the non-emptiness and define a finite simplicial complex to be a
down-closed subset of the set of subsets of a finite set. We can, and will suppose
that the finite set is the integers 0,. . . ,N . We will denote by K the set 2N+1 of
all subsets of N + 1. If S ⊆ K is a finite simplicial complex, then a subset of
n + 1 elements in S is called an n simplex. We will write an element of S as
[a0, . . . , an] with a0 < · · · < an. We also write [ ] for the unique (−1)-simplex.
If σ = [a0, . . . , an] is an n-simplex, we say that a0, . . . , an are the vertices of σ.

We will be dealing with the free abelian group generated by the n-simplexes.
We will continue to write [a0, . . . , an], for a0 < · · · < an, but we will also denote
by [a0, . . . , an] the element sgn p[ap0, . . . , apn] where p is the unique permutation
such that ap0 < · · · < apn and also let [a0, . . . , an] = 0 if the vertices are not
distinct.

1.1 Homology and cohomology

Let S be a finite simplicial complex and Sn denote the set of n-simplexes. We
let Cn(S) denote the free abelian group generated by Sn, for n = −1, . . . , N .
We also let Cn(S) denote the abelian group of functions from Sn to Z. For any
finite S, it is obviously the case that Cn(S) ≡ Cn(S), but the functors are totally
different; for one thing, the first is covariant and the second contravariant.
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If σ = [a0, . . . , an] is an n-simplex and 0 ≤ i ≤ n, we define ∂i = ∂in by
∂iσ = [a0, . . . , ai−1, ai+1, . . . , an]. We call ∂iσ the i-face of σ. All 0-simplexes [a]
have the same 0-face, namely [ ].

Then we define the boundary operator ∂ = ∂n : Cn(S)→ Cn−1(S) by

∂σ =
n∑

i=0

∂iσ.

The equation ∂i.∂j = ∂j−1.∂i for i < j allows one to prove readily that ∂n−1.∂n =
0. Thus we can define the homology groups of S by

Hn(S) =
ker ∂n

im ∂n+1

.

For f : Sn → Z, define δnf = δf : Sn+1 → Z by

(δf)σ = f(∂σ).

Then δ.δ = 0 and we define the cohomology groups of S by

Hn(S) =
ker δn

im δn−1
.

Because of the simplex in degree −1, the homology and cohomology groups
so defined are equivalent to the usual reduced homology and cohomology groups
of these complexes. That is, they are the same except in degree 0 where the
groups defined here are free on one less generator. There is also a group in degree
−1, which is trivial as soon as there is a single 0-simplex (or a single non-empty
simplex), since then the arrow from 0-chains to (−1)-chains is surjective. The
coefficient module turns out not as the homology of a point, as in the traditional
theory, but as the homology of the complex consisting of the empty set alone.
In particular, the homology of a point—or of any simplex—is 0 in all degrees.

2 The duality

If σ is a simplex, we let σ̂ denote the simplex whose vertices are the complements
of those of σ. We will say that σ̂ is the complement of σ. The dimension of
σ plus the dimension of σ∗ is N − 1. In particular, [ ] is the complement of K.

A finite simplicial complex is a set of simplexes of K closed under taking of
faces. We will think of K as a complex consisting of all the faces. If S is such
a complex, define

S∗ = {σ ∈ K|σ̂ /∈ S}

Proposition 1 For any simplicial complexes S ⊆ T ⊆ K,

1. K∗ = ∅ and ∅∗ = K;

2. S∗ is a simplicial complex;
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3. S∗∗ = S

4. If S ⊆ T , then T ∗ ⊆ S∗;

Proof. (1) is obvious. If σ ∈ S∗, and τ ⊆ σ, then σ̂ /∈ S. But then σ̂ ⊆ τ̂ , so it
must be that τ /∈ § so that τ ∈ S∗ and so S∗ is down closed. For any simplex σ,
σ ∈ S∗∗ if and only if σ̂ /∈ S∗, which is the case if and only if ˆ̂σ ∈ S and ˆ̂σ = σ.
Finally if S ⊆ T , then for any τ ∈ T ∗, τ̂ /∈ T so that τ̂ /∈ S and so τ ∈ S∗.

The duality is based on the following.

Proposition 2 When m+n = N−1, there is a morphism j : Cn(S∗)→ Cm(K)
such that the sequence

0→ Cn(S∗)→ Cm(K)→ Cm(S)→ 0

is exact.

Proof. Suppose that n+m = N − 1. The group Cm(K) has as basis elements
σ∗, for σ an m-simplex, defined by

σ∗(τ) =
{

1 if σ = τ
0 otherwise

The kernel of the map Cm(K) → Cm(S) consists of those σ∗ for which σ /∈ S.
For any n-simplex σ, the map j(σc) ∈ Cm(K) defined by j(σc)(τ) = σc · τ is
±σ∗(τ). The reason is that σc · τ = 0 unless σc is disjoint from τ , that is unless
σ = τ and in the latter case, σc · τ = ±1. Thus the set of j(σc), for σ /∈ S is a
basis for the kernel. But the set of j(σc) is just S∗.

Proposition 3 When m + n = N − 1, for any n-simplex σ = [a0, . . . , an] and
m-simplex τ = [b0, . . . , bm],

∂[a0, . . . , an] · [b0, . . . , bm] = (−1)n[a0, . . . , an] · δ[b0, . . . , bm]

Proof. The only way either side can be non-zero is if there is exactly one element
in {a0, . . . , an} ∩ {b0, . . . , bm} since the number of elements ensures that there
is at least one overlap and if there is more than one, there will still be at least
one overlap on each face. So suppose that ai = bj and there is no other overlap.
In that case, using the usual convention whereby a ˆ indicates an omitted term,
the left hand side is

(−1)i[a0, . . . , âi, . . . , an] · [b0, . . . , bm]

and the right hand side is

(−1)j[a0, . . . , an] · [b0, . . . , b̂j, . . . , bm]
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The permutation required to change one to the other involves n− i+ j transpo-
sitions and comparing the exponents we see that they differ by exactly (−1)n.

It follows that for 0 ≤ n ≤ N and m+ n = N − 1, the square

Cn−1(S?) Cm+1(K)≡
//

Cn(S?)

Cn−1(S?)

∂

��

Cn(S?) Cm(K)
≡ // Cm(K)

Cm+1(K)

δ

��

either commutes or anticommutes. Since changing the sign of the boundary
operator has no effect on the homology, we can replace ∂n by (−1)n∂ and make
all the squares commute. When this is done, we have,

Corollary 1 There is an exact sequence of chain complexes

0→ C•(S∗)→ CN−1−•(K)→ CN−1−•(S)→ 0

Theorem 1 There are canonical isomorphisms Hn(S?) ≡ HN−2−n(S) for n =
−1, . . . , N .

Proof. By taking homology of the sequence above, we get a long exact sequence

0→ HN(S∗)→ H−1(K)→ H−1(S)

→ HN−1(S∗)→ H0(K)→ H0(S)

→ HN−2(S∗)→ H1(K)→ H1(S)

→ · · · · · · · · ·
→ H0(S∗)→ HN−1(K)→ HN−1(S)

→ H−1(S∗)→ HN(K)→ HN(S)→ 0

Since Hn(K) = 0 for all −1 ≤ n ≤ N , we conclude that Hn(S∗) ≡ HN−2−n(S).

2.1 Naturality

Naturality with respect to simplicial maps does not make sense since the duality
depends on the dimension of the simplex that the complex is embedded in. The
one case in which it does make sense is that of two subcomplexes embedded
in the same simplex, one a subcomplex of the other. It is clear that if S ⊆ T ,
then K − T ⊆ K − S and so the set of complements of K − T is included in
the set of complements of K − S, that is T ∗ ⊆ S∗. The result is induced maps
Hn(T ∗)→ Hn(S∗) to go with HN−n−2(T )→ HN−n−2(S).

4



Proposition 4 Suppose that S ⊆ T are subcomplexes of K. Then for n+m =
N − 1, the square

Cn(S∗) Cm(K)//

Cn(T ∗)

Cn(S∗)
��

Cn(T ∗) Cm(K)// Cm(K)

Cm(K)
��

in which the left hand map is induced by the inclusion T ∗ ⊆ S∗ is commutative.

Proof. A simplex in T ∗ induces the same linear functional on Cm(K) as it does
in S∗.

Proposition 5 Suppose S and T are subcomplexes of the same simplex K with
S ⊆ T . Then the square

Hn(S∗) HN−n−2(S)≡
//

Hn(T ∗)

Hn(S∗)
��

Hn(T ∗) HN−n−2(T )
≡ // HN−n−2(T )

HN−n−2(S)
��

commutes.

Proof. From the preceding proposition we see that the top left and bottom left
squares of the diagram

0 Cn−1(S∗)//

0

0

0

0

0 Cn(S∗)// Cn(S∗)

Cn−1(S∗)
��

Cn−1(S∗) Cm+1(K)//

Cn(S∗)

Cn−1(S∗)
��

Cn(S∗) Cm(K)// Cm(K)

Cm+1(K)
��

Cm+1(K) Cm+1(S)//

Cm(K)

Cm+1(K)
��

Cm(K) Cm(S)// Cm(S)

Cm+1(S)
��

Cm+1(S) 0//

Cm(S)

Cm+1(S)
��

Cm(S) 0// 0

0

0

0

0 Cn−1(T ∗)//

0

0

0

0

0 Cn(T ∗)// Cn(T ∗)

Cn−1(T ∗)

Cn(T ∗)

Cn−1(T ∗)Cn−1(T ∗) Cm+1(K)//

Cn(T ∗)

Cn−1(T ∗)
��

Cn(T ∗) Cm(K)// Cm(K)

Cm+1(K)
��

Cm+1(K) Cm+1(T )//

Cm(K)

Cm+1(K)
��

Cm(K) Cm(T )// Cm(T )

Cm+1(T )
��

Cm+1(T ) 0//

Cm(T )

Cm+1(T )

Cm(T )

Cm+1(T )

Cm(T ) 0// 0

0

0

0Cn−1(T ∗)

Cn−1(S∗)
��?????

Cm+1(K)

Cm+1(K)
��?????

Cm+1(T )

Cm+1(S)
��?????

Cn(T ∗)

Cn(S∗)
��?????

Cm(K)

Cm(K)
��?????

Cm(T )

Cm(S)
��?????

commute, while the commutation of the left front and left rear squares was
proved in 2. All the squares on the right obviously commute and hence the
whole diagram does. Since the isomorhism in question is just the connecting
homomorphism in the homologies of the front and back complexes, the conclu-
sion is standard.

3 Spanier-Whitehead duality?

Several algebraic topologists that I have discussed this with believe that it is
the finite simplicial version of the Spanier-Whitehead duality. One, in fact, sug-
gested that one way that the SW duality might have been discovered would be
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by beginning with the duality described here and extending it to CW-complexes.
I have not found a complete description of the SW duality; it does seem to be
mentioned in standard texts on algebraic topology. It has been described to me
as follows. Let C be a CW-complex and let SN be a sufficiently high dimen-
sional sphere that there is an embedding C ⊆ SN . The complementary space
SN −C is not a CW-complex, but can be contracted in some way to one. Call
the resultant space C ′. C ′ is the dual space of C and its stable homotopy is
equivalent to the cohomology of C.

There are obvious differences, but also intriguing similiarities between the
duality here and the SW duality. Although we embed in a simplex, we could
have just as well embedded into a sphere and stuck to non-empty simplexes. In
that case, the equivalence between the homology and cohomology would be off
by one in degree and codegree 0. An obvious point is that both constructions
depend on the dimension of the sphere or simplex.
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