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the improved p-adic L-function we develop Hida theory for non-cuspidal Siegel modular forms.

Greenberg—Benois conjecture and f-invariants
3.2. The trivial zero of the p-adic standard L-function
3.3. A formula for the derivative
References

2010 Mathematics Subject Classification. Primary: 11F46; Secondary: 11F33, 11R23, 11540.

1

O 00 O N

11

13
15

17
20
21

27
29
29
30
32
36
46
47
49
50
54
54
95
56
o8



2 ZHENG LIU AND GIOVANNI ROSSO

INTRODUCTION

In the seminal paper [MTT&6] the three authors consider an elliptic curve E and a prime p such
that E has split multiplicative reduction at p (for example F = X(11) and p = 11). In this case
the p-adic L-function L, (s, E) presents a trivial zero at s = 1 because of the modified Euler factor
at p. If the complex L-value L(1, E) is not vanishing, they conjecture that the first derivative of the
p-adic L-function at s = 1 interpolates the algebraic part of the complex L-value, up to an error
factor of the form log,(qx)/ordy(qr), which they call the {-invariant. Here gg is the Tate period
of E.

This conjecture has been proved in [GS93] using Hida theory and a two-variable p-adic L-function
togheter with a one-variable improved p-adic L-function. At the same time, Greenberg generalized
the conjecture of Mazur—Tate—Taitelbaum to the class of p-adic Galois representations V' that sat-
isfy the so-called Pantchichkine condition. Assuming L(0, V') # 0, his conjecture, roughly speaking,
predicts that the multiplicity of the trivial zero of £,(s,V) at s = 0 equals the order of vanishing
of £,(s,V) at s =0, and gives an exact formula for the leading coefficient of the p-adic L-function.
This precise formula involves a factor ¢(V'), called the ¢-invariant of V', which is defined in purely
Galois theoretic terms and coincides with log,(qg)/ordy,(¢e) when V' is the Tate module of an ellip-
tic curve E. This conjecture has been recently generalized to all semi-stable Galois representations
[Benll]. For the precise statement, see Conjecture 3.1.1.

Let n be an integer and let P be the parabolic of GL(n) associated with the partition n =
ny+...+ng, te
a;  * %
P = . s | €GL(n)|a; € GL(n;), 1 <i<d
aq
The main objective of the paper is to study Conjecture 3.1.1 when V is the standard Galois repre-

sentation associated to an irreducible cuspidal automorphic representation 7 of Sp(2n, A) which is
P-ordinary, i.e. the archimedean component 74, is isomorphic to a holomorphic discrete series Dy

of weight t = (¢1, ... ¢ ¢l ... ¢D, ... ,th, e ,tdp), and the action of certain Ug—operators (which

ni ng ng

are Hecke operators at p whose normalization depends on t) on 7 admits a non-zero eigenvector
with eigenvalues being p-adic units.

Denote by L(s, 7 x £) the standard L-function for 7 twisted by a finite order Dirichlet character
&. It is defined as an infinite Euler product. The local L-factors for a place v where both 7 and &
are unramified is given as

n
Ly(s,m x &) = (1= &(an)a, ) ] = &law)owiay ) 71 (1 = E(qo)ay fa, )",

i=1
where af%, 1 < < n, are the Satake parameters of 7, and g, is the cardinality of the residue field.
The Deligne critical points for L(s,m x &) are the integers so such that

1<s9<ty,—mn, (=1)°T" =¢(-1), orn+1—t, <sy <0, (—1)°F =¢(-1).

The algebracity of these critical L-values divided by certain Petersson norm period has been shown
in [Har81, Shi00, BS00]. In [Liul6b], the first author constructed an n+1-variable p-adic L-function
interpolating the critical values to the right of the center of the partial standard L-function with 7
varying in a Hida family (ordinary for P = B).
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In this paper we generalize the results of [LLiul6b] and construct a d+ 1-variable p-adic L-function
for P-ordinary Hida families (where P is general), interpolating critical values to the left of the
center of the partial standard L-function.

Let Tp = P/SP be the maximal quotient torus of P. We say that ¥ € Homcont(Tp(Zp),@;) is
arithmetic if it is a product of an algebraic character corresponding to integers (tjlP . ,tg ) and a
finite order character (ef, ..., e"); we say that it is admissible if moreover ¢t > 5 ... >t/ > n+41.
We fix a sufficiently large p-adic field F' as coeflicient field and denote by Op its valuation ring.

Suppose p > 3. Hida theory for P-ordinary cuspidal Siegel modular forms has been developed
in [Pil12] generalizing the case P = B in [Hid02]. Let ¥p be a geometrically irreducible component
of the spectrum of T(I);_]er, the Hecke algebra acting on P-ordinary Hida families of cuspidal Siegel
modular forms of tame principal level N, and let Fi, be its function field. We denote by Iy, the
integral closure of Ap := Op[Tp(Z,)°] in Fyg,, where Tp(Zy)° is the maximal p-profinite subgroup
of Tp(Z,). We prove the following theorem:

Theorem (Theorem 2.6.2). Let €p be as above. For a Dirichlet character ¢ with conductor dividing
N and ¢* # 1, a pair (B1, f2) € N~ Sym(n, 2)2%2, and j € Z./(p—1) such that ¢w’(—1) = 1, there
is a p-adic L-function Lq, 4, 8, 8, € lgp[[S]] i Fy,, which satisfies the following interpolation

property.
Let x : Iy, — F' be an F'-point of €p (with F' being a finite extension of F'). Suppose that the

weight map Ap — T(};{Zrd is étale at © and maps x to an admissible point T € Homeont (Tp(Zy), F').

For an integer n +1 < k < t! and a finite order character x° : Zy — Q™ trivial on (Z/p)*, we
have

E%p,qbwj,ﬁl,ﬁQ (XO(I +p)(1 +p)k _ 1’$) :Ck,LP ) Z C(‘Pv 51)C<(;P;/>V((p>7/82)
PEsy ?

X Ep(n+1—k,my x dX°WITF) CLNPR(n 41—k, X ox°WI ),

Here the factor E,(n + 1 — k,m; X dX°wI™*) is the modified Euler factor at p as predicted by
Coates—Perrin-Riou [Coa9l].

We refer to Theorem 2.6.2 (which is formuated as p-adic measures) for the undefined notation and
§2.3 for the definition of the modified Euler factor at p. The construction of this p-adic L-function
is similar to the one in [Liul6b] and uses the doubling method [Gar84, PSR87].

Remark. For the whole paper, we assume that ¢? # 1. This hypothesis is absolutely not necessary,
but when ¢?> = 1 the p-adic L-function could have a possible pole in the cyclotomic variable
(outside the range of interpolation), which comes from the pole of the Kubota—Leopoldt p-adic
function appearing in the Fourier coefficients of the Siegel Eisenstein series on Sp(4n). When n =1
this pole cancels out if and only if ¥p has no CM [Hid90, Proposition 5.2]. In general we expect a
cyclotomic pole if and only if the standard representation associated with %p is reducible and the
trivial representation appears as a sub-quotient of it.

When nq = 1 and €} is trivial, the factor 1 — ¢,(p) ‘o, Lp*~! appears in Ep(s, m, x ¢), where
oy z 1s an algebraic number related with the UII)D -eigenvalues (see §2.3 for the precise definition).
Supposing that x is classical, then o, , corresponds to the Frobenius eigenvalue of p-adic valuation
—(t} —n) in the Weil representation associated to m,. If ¢(—1) = (=1)"1, ¢,(p) = 1, and
Qnzo = p ' for a classical point zg € €p(F), then the factor 1 — gbp(p)_la;éopk_" vanishes if
k =n+1, and a trivial zero occurs at the point ((1+p)" ' =1, z¢) for L¢,, gun+1 g, p,- Denote by pa, :
Go — GL(2n +1,Q,) the Galois representation attached to xq [Art13, CH13]. We shall call ((1 +

p)"t —1,20) a semi-stable trivial zero for Ly, g,n+1 g, g, if furthermore Fil° prIGQ JFil? prIGQ
’ I’ I’ p p
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is a two dimensional indecomposable G,-representation. When ng = 1 and m, is P-ordinary with
Qnzo = P!, the condition on p,JUO|GQ is expected to be always satisfied (see Remark 2.3.3). It is
D

for this special type of trivial zeros that we can use the Greenberg—Stevens method to study the
derivative of the p-adic L-function.

The step of expressing the f-invariant in terms of the derivative of [U;f -eigenvalues in the Greenberg—
Stevens method for the so-called trivial zero of type M (as named in [Gre94]) has already been
done [Rosl5]. The other step in the method, which relates the derivative with respect to the
cyclotomic variable of the p-adic L-function to the derivative with respect to the weight variable
of the TUJZJ",J -eigenvalues, applies in the following situation. Suppose that there is a d + 1-variable
p-adic L-function £(S,T1,...,Ty) with S as the cyclotomic variable, and it has a trivial zero at
(so,t1,...,tq). If there exists a d-tuple integer (ai,...,aq) # 0, and integers ap # aj, such that
L(S,Ty,...,T;) vanishes along the line (sg,t1,...,tqs) + S(ag,a1,...,aq) and can be improved (in
the sense of saving the factor that causes the trivial zero in the interpolation result) along the line
(so,t1,..-,tq) + S(ag, a1, - .., aq), then the strategy applies.

In our above mentioned case of the semi-stable zero, the assumption on pr|G@p implies that
the trivial zero is of type M. The p-adic L-function L, 4,n+1 3, 3, vanishes along the hyperplane
S = (14p)"*t1 —1 (because of the missing factor 1—¢,(p)p—* for m with 7, unramified). Meanwhile,

when k£ = tg the factor 1 — gbp(p)_la;lp”_k is a p-adic analytic function as anptdp_" can be

expressed in terms of UZI; eigenvalues. Hence there is the possibility to improve the p-adic L-

function along the hyperplane S = (1 —I—p)tg — 1. The lines ((1 + p)"*t —1,2¢) + 5(0,0,...,0,1)
and ((1 4 p)"*™ —1,29) + S(1,0,...,0,1) satisfy the conditions in the previous paragraph.

Now in order to carry out the Greenberg—Stevens method, we need to construct the improved
p-adic L-function. Indeed, by a different choice of the local sections at p for the Siegel Eisenstein
series on Sp(4n) (compare the tables in §2.4.8), we obtain a new Eisenstein series such that applying
to it the pullback formula from the doubling method produces the complex L-function without the
factor 1 — ¢p,(p) e, 1p*~ L.

However, a new difficulty arises. One useful fact about the sections selected for constructing
the p-adic L-function in Theorem 2.6.2 is that the restrictions to Sp(2n,A) x Sp(2n,A) of the
corresponding Siegel Eisenstein series are cuspidal, so Hida theory for cuspidal Siegel modular
forms can be applied to finish the construction. However, the new Eisenstein series for the improved
p-adic L-function do not restrict to (p-adic) cuspidal forms on Sp(2n,A) x Sp(2n,A). Therefore,
Hida theory for non-cuspidal Siegel modular forms needs to be developed in order to construct
the improved p-adic L-function. Such a theory has been developed for Siegel modular forms with
P = GL(n) [Pil12], and for U(2,2) [SU14] which is later generalized to U(n, 1) [Hsil4a]. In the
second section we develop Hida theory for p-adic Siegel modular forms vanishing along the strata
of the toroidal compactification associated with cusp labels of rank strictly bigger than r, for an
integer r < ng.

Our approach is different from that in [SU14, Hsil4a] where they introduce the subsheaf wE
inside w; and prove the base change property for its global sections. Instead, ours is based on a

careful analysis of the quotient ’Vri];’r / ‘ti}l)’r_l, where ‘VTi};’T (resp. ‘Vri];’r_l) denotes the space

of functions on the I-th layer of the Igusa tower modulo p™ which vanish along the strata of the

toroidal compactification associated with cusp labels of rank strictly bigger than r (resp. r — 1).
SP,r
v

. . SP,rb
This allows us to define a useful subspace er,l C Vi >

and to establish the exact sequence

(001) 00— VS WS (B L (T(Z)] Sgy iz, @ W 0,

Veey/T
rk V=r
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from which one can establish Hida theory for " by using cuspidal Hida theory and induction
on r.

The idea of using exact sequences involving non-cupidal Siegel modular forms and Siegel modular
forms of lower genus also appears in [Wei83, BR89]. As they work in characteristic 0, for an
irreducible algebraic representation W of GL(n), and a congruence subgroup L C GL(n) consisting

of elements of the form <18T :), one has

(0.0.2) W(RE=W(QF®R, for aQ-algebra R.

However, (0.0.2) fails if Q is replaced by Z,. The failure of equation (0.0.2) causes the difficulty
for directly generalizing the Hida theory for cuspidal Siegel modular forms to non-cuspidal Siegel
modular forms. The sheaf WZ in [SU14, Hsil4a] is about remedying the failure of (0.0.2) when Q is

replaced by Z,. This issue is bypassed in our approach, as we study the space V5P7 via the terms
on the two ends of the exact sequence (0.0.1).
Our results are summarized as follows:

Theorem (Theorem 1.3.1). For the given parabolic subgroup P C GL(n) and an integer 1 < r < ng,
the following holds:

i) An ordinary projector ep = €% can be defined on VSPT, and the Pontryagin dual of its
P
ordinary part
Vplora = Homz, (ep?V*", Q,/2,)
(which is naturally an Op([Tp(Zy)]]-module) is finite free over Ap = Op[[Tp(Zy)°]].
(ii) Define

T Ty %
P-ord — Hom/\n (rVP-ord7 AP) :

Given a dominant arithmetic weight e Homcont(Tp(Zp),@; with dominant algebraic
)

)
part t© € X (Tp)T and finite order part € € Homcom(Tp(Zp),@X
sponding prime ideal of Op|[[Tp(Zy)]]. Then

, let Prp be the corre-

M ord @0 (115 2))) OF[[TP(Zp)]] /Pep = limlim ep Vo3 [,
m

and (see (0.0.5)(1.2.2) and (0.0.7) for the definition of the congruence subgroup I'sp C
Sp(2n,Z) and weight 1(t7) € X (T) associated to t¥ € X (Tp))

ling ep Mp) (TN s (), €75 F ) < (Mbra @0, (o2, ) O [[Tr(Zy)]]/Per ) [1/p).
l

Here the maps are equivariant under the action of the unramfied Hecke algebra away from
Np and the Uf—opemtors.
(iii) When € is trivial and t¥ > t5 > -+ > I > 0, the above embedding is an isomorphism.
(iv) There is the following so-called fundamental exact sequence (in the study of Klingen Fisen-
stein congruence),

0— Mpty— Mpoa — B MUp_ o @opire, @) OFlTr(Zy)]] — 0,

Veey/T
rk V=r

and M?/,Pn,r-md is the Op[[Tp,_, (Zy)]]-module of families of p-adic ordinary Siegel modular
forms of degree n—r over Yy.oa for the parabolic P,—, C GL(n—r) defined by the partition
n—r=mny+-+ng1+(ng—r).
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This construction can be generalized to other PEL type Shimura varieties, both with (using
[Hid02]) and without (using [EM17, BR17]) ordinary locus.

With the new choice of sections at p for the Siegel Eisenstein series and the Hida theory for
non-cuspidal Siegel modular forms we can then construct the improved p-adic L-function:

Theorem (Theorem 2.6.2). With the same notation as above, assume that the parity of €p is
compatible with ¢ (i.e. ¢(—1) = TdP(—l) for a T in the image of the projection of €p to the weight

space). There is a p-adic L-function Ef;;f;f’ﬁh& (x) € Fyg, which satisfies the following interpolation

property. If x is étale and its projection T¥ in the weight space is admissible, then

-im ’ W ’
Lmh @) =Cr - Y (y 51)1(;1»@ (¢), B2)
PYESy )

X E;:'imp(n+1 —t8 o x b)) - LNP(n 41—t 7w, x pel),
for E;’imp defined as in §2.3.

The Greenberg—Stevens method [GS93] allows us to prove the following theorem on semi-stable
trivial zeroes:

Theorem (Theorem 3.3.5). Let xo be an F-point of €p where the weight projection map Ap —
T};{Zrd is étale and maps o to Tk . Suppose that the p-adic L-function Ligp pwnt1.p1.85 € L HSH@H%}:

Fy,, has a semi-stable trivial zero at ((1+p)" 1 —1,2¢) and the local-global compatibility is satisfied
by the p-adic Galois representation py,. Then we have

dﬁ(fp,¢wn+1,51,ﬂ2 (S, 370) _ ﬁ(p ) . CtP . C((p, ,Bl)C(GPW(QO), 52)
o E —
ds S=(1+p)n+1-1 =0 PEsay <907 SO>

x Elf_imp(oﬂrxo X ¢) ’ LNpOO(Oaﬂ-xo x ¢)>
where U(pg,) is the L-invariant as defined by Greenbery.

This result almost implies the conjecture of Greenberg, up to the non-vanishing of the ¢-invariant
and of the imprimitive L-function. The non-vanishing of the /-invariant is a very hard problem and
it is known only in the case of [MTT&6], thanks to a deep result in transcendental number theory
stating that gg is trascendental [BSDGP96]. Note that for n = 2 we know the non-vanishing of
((ps,) Whenever my = Sym?(my,), where fg is the weight two modular form associated with an
elliptic curve with semi-stable reduction at p. The imprimitive L-function could vanish because
of the vanishing of some of the Euler factors at a prime ¢ dividing N. One may deal with such
vanishing by selecting better sections at ¢|N.

Acknowledgments. The authors thank Kai-Wen Lan, Vincent Pilloni, Eric Urban for many useful
discussions. Part of this work has been done while GR was a Herchel Smith fellow at Cambridge
University and supernumerary fellow at Pembroke College, and during many visits at Columbia
University; he would like to warmly thank these institutions. This material is based upon work
supported by the National Science Foundation under Grant No. DMS-1638352

Notation. For the whole length of the paper we fix an odd prime p as well as isomorphism between
@p and C. Also, we fix a positive integer N > 3 prime to p and an integer n > 1 together with a
partition n =n1 + -+ + ng with nq,...,ng > 1.

We denote by V a free Z-module of rank 2n with a standard basis ey, ..., ey, f1,- -, fn equipped

with a symplectic pairing given by < OI (7;> with respect to the standard basis. Then e, --- , e,
—in
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span a maximal isotropic subspace V, inside V. Set V,* = V/V;'. One can canonically identify
V¥ with the maximal isotropic subspace of V spanned by fi,---, f,, and there is the polarization
V=V,eV;

Let G = Sp(2n) be the algebraic group acting on V preserving the symplectic pairing. In matrix

form it is
% 0 I, 0 I,
{g € GL(2n): g <In 0)9= L0 )

Let Qg be the standard Siegel parabolic subgroup of G preserving V,,, whose unipotent subgroup
we denote by Ug,,. We identify the Levi subgroup of Qg with GL(n) via the map

(0.0.3) Qc — GL(n)

a b
<O tal) = a.

Denote by B the standard Borel subgroup of GL(n) consisting of upper triangular matrices, and
by Up, T its unipotent radical and maximal torus respectively. We fix the isomorphism of G]}, with
T which sends (aq,...,a,) to diag(ai,...,a,). The inverse image under (0.0.3) of B constitutes
the standard Borel subgroup Bg of G with unipotent radical Ng and maximal torus Tz. The tori
T and T are identified via the map (0.0.3).

We put ourselves in the setting of [Pil12], i.e. considering Siegel modular forms ordinary with
respect to a general parabolic subgroup of GL(n) containing B associated to our fixed partition
n =ny + --- + ng (the ordinarity considered in [Hid02] is the ordinarity with respect to B). Set
Ni = Z;’:l n;, 1 < 1 < d. Define

aq * *
(0.0.4) P = . % | €GL(n)| ai € GL(n;), 1 <i<d,,
aq

ai * *
(0.0.5) SP = s | €sLm)|aesSLng), 1<i<dy,

aq

and Up to be the unipotent radical of P. When the partition is taken as n =1+ 1+ ---+ 1, the
group P, (resp. both SP and Up) is just B (resp. Ug). Let Tp = P/SP and we fix the following
isomorphism
(0.0.6) Tp = P/SP =5 G¢,
a
u+— (det(ay),...,det(aq)) .
aq

Note here that Tp is not the maximal torus in P. Denote by X (Tp) the group of characters of
Tp (which are also naturally viewed as characters of P). We identify it with Z¢ by associating to
tf .= (¢, ... t]) the character sending diag(a1,...,aq) to Hle det(a;)" . When working with B,
we shall drop the superscript from the notation for the characters when there is unlikely confusion.
The map (0.0.6) restricts to a map T'— Tp, which induces an embedding

1: X(Tp) — X(T)
(0.0.7) th =l oty — (D D).
N——

ni ng ng
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Denote by X (T')" the subset of X(T') of dominant weights with respect to B and set X (Tp)* =
X(Tp) N X(T)". Then t© € X(Tp) belongs to X(Tp)T if and only if t© > I > ... > !’ Fix
a finite extension F' of Q, (assumed to be sufficiently large in the context) and denote by Op its
ring of integers. The weight space in Hida theory for P-ordinary Siegel modular forms over F' is
Spec (Op[[Tp(Zy))]). For an arithmetic point of the weight space T € Spec (Op[[Tp(Zy)]]) (Q,),

i.e. a character in Homcont (TP(ZP),@; ) that is the product of an algebraic and a finite order

character, we write its algebraic part (resp. finite order part) as Iig =tF =(@r, ... ,tg ) (resp.
P_ _P_ (P P
T =€ =(€,...,€;)).

N We fix the standard additive character ey = ), €, : Q\A — C* with local component e, defined

—2mi{z}y
e v # 00
as e,(z) = {627% ’ ; i - where {x}, is the fractional part of .

1. NON-CUSPIDAL HIDA THEORY

In this section we develop Hida theory for non-cuspidal Siegel modular forms, or more precisely,
for the P-ordinary Siegel modular forms vanishing along the strata with cusp labels of rank > r for
some 0 < r < ng. Later, the family of Siegel Eisenstein series on Sp(4n) we shall use to construct
the improved p-adic L-function, unlike the ones for the usual p-adic L-function, do not restrict
to cuspidal forms on Sp(2n) x Sp(2n) (see the discussion at the end of §2.4.7). The Hida theory
developed here will be applied to them. Also, we expect such a theory to be of independent interest
and to find applications elsewhere, for instance in the study of Eisenstein congruences.

The main difficulty in directly generalizing Hida theory for cuspidal forms on PEL Shimura
varieties to non-cuspidal forms is that for an algebraic representation W of GL(n) 7 of finite rank,
an algebra R and a subgroup L C GL(n,Z) of the form

L:{(I"OT :) EGL(n,Z)}, 1<r<mn,

the module W (R/p™)* is not necessarily equal to W (R)* @ R/p™.
In [SU14, §6][Hsil4b, §4], a subsheaf of w! C wy is introduced to remedy this failure of base

change property. The sheaf wg is not free and differs from w; along the boundary of the toroidal

compactification. The base change property for global sections of w,? is shown loc. cit. With this
base change property, by mimicking Hida’s method [Hid02], Hida theory for certain non-cuspidal
forms on U(2,2) and U(n, 1) is established loc. cit.

Here we take a different approach. Let 577 be the space of p-adic forms for the parabolic P
vanishing along strata indexed by cusp labels of rank > r with p-power torsion coefficients. Instead
of studying the space 7P via the classical Siegel modular forms embedded in it through (1.2.1)
(for which a base change property for the space of certain non-cuspidal classical Siegel modular
forms is required), we make a careful analysis of the Igusa tower over the boundary and define a
nice subspace V577" inside ¥SP". The exact sequences in Proposition 1.7.1 plus Proposition 1.9.3
allow us to deduce desired properties for the space 9P from those for the space of cuspidal
p-adic Siegel modular forms. Meanwhile, Proposition 1.9.4 shows that the desired properties for
vSPrb imply the existence of a nice ordinary projection on ¥5". Then we obtain Hida theory for
non-cuspidal Siegel modular forms as summarized in Theorem 1.3.1.

Exact sequences for automorphic bundles and p-adic analytic deformation of automorphic bun-
dles, similar to those in Proposition 1.7.1, are used in [Wei83] and [BR15], where things are simpler
than our case here because everything is in characteristic zero and the issue of base change does
not appear.
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1.1. Compactifications of Siegel varieties. We start by briefly recalling some facts on the
toroidal and minimal compactifications of Siegel varieties of principal level. We mainly follow the
notation in [Pil12]. Fix an integer N > 3 coprime to p. Let Y be the degree n Siegel variety of
principal level N defined over Z[1/N, {y]. All the objects we consider in the following are endowed
with principal level N structure and we shall omit IV to lighten the notation.
Recall that V = Z?" with standard basis e1,--- ,en, fi, -+, fn and the symplectic pairing given
by 0o I,
I, 0
call it the standard submodule of rank r in V), and we put V = {0}. The group Sp(V) = Sp(2n,Z)
acts on V preserving the symplectic pairing. Denote by I' the kernel of the projection Sp(2n,Z) —
Sp(2n,Z/NZ).

Denote by €y the set of cotorsion free isotropic Z-submodules of V. The group Sp(2n,Z) acts
naturally on €y. The quotient €y /T is called the set of cusp labels of level I' (or of principal level
N). For a free Z-module X of finite rank, we write C(X) to denote the cone of positive semi-definite
symmetric bilinear forms on X ® R with rational radicals. A surjective morphism X — X’ of free
Z-modules induces an inclusion C(X') < C(X). Define Cy as the quotient of the disjoint union

[T C(V/V1) by the equivalence relations induced by the inclusions C(V/V+) «— C(V/V'L) for
Vedy

V c V' V,V" € €&y. The group Sp(2n,Z) acts on Cy.

A GL(n, Z)-admissible smooth rational polyhedral cone decomposition ¥ of C'(Z™) ([FC90, Def-
inition 2.2]) gives rise to a rational polyhedral cone decomposition ¢, of Cy. Corresponding to it
is a toroidal compactification X* of Y endowed with an action of Sp(2n,Z) [FC90, §IV.6].

The toroidal compactification X* comes with a stratification indexed by Y, /T, and we denote
by Z, the stratum in X> associated with o € Ycy. There is a canonical map ¥¢, — €y sending
o to the unique V, € @€y satisfying ¢ € C(V/V;-)°. The locally closed subscheme Zy C X* is
defined as the union I Zy. For 0 <r < n, define Z' 5, to the sheaf of ideals associated

0E€Ye, /T\Vo=V
to the closed subscheme 11 Zy.
Vely/TrkV>r

Over X E, there is the canonical semi-abelian scheme G /X= whose restriction to Y is the universal
principally polarized abelian scheme of genus n with principal level N structure. The coherent sheaf
w over X~ is defined as the sheaf of invariant differentials of G el which is locally free of rank n.

From the toroidal compactification, the minimal compactification is constructed as

. For 1 <r <mn, let V, be the submodule of V spanned by e, - , e, (we sometimes

X* =Proj [ @ H (X, det*w)
E>0

The projection 7 : X* — X* is proper with connected fibres. The minimal compactification X* is
stratified by €y /I'. The stratum Yy corresponding to V' € €y /T is defined as the image of Zy. As
a scheme it is isomorphic to the Siegel variety of degree (n — rk V') and principal level N.

1.2. The Igusa tower over the ordinary locus and p-adic forms. The invertible sheaf det*w
descends to an invertible sheaf on X*, which we still denote by det*w. For sufficiently large k, it is
very ample over X*. Choose k such that the k-th power of the Hasse invariant, which is an element

in HY (X7Fp[CN]’ detp_1w>, lifts to a global section £ € H® (X*, dett(p_l)w>. We write its pull-back

in HY (Xz,dett(p_l)w) also as F.
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Let X*rd = X*[1/E] and X*°4 = X*[1/F], and define Y24, Zo*d, Zord similarly. The
reductions modulo powers of p of these schemes are independent of the choice of E and are called
the ordinary loci. Note that X*°™ is affine, while X*° is not (except when n = 1).

Fix a finite extension F' of @, containing all N-th roots of unity. We regard all above schemes
as defined over Op. For m > 1, we use a subscript ,, to indicate the reduction modulo p™. Over

X,%Ord, we consider the full Igusa tower

%
Tl = IsomXEL,ord (“Zl’ G/ xm.0rd [pl]o> :

for I > 1. It is an étale cover of X>°'d with Galois group isomorphic to GL(n,Z/p'Z). The group

To(p') = {g = <ag ZZ) €G(Z):cg=0 mod p’}

Cg

naturally acts on ‘ZE, ; With g acting on the principal level N structure and a, acting by the Galois
action of GL(n, Z/plZ) on ynil over X =-ord
Define

Tiboms = Tt | SP(Zy[9'y)

(see (0.0.4)(0.0.5) for the definition of the algebraic subgroups P, SP of GL(n)). It parametrizes

(in addition to the structure parametrized by X;y™!) the level structure (Bi,€i)1<i<d,pt, Where

{0} = Ey C By C --- C Eg = G[p!]° is a d-step increasing filtration and &; is an isomorphism

A" M;‘;’ =~ A" E;/E;_y. There is a natural Tp(Z,)-action on ySEP,m,l‘

Write f,; : 95213777%1 — X2 for the natural projection. Define

SPr _ 110 > * r
Vm,l =H <ySP,m,l7 fm,lIXE) ’
. . SP,r
VI — lim lim V2"

m,l
iy iy

The space V9P is called the space of p-adic Siegel modular forms for the parabolic P vanishing
along the strata indexed by cusp labels of rank > r with p-power torsion coefficients. When P = B
we shall drop the P from the notation, and when r = n we shall drop r from the notation.

The Tp(Zy)-action on 952137%1 equips Vn‘jf’r and V9P with an Op[Tp(Z,)]-module structure.
The space 90 is the space of cuspidal p-adic Siegel modular forms with p-power torsion coefficients,
which is considered in Hida theory (for the Borel B) for cuspidal Siegel modular forms, while 2570
(for general P) is the one in [Pil12].

Besides the torsion Z,-module 9°*" (which is in fact p-divisible by Remark 1.5.1), we will also
consider the Z,-module h&lligvrfhl, i.e. taking the inverse instead of direct limit with respect to

m ]
m (which is torsion free over Z, by Remark 1.5.1). It is the torsion Z,-module P that will be
used to construct the Op[Tp(Zy)]-module of Hida families. Meanwhile, the space limlim V7 ) is

m
more easily seen related to the classical Siegel modular forms.

More precisely, for t© € X(Tp)*, e € Hom (Tp(Z/pl),CX), and ™ € Homeont (Tp(Zp),@;)

which is the product of ¥ and €”, there is a canonical Hecke-equivariant embedding [Pil12, §4.2.1]

(1.2.1) lignM:@P) (I‘ﬂI‘SP(pl)’EP;F) — <1‘£1@V7§fmhp]> [1/p].
l m
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Here M} (F NTsp(p!), e’ F ) denotes the space of classical holomorphic Siegel modular forms of

weight ¢ = 2(t") and level T N Tgp(p!) with nebentypus e’ vanishing along strata with cusp labels
of rank > 1, and the congruence subgroup I'sp(p') is defined as

(1.2.2) sp(p)) = {g € Sp(2n,7Z) : gmod p' belongs to SP(Z/pl)}.

The vanishing condition here for the classical Siegel modular forms is equivalent to requiring that at
. . e . . . SP,

all cusps all the Fourier coefficients with indices of corank > r vanish. The space lim lim, V) "xP]

. . . . . sP,

is the T/-eigenspace for the action of Tp(Z,) on lim i, V. "

(1.2.1) mainly relies on the Hodge-Tate map

. The construction of the embedding

Homp(G[p™]", i) @z, R — wg/r

for an ordinary semi-abelian scheme G over a Z,-algebra R.

1.3. The main theorem. Our goal is to establish the following theorem.

Theorem 1.3.1. For given P C GL(n) as in (0.0.4) and an integer 1 < r < ng, we have the
following.

(i) An ordinary projector ep = e% can be defined on V5P", and the Pontryagin dual of its
ordinary part

{VI’Q—*ord = HOHIZP (eP{VSPm’ QP/ZP)
(which is naturally an Op[Tp(Zy)]-module) is finite free over Ap = Op[Tp(Zy)°]], where
Tp(Zy)° is the maximal p-profinite subgroup of Tp(Zy).
(ii) Define
P-ora = Homa,, ('Vlg’-*ord’ AP) :
Given an arithmetic weight e Homcont(Tp(Zp),@; ) with dominant algebraic part th e

X(Tp)* and finite order part ¢ € Homcont(Tp(Zp),@x), let P be the corresponding
prime ideal of Op[Tp(Zy)]. Then

Mo @0, [1p(2,)] OF[TP(Zy)] /Per = limlimepV;o} ™[],
m
which combining with (1.2.1) gives
(131) mePM:(EP) (F N FSP(pl)aEP;F> — (MTI;—ord ®OF[[TP(ZP)]] OF[[TP(ZP)]]/PIP) [1/]?] :
l

Here the maps are equivariant under the action of the unramfied Hecke algebra away from
Np and the [Ug—opemtors.

(iii) When €¥ is trivial and t¥ > t§ > - >t > 0, the embedding (1.3.1) is an isomorphism.
(iv) There is the following so-called fundamental exact sequence (in the study of Klingen Eisen-
stein congruence),

0 — Mpoq— Mpoa — B MUp,_ara ®0pirs, (2,01 OF[TP(Zp)] — 0,

Vedy/T
rk V=r

where
aq * *
P,_,= . x| €GL(n—7)|a € GL(n;),1<i<d-—1,aq € GL(ng—71) »,

ad
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and M?/,Pn,r-md is the Op[Tp,_, (Zyp)]-module of families of p-adic cuspidal ordinary Siegel
modular forms of degree n —r over Yy oq for the parabolic P,_,.

Remark 1.3.2. For two different P, P’, there are no inclusion relations between M, , and M, 4,
thus in order to study certain Siegel modular forms by using Hida theory, one needs first to specify
a parabolic P containing the standard Borel subgroup of GL(n) such that the Siegel modular forms
under inspection are SP(Z,)-invariant and P-ordinary. There is not such Hida theory (as to the
authors’ knowledge) that studies P-ordinary Siegel modular forms for all P simultaneously. On the
contrary, when studying families of finite slope families, there is no need to specify a parabolic as
the theory established for the Borel (e.g. [AIP15]) treats all Siegel modular forms of finite slope.

The remaining part of this section is devoted to proving this theorem. The proof relies on a
careful study of the quotient ¥5P" / v5Pr=1 and the boundary of the Igusa tower, which leads to
the definition of the subspace ‘Vnillam’b C ‘VnS;J;’T. This subspace is characterized by the vanishing

along certain connected components of the Iéusa tower over [[  Zy,od, and plays an important
VG@V/F

rkV=r
role in our proof of the above theorem.
1.4. The Mumford construction. We quickly recall the Mumford construction which will be
used in the description of the fibre of the push-forward of the ideal sheaf 7%y, as well as in the
definition of g-expansions.

Given a free Z-module X, of rank r with basis z1,--- ,x,, set X to be its dual free Z-module
with dual basis z7,--- ,z}. Let J,_, ., the Igusa tower, m,l > 1, over the degree (n — r) Siegel
variety of principal level N and (A, yn—r,m,l’¢N7 vt Pp, yn%m’l) be the universal object over it.

The extensions of A,z _ - by the torus X @Gy, are parametrized by Homg, (X, Ay 7,
Let Bxx m, be an abelian scheme which is isogenous to

(N_IXT, A/gn
via an isogeny of degree a power of p, related to the p-level structure of the Igusa tower. Given
pu € N71X, there is tautologically a map c(u) : Bx:mi — Ay, . through evaluation at p.
Denote by S?(X,) the symmetric quotient of X, ®z X,.. Let P — Az, X rmi A7, DE
the Poincaré bundle and P* = A, 5 xg Az  beits associated Gy,-torsor.

Pick a basis [, @ 1], 1 < i < r(r — 1)/2, of N7152(X,) with p;,v; belonging to N71X,.
Associated to each [u; ® v;] there is a map

—r,m,l)'

Hom g,

—r,m,l 77‘,m,l)

r—r,m,l

c(pi) ¥ c(vi) : Bxzmi = A/Z i X Tt A T
along which one can pull back the Poincaré bundle and its associated G,,-torsor. Define

Mz ma = [ [(e(p) x c(i))*(P)®N,

(2

which is a torsor over Bxx ,,, for the torus Homz, (N7152(X,),G,,). For A = Z:gfl)m a;lp; @) €
52(X,), define the invertible sheaf £(\) over Bxs yn, as

L) = Q) i) x c(vy)) PEN.

(2
We have
(Mxzmi = Tn-rmi), OMys s = @ H® (Bxs mi, L(N)) .
AEN-1S52(X,)
Now suppose 0 C C(X,)° is a cone generated by a set of elements that extends to a basis of the
space of symmetric bilinear forms on X;.. Let Mxs ;n1 < Mxx im0 be the affine torus embedding
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over Bxx m, corresponding to o. Denote by S%(X,) the symmetric quotient of X, ® X,, and by
oV the dual cone of o consisting of elements in S?(X,.) ® R whose pairing with any element in o
is non-negative. Let 0V:° be the interior of V. Let Ij‘wx* l be the ideal sheaf inside Opy, .

attached to the boundary of the affine torus embedding.rThén

,m,l,o

(141) (MX;‘,m,l,a — <?n—r,m,l)* OMX:J”J’[, = @ HO (BX;‘,m,la ‘C(/\)) ’
AEN-1S82(X,)NoV
(142) (MX;‘,m,l,a — %7T’m’l)*IXAX;f,m,l,o' = @ HO (BX:,m,ly E()‘)) :

AEN-1S2(X, )N V-0

Let M Xx,m,l,o be the formal completion along the boundary of the torus embedding. The natural
map X, — Hom(X,,S%(X,)) defines a period subgroup N~'X, C X} ® Gyzin-152(x,) With a
polarization given by the duality between X, and X. The Mumford construction gives a principally
polarized semi-abelian scheme G IMe 1 together with a canonical principal level N structure
UN.can © (ZNZ)?" — g/ﬂxi’mmw] and a canonical trivialization ¢p can : i 5 g///\"\x:,m,z,a p'°,

which comes from the level structure parametrized by 7,_,,,,, the extension data parametrized
by Bx: m, plus the fixed basis of X;.

1.5. The fibre of the push-forward to the minimal compactification. Let .7}, ; be the
Stein factorization of ﬂszpml — Xxord,

fm,l

> >,ord
(1.5.1) Tebmu Xom
T T
* *,0rd
’?S'P,m,l Xm .

The scheme g5, (tesp. T&p,. ;) can also be viewed as the partial toroidal (resp. minimal)

compactification of the Igusa tower Jgp,; over Yord which is a special case of the construction
in [Lanar]. They admit a similar description as X*, X*.
Let &y ;i C &y be the orbit of {Vo, V1,--+,V,} under the action of the group

Fo(pl){<z Z) € Sp(2n,Z): ¢ =0 mod pl},

and define Cy i from €y ;1 in the same way as Cy from €y. The partial compactification Igp .,

(resp. Tab, ) is stratified by ¢y /T'NTs p(p') (resp. the rational polyhedral cone decomposition
Xe, i induced from ). The natural maps

(1.5.2) Pey: Q:Mpz/r N Fsp(pl) — Qv/r,
Pci: ECV,pl /F N Fsp(pl) — ECV/F

are surjective.
In order to distinguish from the notation for the stratum indices for X*, X*, we use an extra " to
denote the stratum indices for gp ., ;. ys%)’mJ, i.e. we write V, o for elements in Cy_, /I'NTsp (ph),

Xe, /T NTgp(p'). The stratum in Fgp, , (resp. Tds, ;) associated to V (resp. &, V) will be

denoted as 9‘77m7l (resp' Z&',m,lv Z‘77m7l)‘
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The stratum 9‘7’m,l is isomorphic to the quotient of the full level [ Igusa tower over Y;,)m by

Im (Ff/ NTsp(p!) — Sp(f/L/‘N/,Z/pZD, where I'y; C T is the subgroup mapping V to itself. For

V= V5, the diagram below describes the completion of ﬂs%;.’m’l along the stratum Zz , ;,

My i My 15— My

V.,m,l,o Vom,l,X

(At ik Ve

Here ijm’l, Mf/,m,l? Mf/,m,l,& are the objects constructed in §1.4 with X = V, and MV ml,Sy

the torus embedding associated to the rational polyhedral cone decomposition ¥; of C'(V/ Vl) given
by X¢, - Let /\/l~ > be the completion of ./\/l~ mise along the closure of the stratum attached
to 0. Then the completlon of ySPml along Zz ,,, ; is isomorphic to ./\/lV ml 5/FGL V/VL)(pl), where
Tapv sy (@) equals Im (rﬁ Alsp(p') — GL(V/VL)).

Denote by 77, (resp. Z7, e l) the ideal sheaf attached to the union of all strata inside

SPml

95P’m’l (resp. QSP,m,l) with cusp labels of rank > r. The ideal sheaf IT 73, equals f* T N XE ord 28

m,l

fm, is étale.

Since 77 O Tt = (’)ygpm ,» applying mz . to the short exact sequence

0—>:Z,—72 —>ng

— 4 O772 _ _ —0
SPm,l SPm,l A e Z )

v, pl /FﬂFSP(pl), rkV>r “V,m,l
we get

1.5. —s 11" — * —s (mou - - .
( 5 3> 0 T =7szp’m,l OySP,m,l ( T)*O]_Ivecw pl/FﬂFSp(pl),rkVZT 25 1’

where ;. : H\7€€V pl/FﬂFSP(p ), tkV > 2‘7 m,l

definition the stratum 75  is the image of Z; m,» We see from (1.5.3) that
7m7

— ﬂszjjml is the canonical closed embedding. Since by

IrgP,m,l - ﬂ-g’*zﬁz

SPml

The above description of the completion of fs%pml along Zz,,;, combined with (1.4.1) and
(1.4.2), gives the following description of the fibre of the structure and ideal sheaves at a closed
point x € 9 mi C ﬂspml,

(1.5.4)
r

(O‘?S*P’WJ;\ - (W‘g’*oysEP m l)A - ﬂ H HO(B}/,m,l,x’ ‘C()‘))

ceC(V/VL)e \eN-182(V/VL)noV

GL(V/\7J-)(pl)

FGL(V/V/L) (pl)

- [I  HGBp,,.. £O) ,

AEN—182(V/VL)sg
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and

(1.5.5) Cﬁ* )::(WQEQﬁ; >:

SP,m,l SP,m,l

FGL(V/VJ-) (pl)

A ~
=(r7.055, ) 0| N 11 H(Bg 00 £OV)
ceC(V/VL)° AeN—-182(V/VL)ngV e
rk ‘7;>r

FGL(V/VJ-)(pl)

- H HO(BV,m,l,x’ ‘C()\)) )
AENT1S2(V/VL)5
rk A>rk Vr

where B\f/,m,l,z denotes the completion of Bf/,m,l along its fibre over .

Remark 1.5.1. The invertible sheaf £(\) is the pull-back of an ample line bundle on a quotient
of the abelian scheme B . Thus in particular, taking the global sections commutes with base

change (cf. [FC90, p. 155]). Therefore (1.5.5) implies that for the ideal sheaf ngp

forward 77 , commutes with the base change. Since 7gp,, ; is affine, we see that the base change
property holds, i.e.

; the push-

SPyr SP,r m
(1.5.6) VIR =R @z pn.

1.6. The quotient an]lg’r/vnfll%*l . Since X*°' is affine, we have

SP,r SPr—1 _ 170 *,ord r r—1
val /Vm’l =t <Xm ’ W*fm’l’*zgszp,m,l/W*fm’l’*zyszp,m,l>'

We need to analyze the quotient 7, fm717*I}E / Ty fm’h*l’}}l . It is easily seen that this quo-

SP,m,l Pm,l
. . ord I
tient sheaf is supported on 11 YVOI}:fn C X3¢ Forx € ‘?W,m,l with W € ¢V7pz/FﬂFSp(pl)
Weey /D yrkW>r



16 ZHENG LIU AND GIOVANNI ROSSO

of rank > r, using (1.5.5) we get

(1.6.1)

Parewywi) ®"

SP,m,l

)| IO w0

r AEN-LS2(V/WL)5,
rk)\:rkwfr

T —1

r

- I1 I1 HO(Byg 100 £OV)

Vee, 1/TNTsp(p') AeN~1S2(V/W)5o
VCW, rkV=r kerA=V

GL(V/'WL)(pl)

FGL(f/L/V’Vl)(pl)

05
= H H H (BW,V,m,l,m’ 'C()\))
vee, 1/TNlsp(p') \NeN—1S2(VL /W)
?Cw,rkv:r

Here BW,V/,m,l is the abelian scheme over ﬂw’m’l obtained as the quotient of BW,m,l by V. It is

p-power isogenous to

Homz, —(NTHVE/WH), Az ).

The invertible sheaf L£()\) over By with A € N_lSQ(XN/L//VIV/)w is defined in the way as
described in §1.4. The group I is the image of the stablilizer of vi / W+ inside
r

l
GL("}L/WL)(p )
[
L) P)-

For each V € &y ,/I'N Tsp(p!), there is a closed embedding

*

*
V,m,l gSP,m,l?

* .
LV.

where ﬁaml is the partial minimal compactification of the stratum 7; . The image is the

Zariski closure of the stratum 9‘7 inside ,?S"PMJ, which equals the union of all strata with cusp

,m,l
labels containing V. Like before one can define the sheaf of ideals 7%, for0<r<rkV.

V,m,l

We define the group Py ,.(Z/p') as the image of the map

Ly, NTo(p') — GL(n,Z/p")

r n—r r mn-—r

a u * * r

0 a * b n—r a u I
— od p’,

0 0 al' 0 r (0 a> oty

0 c v d n—r

which is easily seen equal to <

SL(r, Z/p") * >
0 GL(n —n,Z/p") )
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Proposition 1.6.1. There are the following short exact sequence,

1.6.2 0—n7. 0% — 715,71 — $ k1% —0
( ) T TSP m1 T TSP m.L _ VTG ’
Vee, . /TNTsp(ph)
tk V=r
-1 0
(163)  0— Tufmisllys — Tfmisllys  — P b . 1% — 0,
“SP,m,l SP,m,l - ’ V,m,l
Vely/I' \ Vepg (V)
rk V=r ’

where pe is the projection defined in (1.5.2) and
(164) pei(V) =Ty NTo(p) \L N To(p) /T N Tsp(s) = P, (2/p) \GL( Z/p) | SP(Z/p).

Proof. The short exact sequence (1.6.2) follows directly from our above description in (1.5.5) and
(1.6.1) of the fibres of the relevant sheaves on the partial minimal compactification. The term at

the right end is a direct sum because the intersection between <7$m l and ‘;, - 1% #+ V', lies

inside the closed subscheme defining the ideal sheaf Z%, . The exact sequence (1.6.3) is obtained
Vm,l

from (1.6.2) by rewriting the term at the right end. d

By taking global sections, (1.6.3) gives

(1.6.5) 0— anf”ul — anf’r — @ @ H° (yf;m,l’ If)v*m) — 0.
fo¢/V/F Vepg1(v) '
rkV=r ’

We see that the quotient Vrgllg’r Vrgf’r_l is a direct sum of cuspidal p-adic Siegel modular forms

with p™-torsion coefficients of level [ and degree n — r with respect to certain parabolics.

The action of the group Tp(Z,) permutes the summands of V:;]lg’r / Vn‘j]lg’rfl

summands in the quotient in order for it to form a nice Z/p™[Tp(Zy)]-module after taking direct
limit with respect to [, or in other words the structure of the Tp(Z,)-action on (1.6.4) is in some
sense too complicated as [ grows. The idea is that we pick out a single Tp[Zp]-orbit from (1.6.4)
which patch nicely with | growing.

. There are too many

1.7. The space V3P, For V ¢ Cy/I of rank r, consider

d b
yZ?}d,SP,m,l = Z‘O/l:m XXT% 9.5'P,m,l - H Z\7’m’p
Vepg (V)
the restriction of the S P-Igusa tower to the stratum Z“}fgl. It is not connected if the set p, }(V) o~

P;ir(Z/pl)\GL(n,Z/pl)/SP(Z/pl) has more than one element. For r < ng, we will define a

subscheme L?Zb - ﬂz‘o}dv SPm, consisting of certain connected components which form a

ord SPm,l
vV o 3110y
single orbit for the Tp(Zy)-action. The space Vn“jllj’r’b will be defined as the subspace of VWSLI;’T

consisting of sections vanishing outside fzbord SPm"
Vv o 7mvl
Recall that the semi-abelian scheme G i) in the Mumford construction carries canonical
X5 m,l

N

level structures

wN,Can : (Z/NZ)2n — g/ﬂm [N], ¢p,can : ,U;Ll e g/ﬂx;‘

,ym,l,o

l]o‘

,m,l,o
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We decide that if V = V., the standard submodule of V of rank r, and & € C(V/V<1), then
the restriction of the semi-abelian scheme (G JTE YN, (Biy€i)1<i<a,pt) to the formal completion

along Zgrg1 , is isomorphic to the one induced from (G i, . YN, cans Pp,can) (in other words, the
Eaag) X}‘,m, o ’ ’

level structures parametrized by cusps at infinity are the canonical ones).

Then for v = (Ccl'y 27> elo(P), V=r-V,and ¢ = v-0 € C(V/VL) for some o € ¥, the
v Oy

restriction of (g TSt YN, (B, €i)1<i<a, pz) to the formal completion along ngg%l is isomorphic
to the one induced from
<g//</l\x* . ¢N,can o7, ¢p,can o be) .

If we fix V' € €y, the connected components of yZ‘o/rd7 $Pm, can be thought of in terms of the

*°]° induced from

relation between the two-step filtration of G /zexd [p
(1.7.1) 0 —=V&Gn — Gz, m[p™]° — Ay, Xy, Zv — 0,
and the d-step filtration

/10

{0} = EpoCEp, C o CEp = g/z;;rd,m[P]

induced from the universal object (g/gszpym’l, U, (Ej, 51‘)193“,1) restricted to Z‘~,’m’l C 95‘%’,%1'
From now on assume r < ng4. Define

—1/17\ 7 -1
pet (V) ={V epgl(V): By, nVeu, =0},
b — ~
yZg,rd,SP,m,l = H 25 1 © Tzord sPm,b>
Vepg (V)
i.e. the union of the connected components of 9Z?/rd’s pm, for which the first d — 1 steps of the

parametized filtrations of G rs [p']° intersect trivially with the p'-torsion of the torus part in

(1.7.1).
Under the natural map

pe) (V) — P, (Z/p) \GL(n,2/0') | SP(Z/p')
V=7V (yelo®)) — a,
the set pgj(V)b corresponds to

P\ Pur@d) (;) §) SP@Ih | SP@ € P (@) \GLn.21sh) | P/,

. _ (GL(r,Z/p") 0 : 1 s
with P, , = < 0 GL(n —r,2/p)))" The action of Tp(Zp) on py (V) is transitive, and
we have
(1.7.2)

0 I .
{6 i < g,
aW’=1 7%

PealV) = I\ (In 0
] T d—1 N l % ) _
(In—r 0) < 0  GL(ng,Z/p")/SL(ng, Z/pl)) ~ (z/p")”, ifr=ng.
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We now define 77 c1I” to be the sheaf of ideals associated to the closed subscheme

’?SZP,m,l ySEP,m,l

given as the complement of 11 fzgfrd7 spmiVY 11 fzbord’ SPml inside fsz};’m’l, and

Veey /T, rkV<r veey/T,rkV=r 7V
define

SPrb _ 110 » b SP,r
Vm,l =H <95'P,m,l? IQE ) C Vm,l ’
SP,m,l
(VSP,T,b VSP,T,b C rVSP,T

:hglh%ﬂl m,l
m 1

If follows from the definition and (1.6.5) that

SPyrb SPr—1 __ 0
w1y - @ | @ w(w,.m)

VEQ:V/F ‘7€ -1 V)b
rtk V=r Pea(V)

The natural Tp(Z,)-action on the left hand side induces a T'p(Z,)-action on

(1.7.4) b = <9§m’l, If)q‘;m)l> :
Vepg (V)
Let
a; ok *
(1.7.5) P, = . x| €GL(n—r)|a; € GL(n;),1<i<d-1,aq€ GL(ng—r) ;,
aq
a; k%
(1.7.6) SP,_, = . x| €SL(n—r)|a; €SL(n;),1<i<d—1,aq€SL(ng—r) p,
aq
(1.7.7) Tp,_ =Py y/SPy_, = { gj:_l ﬁ; = ZZ

We know that for each V & pg}(V)b, we have
(1.7.8) Tm (Fv NTsp(p') — Sp(VE/V, Z/pl)) ~ T(N)N SP_,(Z).
The embedding P,,—, < P induces a morphism Tp, , — Tp, and the induced action of Tp, , (Z,)

on (1.7.4) preserves each direct summand, so equips each H° (ﬂ‘;m P If]% ), Ve Pe }(V)", with
’ Vm,l ’

an Op[Tp, ,(Zp)]-module structure.
From (1.7.8), we also know that for each V € pa(V)b, the scheme 9‘; , Is isomorphic to the

7m7
minimal compactification of the quotient by SP,_,(Z/p') of the full level p! Igusa tower over Y\%,{i-

SPu_r,0 : : . .
Denote by Vi, """ the space of cuspidal sections over that Igusa tower over Y“}r;ril, which carries a

natural Tp,  (Zp)-action.
Then

0 * 0 Y 1/5Pn—r,0
H ( Vi Iﬂam,) ~ Vi
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as Op[Tp,_,(Zy)]-modules. Furthermore, we have
HO 0 SPn—r,0
b <‘7 Pm L 5m,z> ~ Ly[Te(Zp)) Szy1p, 2] Ve ™
Vepg (V)

because by (1.7.2) and (1.7.7) the action of Tp(Z/p!)/Tp,_.(Z/p') on pg}(V)b is simply transitive.
Summarizing the above discussion, we get

Proposition 1.7.1. There are the following short exact sequences of Op[Tp(Zy)]-modules,

SP, _ SP, b SPn—T,O 3
(179) O - Vm,l T Vm,l " @ p[[TP II ®ZP[[TP7L r )H Vv7m7l 07
Vedy/T
rkV=r

. , S P10
(1.7.10) 00— ¥t 8P O 7, [Te(Z)] ®z,0mp, 2y Yo — 0.

Vecdy/T
rkV=r

1.8. The g-expansions. Later our analysis of the action of the U{f -operators on Vn‘jf’r’b, qSPrb
will mostly rely on g-expansions.

Specializing the construction in §1.4 to the case r = n, for vy € Sp(2n,Z/NZ) and a, €
GL(n,Zp), the evaluation at the testing object

(g/'KA\X;’{,m,l,a, wN,can O YN, pr,can © ap) , o0€X,
defines the g-expansion map

e ot Vg — [ Or/p"INT'S*(X,) N 0¥] = Op/p™ [N S?(Xn)s0].

g-exp,m,l
oEY

These 6312;(; il ’s glue to the g-expansion map on ¥,

(1.8.1) gyt V — F/Op[NT'S*(X,)>0] = F/Op[N ™" Sym(n, Z)%].

With our fixed basis 21, -, x, of X, we will freely identify S2(X,,) with Sym?(n,Z)*, the set of
symmetric n X n matrices with integers as diagonal entries and half-integers as off-diagonal entries,
by identifying 3 € Sym?(n,Z) with 3 Bijr; @ zj. For B € N715%(X,,) and f € ¥, write
1<ij<n
egxy (B, f) for the B-th Fourier coefficient of f, i.e. the coefficient associated with 3 in ejtuy (f).
One can check that given a € GL(n,Z)

(1.8.2) el (B, ) = e (Yaa, ),

a 0
0 ot

As illustrated in [FC90, V Lemma 1.4 and its proof], since the closure of every stratum associated
with a cone in the toroidal compactification is irreducible and contains a stratum corresponding
to a top dimensional cone, many properties of (p-adic) Siegel modular forms can be verified by
examining the g-expansion. The following two propositions give a characterization of the space
pSPr q)SPrb iy terms of g-expansions.

where m(a) =

Proposition 1.8.1. Given f € v, it belongs to V3T if and only if e (B, f) vanishes for all
Y~ € Sp(2n,Z), a, € GL(n,Zy) and B € N~1S?(X,,)>0 of rank less or equal ton —r — 1.
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Proof. Giveno € ZCV I’ pick a top dimensional cone T € ZCV J with o as a face. Fix an isomorphism
of Spf ((’)F/meF[[N_lS2(Xn) N ?V]]) with the completion of 7521%” along the point Zz,,; (here

for a cone in ¥¢, , we use the same notation to denote a corresponding cone in C (X»n)). Then

l
the embedding of the completion of the Zariski closure of Zz,,; along the point Zz,,; to the
completion of ﬂs%g’m’l along Zz ,,, corresponds to the quotient map from O /p™[N~1S%(X,)N7"]
onto Op/p™[N~1S%(X,,) N7V Not], sending all 3 € N71S2(X,,) N7 that does not belong to 5+
to 0. This description shows that the vanishing condition in the proposition implies the vanishing
of f along Z5 ,,;, and the proposition follows. O

In the following, by the radical of 8 € N~152(X,,)>0, we mean the sub-Z-module of X} consisting
of elements that pair trivially with 3 via the natural map X} x S?(X,,) — X,,, and by a primitive
vector in X, we mean an element not divisible by p in X.

Proposition 1.8.2. Given f € V507 it belongs to VP if and only if e (B, f) vanishes for
all B of corank r such that the radical of ‘a,Ba, contains a primitive vector inside Z- x§ + -+ + Z-
ry,  tPL-xy, o+ Pl

Proof. We use the description of the completion of the Zariski closure of Zz ,,; along the point
Zz m, given in the proof of the previous proposition, and assume that ‘75 is of rank r. Identify V,
and X (together with standard basis). Take a y € Io(p!) such that Vi = y~1-V,, and use it to fix an
isomorphism between O /p™Op[N~152%(X,,)N7"] and the formal completion of the structure sheaf
at the point Zz ,,, ;. Then the evaluation of f at the formal neighborhood of Zz ,,, ; corresponds to the
g-expansion £, ’eap (B, f), and the By, corresponds to the Z-span of ay(x3) /P, ... ,aw(:zr}‘\,d_l)/pl
(recall that Ey_ 4y is the d — 1-th step of the filtration in the level structure of the SP-Igusa
tower). On the other hand, the canonical two-step filtration of the semi-abelian scheme over Zz , ;
corresponds to 175 C XN/; Therefore the vanishing condition in the definition of ¥ requires the
vanishing of e,eip (53, f) for all € N7152(X,,) N 7Y NG+ with Vs containing a primitive element
in a, (Z i+t Zoay,  +APL-xy, gt DL ;1:7*1) Also, for a semi-positive definite

inside o, the radical of 5 equals ‘75. Hence the vanishing condition in the proposition agrees with
that for defining 9577, O

1.9. The Ug-operators. To each matrix
pl; O 0 0
0 I, 0 0

wi=lo 0 plno0 |
0 0 0 Iny

1<1<n,

corresponds a Hecke operator U[f , acting on V5P The ordinarity condition for P requires the

eigenvalues of UPP:Nl’UIfN27 .. .,UIde to be p-adic units (recall that N; = 23':1 nj). In [Pill2,
§5.1.4], only these sz N17sz Ny - - '7sz n, are introduced as they are sufficient for defining the

ordinary projection in order to establish Hida theory. However, given an automorphic representation
7 of Sp(2n, A) generated by a holomorphic Siegel modular form ordinary for the parabolic P, in
order to retrieve the full information on 7, one needs to consider the action of all the sz s 1<i<n

(see §2.3 for details). If i # Ny, ..., Ny, the eigenvalue of sz ;, on P-ordinary forms is not necessarily
a p-adic unit.
Let I$p,,; be the restriction of Jgp,,; to Yn‘;rd C X,,Zjord. The algebraic correspondence in-

side fgpymyl X ‘7§P,m,l associated to 7,; is defined as follows. For N; < i < Njyq, let C; 1 be
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the moduli scheme over Op/p™ parametrizing the quintuple (A, ANYUNs (Bis €i)1<i<d, pl L), where
(A, \,¢n) is an ordinary abelian scheme of genus n with principal polarization A and princi-
pal level structure ¢y : (Z/N)** = A[N], defined over an Op/p™-algebra, (E;,er)i<p<q pi 1S
the structure used to define Jsp,,; in §1.2, and L C A[p?] is a Lagrangian subgroup such that
ranky, ), L[p| = 2n—i, L[p|NE;[p] = 0, L[p]+ Ej+1[p] = Alp]. Denote by p; the projection from Cj , ;
to Jspm, which forgets L. There is another projection p, sending (A,)\,z/JN, (E’!WET)]_STSd’plaL)
to (A/L,N,pomotpn,(E} €)1<p<q p), Where m : A — A/L is the natural isogeny, X' is defined

by m*\ = p?\, and
E, =m(E,), g =ToE, 1<r<j
E; =7 <p_1(Er ﬂp_l+1L)> 7 E; :p—min{Nr—i,nr}7r o0&y, jH1<r<d.

For N; <1i < Nj41, we have the following composition

o p3 T ; o
H (9513’7”’[’ Ogsop,m,l) = HY (Cimas Oci,m,z) = p U H (’?S'P,m,l’ Ozs ) '

“SP,m,l
The image of Trp; belongs to p*("*+1) FO ( SP.m.l» @ 9s°p,m,z> because the pure inseparability degree
of p1 is pnt1) [Pil12, Appendice]. One can also check (for example by g-expansions) that such
defined U: ;, preserves various kinds of growth conditions along the boundary, i.e. the above map
restricts to a map from anf to pi(”H)VTiIZD. If m > i(n + 1), there is a well defined map p~*"+1)
p"(’"“rl)VmS,IlD — Vrglji(n+1),l‘ Now given f € anf, thanks to (1.5.6), we can take ]?6 Vrffi(nﬂ) such

that f = f mod p*™*D, and we define
Upi(f) = p~ "1 0 Tepy o p3(f).

In this section, only sz Ny U: Noro oo U: N, will be used. In order to show the desired properties

of their action on ¥3Pm? 9SPT we use the following proposition and Proposition 1.8.1, 1.8.2 to
reduce to computations on g-expansions.

Proposition 1.9.1 (cf. [Hid02, Proposition 3.5]). For f € VS ~y € Sp(2n,Z) and a, € T(Z,) C
GL(n,Zp), the formula on q-expansions for the action of the Ug—opemtors on f s given by

YN ,Q P _ ('YFji)_lny’a‘p p-[]\fZ 0 pINZ Nz
€q-expp (,3, Up,Nif) = Z €q—gxp <<Nt.fl? In—NZ' /3 0 In—Ni ’ f ’

IEMNi,n—Ni(Z/pZ)
for B € N7152(X,,) and 1 <i < d.

One can also write down the formula for general a, € GL(n,Z,) which is a little bit more
complicated. We omit it here because the case a, being diagonal suffices for our purpose thanks to
(1.8.2).

Proposition 1.9.2. All the spaces VP70 <r <n, and V5% 0 < r < ngy, are stable under the
TUf -operators.

Proof. The statement for 9°P" follows immediately from Proposition 1.8.1, 1.9.1. By Proposition
1.8.2, 1.9.1, in order to show the statement for 9/P7° it is enough to show that if the radical
of  contains a primitive vector inside Z -z} + --- + Z - x}‘vd_l + pZ - x’]‘\,d_l+1 + -+ DL -z,

then the same holds for % I]tv ‘ 0 I3 Iy, Nw . In fact, it is not difficult to check that
Nz I,_n, 0 I,—n

i



NON-CUSPIDAL HIDA THEORY AND TRIVIAL ZEROS 23

fveZ-ai+--+Z xy, +PL- -2y, 44+ +PL-xy, is a primitive vector, then for all
S MNian_Ni(Z)7
-1
Q- <pONZ [n_N) v,gﬂXnCZ-J?1+---+Z'33Nd_1+pZ':UNd_1+1+"'+pZ'33n-
O

Now we want to define a TU;’ -action on the quotient of the exact sequences in Proposition 1.7.1,
and verify that the exact sequences are UP equivariant.

For V € €y with rank r < ng4, we define the UP action on ¥,
dlag(al,...,an,all,..., a, ) € Sp(2n), set 7' = dlag(al,...,an,r,all,...

SPn-r0 s follows For v =

2L.) € Sp(2n — 2r).
We make U]f: N, act on ’VVP" 0 (the space of p-adic Siegel modular forms of degree n — r for the

’ n T

parabolic P,_,) by the [UP"”"—operator attached to 7;/7, N

Let us denote by [UP N - [Uj;D the subalgebra generated by the ¢ (N )-powers of Ui Ny L <i<d.

Here o(N) = N - T, prime factors of ¥(1 — %) Rather than showing the UII: -equivariance of the exact
P[N]

sequences in Proposition 1.7.1, we are only able to show the U,
suffices for establishing Hida theory for 9507,

-equivariance. However, this

Proposition 1.9.3. The exact sequences in Proposition 1.7.1 are U,I;’[N]—equivariant.
Proof. We show the U’ PIN ]—equlvarlance of the projection pg; : VSPTb — V‘;QZ”L“ from VT‘EI;’T’b t

SP,rb

the summand of V. oy / VSPT ! indexed by Ve Pe. l( ) by computing the g-expansions. Pick

v € Lo(p ) such that vV}, contains V (where V;, is identified with X with standard basis), and
we view V as a subspace of X via . Then Ve P (V) implies that Vis spanned by

INd71 0 a1
(xl,...,xn)< 0 w> <a2>’

with w € SL(ng4,Z), w = I,,, mod N, oy € My, »(Z) and oz € M, ,(Z) N GL(r,Z,).
Take s > max {l, o(N)}. There exists

n—r r
n—r{ A B
L(n,Z
r ( ¢ D >EG (n,Z)
. (A7 O _
with A = 0 A, mod p*, Ay € GL(N;,Z), As € GL(n—7r— N;,Z), C =0 mod p*, such that

(A B) (g;) —o.
iy : Sym(n —7,Q) — Sym(n, Q)

In, 0 tA In, 0
= (M) (a)re m (M)
Then for vy, € Sp(2n — 2r,Z) and a, € T,,—(Z,), there exists vy € Sp(2n,Z), a, € T(Z,) such
that

Define

’YN7 p (B pv(f)) = ng\é)’(gp (1‘7(,8’)7 f) .

qexpV
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To prove the proposition, it suffices to check that for 5’ € Sym(n —r,Q)sg and f € anf’r’b,

(pz)“p(N) (pl)v(N) ap /.
(L00) e (8 U ) p () =t (i9(8), UEN)AS).

q- exp,V

We have

LHS of (1.9.1)

— o, ((PPNIy, 0 (r?N Iy, Nz _
g Z 6‘q'eX]I),‘A/' << Ntl' ITL—T—N.L' /8 O In—r—Ni 9 pv(f)
e€MN, n—r—n,; (Z/p?(N)Z)
(1.9.2)
tA PN Iy 0 o7 N
= YN Gp p N; 1 [P N; x
— Z €g-exp ((tB> < Nt[B In—r—N,-) 6 < 0 In_r_Ni> (A B) , f) .

IEMNi,nfrfNi (Z/p‘p(N)Z)
Set

TpA= Al_leg € MNi,n_T_Ni(Z/p‘p(N)), y(z) = NflAl_1 (—INZ- NCL’) Be MNi7r(Z/p“D(N)).

The map = +— x4 is a bijection from My, ,—r—n;, (Z/p“’(N)Z) to itself. One can check that, by the
definition of x4, y(z),

(1.9.3)
_ -1
pSO(N)INi Nz 0\ p""(N)INZ. Nza  Ny(z)
A B A B
0 In—r—Ni 0 C D 0 In—r—Ni 0 C D EF(N)QFSP( )
0 0 I, 0 0 I,

where x, 2z 4, y(z) can be taken to be any lift to Z. Then

P(N) T N P(N) T N
(7 N Yy = (T N ) (o) (48)

InfrfN,L- Inf'rfNi
p?MIy, Nz 0
Wo)( 0" 1500 ) (45)
0
w(N)[ N w(N)] N N -1 e(N) I, N 0
p N; TA P N; TA %(l‘) (AB)_l p 0 NZ[ z o (AB)
n r—N; n r—N; C D n—r—N; C D
I 0 0 I
-1
w(N)[ N w(N)[ 0 -1 e(N)rv. N N
P N; TA y( ) p N; aBy [P N; zs  Ny(z) e
n r—N; n r—N; 0 CD) 0 In—r—Ni 0 CD)
I 0 0 I
p‘P(N)IN NmA (z) s

,,.

Plugging into (1.9.2), we get
(1.9.4)
LHS of (1.9.1)

p?M Iy 0 0 p?M Iy Nz Ny(z)
z : a g t / i
= 831\(;pr (( NtxA In—'r—Ni 0 <tg) B (A B) ( 0 In—r—N,L- 0 ) 9 f .

I,
2EMN, n—r—n,; (Z/p?N)Z) Ny(x) 0 I 0 0
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Next we need to use the condition f € an]lj’r’b to show that its Fourier coefficient in e%xp” (f)
indexed by

p?M Iy, 0 0 t4 WMy, Nzy Ny
(195) Ntl'A In—r—Ni 0 (tB) B/ (A B) 0 In—r—Ni 0
Nty 0o I 0 0 I,

is nonzero only if y = y(x) in My, (Z/p?™)). By Proposition 1.8.2, the coefficient indexed by
(1.9.5) is nonzero only if the radical of (1.9.5) does not contain a primitive vector inside Z - z7 +
o+ ZLexy,  +DPL-xy, g+ -+ pL-xy,. The radical tensored with Q is spanned by the columns
of

-1
pw(N)[Ni Nz4 Ny g B p PN Ny B P_“O(N)INi —p ¢ Nz 4 P
0 In—v—n, O I = 0 0 In—r_n; ,
0 0 I, "

which contains no primitive vector in Z - a7 + -+ +Z-xy,  +pL-zy, 4+ -+ pL-xz, only if

Ny + (INZ, —Na:A) A'B=0 mod p*™),

and this equation is satisfied exactly when y = y(x). Therefore, the coefficient indexed by (1.9.5)
is nonzero only if y = y(z) in My, (Z/p*™)), and from (1.9.4) we get

LHS of (1.9.1)

P(N) T 0 0 ©(N)
_ YN Gp P 1 Ni tA / P INi Nea Ny
= Eg-exp Ny In—r—n; O B /B (A B) 0 In—p—n; O ) f

e€MN, n—r—n, (Z/p?N)T) Ny 0o I 0 0 I
yeMNi,r(Z/pW(N)Z)

: p?MiIy, 0 . ¢y N
— Z ng\éxgp << N%N s, > 1‘7(5’) (p . N; Inf;_) ,f>
TEMN,; n—nN,; (Z/p*N)Z)
=RHS of (1.9.1).

2s
Proposition 1.9.4. Let s > m,l. Then (szqu) anf’r C anf’r’b.

Proof. By Proposition 1.8.2, what we need to show is that for all vx € Sp(2n,Z), a, € T(Zy),
fe Vrs?’“ and 8 € N~15%(X,,)>o whose radical is of rank r and contains a primitive vector vg
inside Z -2l + -+ Z-xy, +DPL-xN, 4+ DL,

a 2s
Py <B, (V) f) 0.
One can easily check that for all z € My, | ,,(Z),

pSIN Nz - * * * s * s *
@. Od—l I UﬁﬂXnCZJ;l_'_+Z$Nd_1+pszd_1+l++pZ$n’
T

N I, 0 I,
Z-xy,  +p°LZ-xy, 1+ +Dp°ZL-xy. Since by Proposition 1.9.1,

" 2s ~5 N ST 0 ST Nz
s (5 (Ui ) 1) = X e (TR D) e (P ) (0

IEMNdfla"d (Z)

S S
i.e. the radical of (p Ny O> I3 (p TNy N:c> contains a primitive vector inside Z -7 +- -+
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we reduce to showing
S
5 (1 (00 ) ) 0.
for 8 whose radical contains a primitive vector vg inside Z - z7 +--- +Z - x*Nd_l + p°7Z - :E*Nd_1+1 +
-+ DL xy,.

Write vg = t(v,&l, ...,U8y). Then p® | vg;, Ng—1+1 < i < n, and there exists 1 < j < Ny_; such

that vg ; is not divisible by p. Put wg = Yo,... .0,081,0,...,0,—vg ;) € Z™. Then I, — Nn-vs'wg
N——

j—1
belongs to GL(n,Z) for all integer n. Moreover,

0 0  Nnug;-vga

I, — Nn-vgwg = I, + 0 -0 Nm}ﬁ’.j'vﬂ’j mod Np®.
0 0 Nnvg,j - vg,Ng_s
0 0 0

Let Tg =g, t(’l)g,l, <o 7UB,Nd,1) € ZNa-1. Then

-1
I,—1 Nnx . s
< 0 I, 6) (In —-n- Uﬁtwg) =1, mod Np

and
(1.9.6)

~1
*I.1 Nz+N In-1 N s
(p J 1 r I 77%6) (In — 1 - vg'wg) <p 0 ! Ix> € Im(I'NTsp(p®) = GL(n,Z)).

By definition the vector z5 € ZNd-1 is not divisible by p. Thus we can pick C C My,_, n,(Z/p%)
such that

Mny_yna(Z[p°) = (Z/p®) - 25 & C.
We have

25 (8, (Uv,) f)

_ Z 5('Yp,d—1)7S'YN7aP p’In, , 0 B p’In,., Nz f
= g-exp NtiL‘ Ir 0 Ir ’

;UGMNd71 nd(Z/ps)

_Z Z (7Pd1 SN ap p°IN, , 0 5 p’In, , Nx+ Nnxzg !
€g-exp Nta; + Nnt'fﬂ Ir 0 Ir ) .

z€C neZ/p°Z

Applying (1.9.6), we get
S
s (5. (08) 1)
(C%% N1 ST 0 ST Nx
= Z Z Eq- gx(i) 1 N <<p ]\J[\é;fl Ir> (In -1 ZUBt’Uﬂ) /6 (In -1 UﬁtUJﬁ) (p ](\)[d71 Ir ) ’ f) .

x€C neZ/p’Z
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Since vg belongs to the radical of 3, we know that (In —n- wﬁtvg) 153 (In —n- vg%vg) = f, and
S
Eqxt (B, ( PNy 1) f)
Z Z (O a-1) "IN 0 p’In, , 0 15} pIn,, Nz f
o Eq-exp Nt I, 0 I. )’

zeC neZ/psZ

Z ’ypd )N ap p’In, , O 154 pIn,, Nz f
o Eg-exp Ntz I, 0 I, )’

zeC
=0.

O

1.10. Hida families of p-adic Siegel modular forms vanishing along strata with cusp

labels of rank > r. Set UP H N We first show the existence of an ordinary projector on
v"SP by applying induction on r and using V"5? plus Proposition 1.9.4.

Proposition 1.10.1. For each f € V5P7 the limit lim (Uf)j! f exists in VI,
Jj—00

Proof. We remark that for any endomorphism of finitely generated Op/p™-modules, its j!-th power
stabilizes when j is large enough.

Given f inside an Op/p™-module with an action by U , we define the following finiteness
property for f.

ne(N)

(F)  The submodule generated by (UjﬁD ) f, m >0, is finitely generated over Op/p™.

It suffices to show that (F) holds for all elements in anf’r. For » = 0 this is known thanks to
[Hid02, Pil12]. Now assume (F) holds for anf’rfl. Due to Proposition 1.9.4, we only need to show

that (F) for all f € Vrfli’r’b. Take f € Vyg};,r,b’ since (F) holds for the quotient in (1.7.9), there
exists ag,a1,...,aj € Of such that

(1.10.1) g = (UP)VTIA Zaz fevipr,

Then we apply (F) for (1.10.1). There exists bg, b1, ..., bj, € O such that

J1

(Uf)(j2+1)<ﬂ(N) <(U;)(j1+1)<ﬂ(N) = Z a; (UIJ)P)W(N) f)

1=0
J2 ) I .
_ Z b (U;)W(N) <(U§)(Jl+1)¢(N) = Z a; (U;)M(N) f) .
s=0 i=0

Therefore (Uf)(jﬁjﬁQM(N) f belongs to the Op /p™-span of f, (UE)W(N) Iy, (UE)(”H?H)@(N) f,

and (F) holds for f. O
The above proposition shows that lim (sz )j ' can be well defined on ¥SP7. Define the P-
j—00
ordinary projector on V3P as
ep = lim (U}).

J]—00
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It is an idempotent projecting the spaces into the subspaces spanned by generalized [Uf -eigenvectors
with eigenvalues being p-adic units. Similarly a P,_,-ordinary projector can be defined for the
quotient terms in the exact sequences in Proposition 1.7.1.

Set

rI/E-OI‘CI = eP‘VSPJ, = eP{VSPJ"b’ {V‘(;,Pn—r- ord = eP,L,,. ‘VVSPH7T7O’ V 6 Q:V7 rkV =r g nd
Applying ep, ep, . to (1.7.10), we get

(1.10.2) 0— ‘V;,:;d — Vpord — EB Zp[Tp(Zy)] Qzp[Tp, . (Zp)] (V&Pn_r-ord — 0.

Veey/T
rkV=r

Define 'V];’_Zrd to be the Pontryagin dual of 7/}
define 937, Then (1.10.2) gives

i.e. Homgz, (Vp_q> Qp/Zp), and similarly

ord?’
r-ord’

0, 7% r—1,%
(1103) 0— @ (VV,PH,T—Ord ®ZPHTPH7T(ZP)H ZPIITP(ZP)]] _>rVP—ord — (VP—ord — 0.

VG@V/F
rk V=r

Let Ap = Op[Tp(Zy)°] (resp. Ap, , = Op[Tp, . (Z,)°]), where Tp(Zy,)° is the maximal p-
profinite subgroup of Tp(Zy) (resp. Tp,_, (Zy)).

Proposition 1.10.2. fl/;’jkord, 0 <r < mng, is a free Ap-module of finite rank.

Proof. We prove the proposition by induction. For » = 0 the control theorem in [Pil12, Théoréme
1.1 (7)] for ngfgrd (resp. fl/&;nﬂ_ord) says that it is a free Ap-module (rep. Ap,  -module) of finite
rank. Suppose that ’V;,_foig is a free Ap-module of finite rank. Then the terms at the two ends of
(1.10.3) are free Ap-modules of finite rank. Since Extllxp (M, N) vanishes if M is a free A p-module,

];’_Zr 4 Is isomorphic, as a Ap-module, to the direct sum the terms at the two ends of (1.10.3). O

Now we have established (i) in Theorem 1.3.1.
For 0 < < ng, the Op[Tp(Z,)]-module of Hida families of p-adic Siegel modular forms ordinary
for the parabolic P vanishing along the strata associated with cusp labels of rank > r, is defined as

T PO Ty *
P-ord *— HOIHAP ({VP—ord’ AP) :

Similarly, define

0 PRp— 07*
MPnfr—ord = HomAPnﬂ <{VV,Pn_r-ord’ APnfr) .

Applying Homy ,, (-, Ap) to (1.10.3) gives (iv) of Theorem 1.3.1.
Let ™ € Homeont (T p(Zp),@; ) be an arithmetic dominant weight. Attached to it is a prime
ideal Prp of Op[Tp(Zy)]. Then unfolding the definitions, one gets the following isomorphisms,

(1.10.4) brord ® Or[Tp(Zy)] /Per = Hom ((Vp.oralt”])*, OF) — limlim ep V" "]
m ]

equivariant under the action of the unramfied Hecke algebra away from Np and the [Uf -operators.
Combining (1.10.4) with the embedding (1.2.1) proves (%) in Theorem 1.3.1.
The proof of (iii) relies on the uniform boundedness with respect to k > 0 of the dimension of
ordinary forms of weight ¢+ k [TU99], and the argument proceeds in the same way as [Hid02, §3.7].
For applications in §2.6, define '[[‘};’{\gr 4 as the Op[T'p(Zy)]-algebra generated by all the unramified

Hecke operators away from Npoo and the U,-operators U;’ 1 sz 9y sz » acting on M5 ;. The

algebra T;’Zr q is finite and torsion free over Op[Tp(Zy)]. Also, the uniqueness of the P-ordinary
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vectors (the last statement in Proposition 2.3.2) plus the Zariski density of arithmectic points in

Homeont (T p(Zp),@; ) with tf > tg > > t[I; > 0 implies that TO N org and T"d’ 4 are reduced.
X

2. p-ADIC L-FUNCTIONS

In this section, for a given geometrically irreducible component of Spec (T%ﬁrd ®F ), we con-

struct the (d + 1)-variable p-adic standard L-function and its d-variable improvement as called in
[GS93] (missing the cyclotomic variable). The construction uses the doubling method formula as
the integral representation for the standard L-function. The d-variable improvement will be used
to employ the Greenberg—Stevens method to prove Theorem 3.3.5 on the derivatives of cyclotomic
p-adic L-functions at the so-called semi-stable trivial zeros. The Hida theory for non-cuspidal Siegel
modular forms developed in the previous section will be used for the construction of the d-variable
improved p-adic L-function.

Before starting the construction, we briefly mention several works on constructing p-adic L-
functions using the doubling method. It is Bocherer and Schmidt [BS00] who first carried out
such a construction in the special case where 7 is fixed and is GL(n)-ordinary with 7, isomorphic
to a scalar weight holomorphic discrete series. Later, the case where 7 varies in a cuspidal Hida
family which is ordinary for the Borel subgroup is treated in [Liul6b] for symplectic groups and
in [EW14, EHLS16] for unitary groups. Here we look at the more general case of P-ordinary Hida
families for a general parabolic P. Moreover, we also construct its improvement as an important
input for applying the Greenberg—Stevens method.

2.1. Generalities on standard L-functions for symplectic groups. Let 7 C Ag(G(Q)\G(A))
be an irreducible cuspidal automorphic representation of G(A) and & : Q*\A* — C* be a finite
order Dirichlet character. Take S to be a finite set of places of Q containing the archimedean place
and all the finite places where , or &, is ramified.

For v ¢ S, there exist unramified characters 0; : QX — C*, 1 < i < n, such that =, is isomorphic

. . G(Qy)
to the normalized induction IndB (@ )(91,

..,0p) as G(@v) representations. Put a,; = 0;(qy)
where ¢, is the cardinality of the residue field of Q,. Then av Ireo- ,ain are the Satake parameters

of 7,, and the unramified local L-factor (for the standard representation “G° = SO(2n + 1,C) —
GL(2n + 1,QC)) is defined as

L”U(Sv Ty X §> =(1- g(QU)Qv_S>_1 H(l - g(Q’u)O‘v,iqv_s)_l(l - g(%) &, zlqv_s) L
=1

The analytic properties (meromorphic continuation, functional equation, location of possible poles)
of the partial standard L-function

L’ (s,mx &) = HL (s,7my X &)
véS

are established in [GPSR&7, KRI0].
Assuming 7o, = Dy, the holomorphic discrete series of weight t = (t1,...,t,) (sot; > -+ > ¢, >
n 4+ 1), the critical points of L%(s,m x &) are integers sq such that

1<s9<ty,—mn, (=1)°T" =¢(-1), orn+1—t, <so <0, (1) =¢(-1).

The algebracity of these critical L-values divided by certain automorphic periods (expressed in
terms of Petersson inner product) is obtained in [Har81, Shi00, BS00].
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2.2. The doubling method for symplectic groups. One standard way to study the standard
L-function L (s, wx¢ ) and its critical values is to apply the doubling method developed by Piatetski-
Shapiro-Rallis [PSR87], Garrett [Gar84] and Shimura [Shi97].

For the convenience of the reader, we briefly recall the setting for the doubling method used in
[Liul6b]. Let V' be another copy of V with standard basis €),... e}, f1,..., f,. Pt W=V V|
for which we fix the basis e1,...,en, €\, ..., €0, f1,.. oy fn, f1s---, f1. Then W is endowed with a
symplectic pairing induced from that of V and V. Let H = Sp(W) = Sp(4n). There is the
(holomorphic) embedding ¢ of G x G into H given by

t:GxG— H

a 0 b 0

a b a b 0 ad 0V
<c d>x< / d’>H ¢c 0 d 0
0 ¢ 0 d

The space W = > | Ze; + Zée, is a maximal isotropic subspace of W. Its stabilizer Qy is the
standard Siegel parabolic subgroup of H. Besides W, there is another maximal isotropic subspace
relevant to us, which is W9 = {(v,9(v)) : v € V}, where ¥ : V — V is the involution given by the

I, 0
pairing but has similitude —1. The space W< is spanned by e; + fl, fi+e€l, 1 <i <mn. The doubling
Siegel parabolic Q% is defined to be the stabilizer of W¢. We have

. 1 . . .
matrix <0 n) with respect to our fixed basis. Note that ¥ dose not preserve the symplectic

QY =8QuS™' with S=

Too
ofif o
ofoo
Hooo

For an element ¢ € G, define ¢’ to be ¥g € G. This conjugation by o is called the MVW
involution. The MVW involution of an irreducible smooth representation of G(Q,) is isomorphic to
its contragredient [MgVW87, p. 91]. For ¢ € 7 we define its MVW involution ¢’ as ¢Y(g) = o(g?).
Thanks to the multiplicity one theorem [Art13], ¢V lies inside 7 C Ag(G(Q)\G(A)).

Remark 2.2.1. Our formulation here aligns with those in [Gar&4, Shi00] but differs from [GPSR&7]
in that the embedding used in [GPSR&7] corresponds to the above defined ¢ composite with a
conjugation by ¥ on the second copy of G. Hence in our later computation using formulas from
[GPSR&T7], the involution ¥ shows up a lot.

Let s be a complex variable. Denote by & (resp. £9) the character of Qg (A) (resp. Q%(A))
. A B A B _ s H(A
sending <0 tA_l) (resp. S <0 tA_l) S71) to &(detA)|detAl*. Let Ig, (s, &) = IndQé(g)fs
H(A)
Qi (A
. 2 1/2
H(A) that satisfy f(gh) = €.(a)0g,; (@)f (1) (resp. f(ah) = €2 (2)d,)2 () (1)) for all h € H(A) and
q € Qu(A) (resp. q € Q%(A)) Recall that the modulus character dg,, takes value ]detA]%;l at

(resp. IQ% (s,€) = Ind )g§>) be the normalized induction consisting of smooth functions f on

(61 t AB,l . The local degenerate principal series I, .(s,€), I, o ,(5,€) for all places of Q are
H>
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defined similarly. There is the simple isomorphism
IQH(S7§) — IQ?I(Saf)
F(5,6) — fO(s,€)(h) = f(s5,6)(S"h).
Given f(s,§) € Ig,(s,&), the associated Siegel Eisenstein series is defined as

E(h,f(5,9)= > f(590h) = > fs,&h).
YEQH(Q\H(Q) 7EQY (Q\H(Q)

This sum is absolutely convergent for Re(s) > 0 and admits a meromorphic continuation.

For a finite place v we fix the Haar measure on G(Q,) such that the maximal compact sub-
group G(Z,) has volume 1. For the archimedean place we fix for G(R) the product measure
j% 2):a+%ﬁ€lﬂnj@} which
has total volume 1 with the one on G(R)/Kg o = H, = {z € Sym(n,C) : Imz > 0} given by

det(y)™ ! T[] dwijdy;;. The Haar measures on G(A) is taken to be the product of the local
1<i<j<n

of the one on the maximal compact subgroup Kg oo =

ones.

For a given irreducible cuspidal automorphic representation 7 C Ay(G(Q)\G(A)) and its com-
plex conjugation T C Ay(G(Q)\G(A)), which is isomorphic to the contragredient of 7, we fix
isomorphisms 7© =2 ®; my, and T = ®; 7y such that for factorizable ¢1,p2 € 7 with images

®v Plo € ®;, 7y and ®v EQ’U S ®; Ty, we have
(01, @9) = [ [ {10, Bo0), »

v

where the pairing on the left hand side is the bi-C-linear Petersson inner product with respect
to our fixed Haar measure on G(A) and the pairing on the right hand side is the natural pairing
between m, and its contragredient 7.

For a local section fy(s,§) € Ig, »(s,§), define

va(s,ﬁ) T — T
o (The) (9) = /G o P 00 D)plal

We need to be careful with the convergence issue here, especially for v = p, oco. The doubling local
zeta integral is defined as

Zﬂ(fv(s>€)7 "y ) C Ty X 7~rv —C
(2.2.1) (v1,02) ¥ Zy(fo(s,§),v1,02) = / £2(5,) (g, 1)) (mo(go)v1, B2),, dugo-
G(Qu)

For factorizable ¢1, o € m, we have

Zv(fv(57§)7¢1,117902ﬂ)) —
— (@15 92) -
<(p17’l}7 (1027U>'U

(Tt (s.6)P1, P2) =

Given ¢ € 7, we define the linear form

25 A(G(Q) x GQ\G(A) x G(A)) — A(G(Q\G(A))

F— Z5(F) / F(d,9)p(g)dg"
G(Q\G(A)
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The doubling method formula is a formula on

L (EC, f(s,6)laxa)

involving the partial standard L-function of 7 and some local zeta integrals.
For a finite place v where £ is unramified, we denote by f,"" (s, &) the unique section in I, (s, &)
that is fixed by the maximal compact subgroup H(Z,) C H(Q,) and takes value 1 at the identity.

Theorem 2.2.2 ([GPSRS7, Garg4, Shio7]). Suppose f(s,£) = Q¢s fi(5,8) @ Q,es fo(s:€) s a
section inside to 1o, (s,§). If p € K& with K2 = [Togs G(Zy), then

v
(2.2.2) L5 (E(, f(5,6))|axa) = d°(s,6) " LS(H* T xE)- (H Fol @‘P> :

veS

Equivalently for all factorizable @1, po € ﬂ'Ké,

_ 9\ _ 38 -1 S 1
<E('>f(87£))|GXG’ ©1 ® s02> =d (S’g) L (8 + 577‘- 8 f) ' g <¢1,v’ 9027U>u

Zv(f’v(sv g)a@l,vv 902,1)) _
(@1, 2) -

Here d°(s,¢) = [Togs do(s,§) with

dy(s,&) := Ly(s + 2”; 1,5) []Lv(2s+2n+1-25¢).

J=1

For later use we also define the normalized Siegel Eisenstein series

E*(h, [(5,€)) = d°(5, ) E(h, [ (5,€))-
Then the identity (2.2.2) from the above theorem becomes

Y
(2.2.3) L5 (E*(, f(5,€))loxa) = L° (8+* mxE)- (H Fo(5.6)P ) :
veS
The identities provided by the doubling method reduce the study of the standard L-function
L3(s,m x &) to that of the Siegel Eisenstein series F(-, f(s,£)), or more precisely its restriction to
G x G, and local zeta integrals at places v € S.

2.3. The modified Euler factor at p. Before starting the construction of p-adic L-functions, we
first recall some basic theory of Jacquet modules and unfold the definition in [Coa91] in our case
to write down explicitly the expected modified Euler factor at p in the interpolation formula. We
also define the modified Euler factor at p for the improved p-adic L-function, and see that when
restricting to the leftmost critical points with y = €’ 7 » the difference of the two factors lies inside a
finite extension of Op[[Tp(Zy)°]).

2.3.1. Jacquet modules and Uf-opemtors. Suppose m, is the component at the place p of an ir-
reducible automorphic representation m generated by a P-ordinary Siegel modular form. Our
discussion on Jacquet modules aims to: (1) show the uniqueness of the P-ordinary forms inside m,
or more precisely that the space of P-ordinary Siegel modular forms projects into a one dimensional
subspace inside m,; (2) explain how to retrieve the information on 7, from the eigenvalues of the
TUf -operators. The uniqueness result will also play an important role in our later computation of
the local zeta integral at p.

Let Pg (resp. SPg, Up,) be the inverse image of P (resp. SP, Up) of the projection (0.0.3).
The Jacquet module of 7, associated to the parabolic Py is defined as

Tpe(mp) = Vo, [{mp(w) -v — v u € Ups(Qy), v € Vi, } -
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It follows from Jacquet’s lemma [Cas, Theorem 4.1.2, Proposition 4.1.4] that Jp, (7)) is naturally
isomorphic to the following subspace of V, ,

(2.3.1) ﬂ {/ mp(up®) -vdu v € pr} ,
ad) UP@(QP)

a=(A1, .y Q1,000 - -
a1>--2aq>0
where p2 = diag(p®,...,p",...,p%, ... .p%, p=® ... p7% ... ,p % ... p %). Denote by Mp

the Levi subgroup of P and we identify it with the Levi subgroup of Pg via (0.0.3). Both Jp, ()
and the space in (2.3.1) are equipped with a natural action of Mp(Q,), and the isomorphism
between them is Mp(Qp)-equivariant.

Given irreducible smooth admissible representations o; of GL(n;,Qp), 1 < ¢ < d, Frobenius
reciprocity gives
(2.3.2)

G ~ 1/2
HomG(Qp) (va:[ndpc(;%al)o-l X 09 X...-X O'd) = HomMP(Qp) (ij(Trp), (Ul X (D) X..-X O-d) X 5P/C;> ,

where dp, is the modulus character sending diag(bi,be,...,bs) € Mp(Q,), b; € GL(n;,Qp), to
H?:l |det(b7,) Z2)n+l+ni—2Ni.

Suppose that the P-ordinary Siegel modular form generating 7 is of weight t = +(t"") with
tf > > tg) >n+1, 80 Ty = Dz@p). Denote by Ty(tP) the subspace of m consisting of forms
whose projection to m belongs to the lowest Koo-type in D,p)- There is the canonical embedding
(2.3.3)

QDG(':ecan) ~ ~
HO (Xf;ﬂrsp(plﬁ wz(tp)> — Mz@P) <Hn7 rn FSP(pl)) - A (G(Q)\G(A)/F N FSP(pl>>Z@P)
from Siegel modular forms defined as global sections of the automorphic sheaf w; into automorphic
forms on G(A) of Ko-type t = 1(t") (see, for example, [Liul6b, (2.3.1)(2.4.1)] for precise definition
of this embedding).
L i
Under the embedding (2.3.3), the Ug—operator U;a =11 ([[J;;i)a , for a = (a1, a2, ...,a,) with
= Zzl b

a; > ag > --- > ay > 0, on the left hand side corresponds to the following operator on the right
hand side,

(2.3.4) U}fg - p<£+2pa,c,g> / o (up) du,
SPG(Zyp)

where pg.. = (”?_1, ”7_3, ceey I_T”) is the half sum of positive compact roots of G.
We have assumed that 7 contains a P-ordinary Siegel modular. It follows immediately from the

definition of the P-ordinarity and (2.3.1), (2.3.4) that
jPG(ﬂ_p)SL(nl,Zp)><~~-><SL(nd,Zp) 7& {0}7

which combined with the Frobenius reciprocity (2.3.2) implies that there exists spherical represen-
tations o; of GL(n;, @), 1 <14 < d, and continuous characters 71, ..., nq of Q, taking value 1 at p,
such that

(2.3.5) Tp — Indgg%l)(al ®@mn odet) K (09 @ np odet) X - - X (o4 ® ng o det).

In particular, 7, embeds into a principal series. In general, m, being isomorphic a subquotient of a
principal series is equivalent to 7 containing a finite slope form.
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Remark 2.3.1. It does not make sense to say P-ordinarity for a purely local representation m, as
the normalization in the definition of the U{; -operators depends on the weight of the holomorphic
discrete series at the archimedean space. However, being of finite slope is a purely local property.

Next, we say more about the relation between the Satake parameters of the o}s in (2.3.5) and
the eigenvalues of the [Ug -operators. Let § = (61,...,60,) be an n-tuple of continuous characters
of Q, (valued in C*), viewed as a character of T(Q)) via our fixed isomorphism of GJ, with Tg,

such that m, is isomorphic to a subquotient of the principal series Indg(GQEa)p)Q. We consider the

eigenvalues for the [UP action on Ind B( (Q)p)ﬁ

Denote by Wg (resp. Wp,) the Weyl group with respect to Tz (resp. the subgroup of Wg
that maps Pg to itself). Define [W¢g/Wp,| to be the subset of W¢ consisting of representatives
of smallest lengths of elements in Wg/Wp,. An element w € Wg acts on € by sending it to
0" (t) = (w™tw), t € Tg. Like 6, via our fixed isomorphism between T and G?,, we can write
0" as an n-tuple of characters (6Y,...,0%).

It follows from [Cas, Proposition 6.3.1, 6.3.3] that the Mp(Qy)-representation Jp, (Indiﬁ%&b@)
has a filtration with graded pieces as

GL(n,Qp) w w —1/2 ¢1/2
X|1 ndy (S (08, v 0K, ) - 05, 02|

where B, is the Standard Borel subgroup of GL(n;) with modulus character § Bn, -

Thus, the dimension of the SL(n1,Zy) X - - - X SL(ng, Z;)-invariant space inside Jp, (7)) is at most
(Wa/Wp,| =2"16,/(6y, x -+ x &y,)|. Each w € [Wg/Wp,] corresponds to an eigensystem of
the [Ug -operators, and the existence of a P-ordinary Siegel modular form in 7 indicates that there
exists w € Wy satisfying

, w e [Wa/Wr],

ng

. 1
(2.3.6) > v (eﬁi_ﬁj(p)) S <tf N, 7‘; ) | 1<r<n;,1<i<d,
j=1
N
i Nioi 4+ N;+1
(2.3.7) Sy (08, 150) = - (tf - 1+2+> 1<i<d
j=1

These conditions on the p-adic valuation of 6", 1 <i < n, imply

(2.3.8) —(ti = Nic1+ 1) <0 (0%,_, 11(0), -, vp (0%, (p)) < —(t: — Ny), 1<i<d.

It is easily seen that given @, there is at most one w € [Wg/Wp,]| to make (2.3.8) hold. By
rearranging the §:"s, we can assume that w = 1 in (2.3.6), (2.3.7), (2.3.8), and that v,(61(p)) <

- < wp(Oa(p)) <0.
The above discussion proves the following proposition.

Proposition 2.3.2. Suppose that w is an irreducible automorphic representation of G(A) con-
taining a nonzero P-ordinary holomorphic Siegel modular form of weight 1(t7), th >n+1, and
p-nebentypus e’

e There exists unramified characters 0y,...,0, : Q) — C* satisfying
Q|Z§ = (ef_l,...,ef_l,...,65_1,...,65_1),
ny nq
0(p) = (a1, 2, ..., an), v <=t = N1 + 1) S vplan,_+1) < -+ S vplan;)

p
—(ti - Nz) S —(tl - NZ + 1) S Up(OéNiJrl) S e
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G@Q) p
BG(QP)*'
o Let a; be the eigenvalue for the action of UII;:Z- on the P-ordinary form in . Then an,,...,an,

are p-adic units given by

such that m, — Ind

: ny (17— =L
(2.3.9) ay, = Hp I\ 2 ON; 1 4+10N; 42" QN
Jj=1

More generally, for N; <i < Nji1, the eigenvalue a; is an p-adic integer given as

N (P _Nj+itl
(2310)  a=ay, p" (=) > ON,+0(1) UNj+0(2) ** ONj+o(r)-

0€6n; 41 /GiN;X6N; i

e Inside Indgg%a)p)ﬁ, there is a unique generalized eigenvector (up to scalar) for the operator Uf =

C-l: UL\ with eigenvalue being a p-adic unit. In particular, under the projection m — m,, the
i=1~p,N; p
image of P-ordinary Siegel modular forms is one dimensional.

Remark 2.3.3. Let @ be as in the above proposition. If 65 = triv and o, = p~!, since the P-

@) g
. (@)= . . L
mp, there should be a nontrivial monodromy between the eigenspaces with Frobenious eigenvalues

1 and o, = p~ L.

ordinary condition implies that m, — Indg , in the Weil-Deligne representation attached to

2.3.2. The modified Euler factor at p for p-adic interpolation. If we consider the Weil-Deligne
representation attached to m,, the eigenvalues of Frobenius are 1, afl, ..,a;ct. Meanwhile, for
the p-adic representation associated to 7 [Art13, CHLNI11, Shill, CH13], the Hodge-Tate weights
are 0, £(t7 —1),..., £t —n1), ..., £t — (Ng—1 +1)),...,£(t) —n). Thus, (2.3.6) and (2.3.7)
essentially say that the Newton polygon is above the Hodge polygon and the two polygons meet
at the points with horizontal coordinates 0, N1, No,...,Ng,2n+1— Ng,...,2n+1— N9, 2n+1 —
Nl, 2n + 1.

Since the definition of the modified Euler factor in [Coa91], formulated in terms of the Weil-
Deligne representation, does not depend on the monodromy operator, our above description of the
Weil-Deligne representation associated to m, is enough for us to unfold the definition in this case
to obtain the explicit modified Euler factor at p in terms of the UII,J -eigenvalues.

From now on we fix a (tame) finite order Dirichlet character ¢ : Q*\A* — C* unramified
away from Noo. Suppose x € Homcont(Z;,@; ) is of finite order. We also view it also as a C*-
valued character of Q*\A* which sends the uniformizer in Q, to x(q,) for finite places v # p. In
the same way, we view the finite order characters ef e 65 as adelic characters. Let 6 be as in
Proposition 2.3.2. Denote by o; the unramified representation of GL(n,Q,) such that O'Z'®65 podet =

Indg:i(?égp ) (9Ni71+17 e GNZ.). Denote by o; the contragredient of o;.

The modified Euler factor at p for p-adically interpolating the critical values of L(s, 7 x ¢x) to
the left of the center is

d
(2.3.11) Ey(s,mx ox) = [[w (1 - 5,606, x; "€l -
=1
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Here we omit our fixed additive character e, from the usual notation for gamma factors. One can
also write the gamma factors in terms of the Satake parameters as

(2.3.12)
Ni 1— —1 _—1 s—1
¢f(1’) O‘]v fs , if XeP_l is trivial,
- —1.-1.P J=N;_1+1 1=@p(P)ajp Z
(1= 5,05 ® by Xp eivp) - Z P-1 o 1 e ™)
G(Xpei,p_ ) . NH 11 <¢p(p)*1aj_ prl) , otherwise,
J=INj—1

P-1

where px€i ) is the conductor of Xef ~1 and the Gauss sum is defined as

G(Xpefj;l) :/ } Xpefl;l(x)ep(x) dx, m>0.
p~ "Ly

We also define the improved modified Euler factor at p for the d-variable improved p-adic L-
function. The improved p-adic L-function is supposed to interpolate the leftmost critical L-values
with y = 65. Define

d-1
B (s, m % gel) = [ w (1 — 50 ® ¢;16£Z;165p) Lpls:00© 0p)
i=1

It is easy to see that by (2.3.9)(2.3.10) both the E,(s, 7 x ¢x) and Ep "™ (s, 7 x ¢el’) can be written
in term of the Uzlf -eigenvalues of the P-ordinary Siegel modular form contained in 7.
We have

(2.3.13) Ey(n+1—t5,mx ¢el) = AP (m x ¢el)) - Ef‘imp(n +1—tF 7 x ¢el)
with
u P
Aoy = [T (1—apm)ay'p ™)
j=Ng_1+1

ng—1 ng—1l-—r

ng—1

_ _ nq _ _ ng—r

= 1+a,'an,, (—¢p(p) 'p2 ) +a,t ) an, (—¢p(p) p~ ) -
r=1

Since all the a;’s are the U]]; -eigenvalues of the P-ordinary Siegel modular forms, when (the eigen-
system of) 7 varies in a P-ordinary Hida family, A" (7, ) becomes a d-variable p-adic analytic
function lying inside a finite extension of Op[Tp(Z,)°]. This explains why when restricting to the
leftmost critical values with y = 65 , one expects the existence of the improved d-variable p-adic
L-function with the improved modified Euler factor Eéj 'imp(w, ¢) at p (improved in the sense of
saving part of the numerator from Ep(n + 1 —t§, 7 x ¢el)).

2.4. The choices of local sections for the Siegel Eisenstein series. Our choices of local
sections for Siegel Eisenstein series on Sp(4n), and the formulae for local Fourier coefficients as well
as the doubling local zeta integrals corresponding to those selected sections are summarized in the
two tables in §2.4.8. This section explains the strategy for the section selections. The computation
of the zeta integrals at the place p is done in §2.8.

2.4.1. Criteria for selecting sections. We first describe the context and criteria for choosing the

P
space for Hida families which are ordinary for the parabolic for P. An arithmetic point in it

sections for Siegel Eisenstein series on Sp(4n). Recall that Homeopt <T p(Zp),@X) is the weight

corresponds to a character 7 = 755; . pr € Homeont <Tp(Zp),@; ), a product of the algebraic
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P _ 4P _ (4P
ag =t = (t1,

P

part T ...,tdp) and the finite order part IfD = = (... ,€y ). Similarly, the

parameterization space for the cyclotomic variable is Homeont (Z;,@; ), and an arithmetic point

in it is a character K = Kalg - K¢, With algebraic part s, = k and finite order part xf = x.
We call an arithmetic point t (resp. (k,7!)) admissible if ¢t} > --- > t§' > n + 1 and (resp.
tf > >th >k>n+1).

Let €p be a geometrically irreducible component of Spec <T(1);_]er ®op F ) The projection of

%p to the weight space is one of its |Tp(Z/p)| connected components. We say the parity of €p is
compatible with ¢ if all the points ¥ in that connected component satisfy t4'(—1) = ¢(—1).

A point z € €p (@p) is called arithmetic if its projection 7 inside the weight space is arithmetic,
and an arithmetic pair (x,) (resp. an arithmetic point z) is called admissible if (k,T) (resp.
t) is admissible. If the Hecke eigensystem parametrized by = appears in an irreducible cuspidal

automorphic representation 7, € Ao(G(Q)\G(A)) with 75 o0 = D, ry, we call such an z classical,

and one can define the corresponding LVP> (s, 7, x ¢x), Ep(s, 7z X ¢X), E}™P (., ¢). Note that

because of the lack of strong multiplicity one, 7, may not be unique, but the partial L-functions
and the modified Euler factors at p do not depend on the choice of 7.
The (d 4 1)-variable p-adic L-function is intended to interpolate the critical values

Ey(n+1—Fk,mp x ¢x) - LNP®°(n +1 -k, m, X ¢X)

divided by a Petersson inner product period for (k,z) admissible with x(—1) = ¢(—1) and =z
classical (by our construction, if (k,z) is admissible but z is not classical, one can see that the
evaluation of our p-adic L-function there is 0). Its d-variable improvement (assuming the parity of
¢p is compatible with ¢) is supposed to interpolate

E, P (n+ 1=ty mo % deg) - LN (n+ 1t 7m0 X dey)

divided by a Petersson inner product period for classical x.
From Theorem 2.2.2, we see that in order to get the above L-values, we need to pick a Siegel Eisen-

stein series on Sp(4n) with nice properties for each admissible (£, ") € Homcont (Z X TP(ZP,@; )

with #x(—1) = ¢(—1) as well as for each admissible t7 € Homcont(Tp(Zp,@;)) with 8 (-1) =
¢(—1), so that we can deduce the desired congruences among the L-values from those of the Siegel
Eisenstein series. Picking the Siegel Eisenstein series amounts to selecting sections in the degenerate
principal series.

More precisely, for (r,t") (resp. =) as above and each place v of Q, we need to pick a section
fixP o (xesp. frp,) from 19, 0(B5 — k, ¢x) (vesp. I, o(25E —tF ¢el’)), such that

e We have enough control of the local zeta integrals at places dividing Npoo. In particular,
we are able guarantee the nonvanishing of the archimedean zeta integrals and compute the
zeta integrals at p.

e The collection of the Eisenstein series E(-, f, rr)|axc (tesp. E(:, frr)|axa) (after suitable
normalizations) assembles to a p-adic family.

The way we treat the second requirement is via looking at their Fourier coefficients and invoking
the g-expansion principle. Also, the second requirement provides us a hint for making the choices
of the sections at p based on our selection of archimedean sections.

2.4.2. The Fourier coefficients for Siegel Eisenstein series. For 3 € Sym(2n,Q), the 8-th Fourier
coefficient of E (-, f(s,€)) is defined as

- I, S _
B f)e= [ B () e e s
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Suppose f(s,£) = @, fo(s,€) is factorizable. If det(3) # 0 or there exists a finite place v such that

fu(s,€) is supported on the “big cell” Qg (Qy) (Ig 2") Qr(Qy), then
(2.4.1) Eg(h, f(s HWBU (h, f(5,€))

with
_ _1271 _
Woalo s )= [ 0 ((, "0 ) eul-TeBs) s

-1
For z =  + v/—1y, a point in the Siegel upper half space Hy,, set h, = 1; - <\/O§ x\/yﬂl > €
H(A). It is a standard fact that if E(hg, f(s0,§)) is nearly holomorphic as a function in z for
some sg € 271 - 7Z, then Eg(hz, f(s,€)) gives the B-th coefficient of the g-expansion associated to

E(h, f(s0,€)) viewed as a p-adic form by the maps (1.2.1)(2.3.3).
2.4.3. The unramified places. For v{ Npoo, we simply take
fn,IP,v = le)lr(sv(bX)‘s:%fkv fIP,U = f;r(8,¢65)}8:%_tdp :

The formulae for Wg (LU, f,ﬂp’v) and Wg (LU, fIP’U) are computed by Shimura [Shi97, Theorem
13.6, Proposition 14.9] and are listed in the tables in §2.4.8. The formulae for the local zeta integrals
are part of Theorem 2.2.2.

2.4.4. The archimedean place. For an integer k > n + 1 satisfying £(—1) = (—1)*, the classical
section of weight k in I, oo (s,&) is defined as

2n+1

=55)

£ (5. 580%) (h) = (R, i) 1, D+

where j(h,1) = det (u(h,7)) = det(Ci + D) for h = (é ZB;)

Let ﬁg = (ﬁarl j> , where the entries are elements inside (LieH )¢ given as
) 1<ij<n

00 0 Ey )
~ Ioy, vV=1-I3, |0 0 Ej; 0 Is, V=1-Iy\
Foit =\y=1- Iy Ion 00 0 0 |\VT-ly Iy ’
00 0 O
where EZ] is the n x n matrix with 1 as the (7, j)-entry and 0 elsewhere.

The 7, :“0 's act on A(H(Q)\H(A)) by differentiating the right translation of H(R). Their real-
izations on the Siegel upper half space are the Maass—Shimura differential operators (see [LiulGb,
§2.4]).

For admissible (x, ") (resp. =) with ¢x(—1) = (—1)* (vesp. ¢ef’'(—-1) = (—1)t5), set

- ) tf)_til ﬂ-‘r t(’;—k’
— dt 0 . k , k‘ ,
Feis® oo (H (47TF> © <4wﬁ> ool sen )>‘ i1,
S=T9

tzP_tzP+1 P
flP, (Hd t<47r\/7> fég (s,sgnt5)>

The formulae for the corresponding Fourier coefficients (listed in tables in §2.4.8) are deduced
from Shimura’s computation [Shi82, Theorem 4.2] for the classical scalar weight section and formu-
lae for the action of differential operators on p-adic expansions (see the proof of [Liul6b, Proposition

—2n+1 P
s=55— g
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4.4.1]). The proof of the nonvanishing of the corresponding archimedean zeta integrals is postponed
to §2.7.

2.4.5. The “big cell” section at a finite place. We choose our sections at v|Np from a special type of
sections, the so-called “big cell” sections. Given a finite place v and a compactly supported locally
constant function a, on Sym(2n,Q,), the “big cell” section inside I, .(s,&) associated to a, is
defined as

@ A BY\ _J& ' (detC)|det C|7CF 5 )ay, (C7ID)  if det C # 0,
@42) £ ((C D)) N {o i det C = 0.

2n+1
2

An easy computation shows that

(2.4.3) W (Lo, £20(s,€)) = /s o, TS dus = (5.
ym n, v

2.4.6. The volume sections at places dividing N. For a positive integer N and a place v|N, the

volume section fy°(s,¢) inside Ig, »(s,€) is defined as the “big cell” section associated to the

characteristic function of the open compact subset

I
(2.4.4) - (1_0 g) + N Sym(2n,Z,) C Sym(2n, Q,).
n
We set
fn,IP,v = 1\)/01(87¢X)L:2n+1 —k:7 flpﬂ) = 1‘1/01(87(;565) g=2ntl_,P :
2 2 d

The Fourier coefficients associated to the volume sections are easily computed by computing the
Fourier transform of the characteristic function of (2.4.4). The computation of local zeta integrals
is also easy (the same as [LiulGb, Proposition 4.2.1]). See the tables for the formulae.

2.4.7. The place p. It remains to pick Schwartz functions a,, .» and a r on Sym(2n,Q,), and our
choices for f, .p , (vesp. frr,) will the “big cell” section attached to o, .p (resp. acr). The
criterion for picking them is to make the (p-adic) g-expansions of the resulting Siegel Eisenstein
series p-adically interpolable. In fact we will first pick @, .r and ar, and then apply inverse Fourier
transform to get , . and ap for computing the local zeta integrals.

The theory of nearly holomorphic forms and Maass-Shimura differential operators formulated in
terms of automorphic sheaves and their interpretations as p-adic Siegel modular forms are needed
in our construction. We will freely use the formulation and notation in [Liul6a, §2] and [Liul6b,
§2].

Recall some notation loc. cit.; denote by V; the automorphic bundle of degree r and weight ¢
nearly holomorphic forms over the Siegel variety defined as in [Liul6b, §2.2], and by Ny (H,,,T' N Tsp(p'))
the space of vector-valued nearly holomorphic Siegel modular forms on the Siegel upper half space
H,, of degree r, weight ¢ and level I’ N T'sp(p!) in the sense of Shimura. There is the embedding
(2.4.5)

HO (XE

>
ararsp@l) X X

5 rrrsp i Vi BV ) <= Np (B, T Tsp(p)) @ Nf (B, TN Tsp(2))

‘P('aecan)
—

A(G(Q) x G(Q\G(A) x G(A)).

Generalizing the embedding (1.2.1), as explained in [Liul6a, Proposition 3.2.1], the space of
nearly holomorphic Siegel modular forms of level I' N 'sp(p') also embeds into the space of p-adic
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Siegel modular forms,

(24.6) H° (Xgms o) X XE Il ap(pl); Z(tp)xv(tp)) (Jg_lg o @0, Vih ) [1/p).

When choosing «,; .» and a.r, we want to ensure that the restrictions to G x G of the resulting
adelic Siegel Eisenstein series lie inside the image of the embedding (2.4.5), so that we can study
them as p-adic Siegel modular forms via (2.4.6). Hence we require:

(1) @, .r and @ take values in a finite extension of Q.
(2) @, p and ap are supported on Sym(2n,Zp)*, and for = € Sym(2n,Qy)*, a1, a2 € SP(Zy),

—~ o~ t ~ t,
G (1) = Grer (50 )2 (9 8)) (@) = ((00)2(50))-

With @, .r and a.r satisfying these conditions, we can define

Q)

b Is T
5mP ETP € ﬂlﬂﬂ < G.IACgp(pl) < Xa JLNCsp(pl)? Vz(z”) xVz(t”)) ’

as the preimage of the adelic forms

2 1
(247> (71)nk2—n+2n2—2nkﬂ_—n—2n2FQn < 7’L2—|- > . E* (.7fK’7IP)‘GXG’
tP 42n2-9 t —m—2n2 2n+1
(2.4.8) (—1)"ta g nH2nT—2nty pon—2n P2n< 5 B (5 fer) | g

Here for a positive integer m,

L(s) :=

(m-1 j
T 4 H F (S — 2) .
7=0

In the following we will not distinguish &, .r, £ from their images under the embedding (2.4.6).
Set -

Eqrexp = (r&lhﬂg;ixp,m,p @hﬂg;iixp,m,l) : &inhgvnsﬁ Rop VSl — Op[N~! Sym(n, Z)*@z]]
m m m
with
hmh?meq_exp’ml hmlganl — Op[N7'S%(X,)s0] = Or[N~! Sym(n, Z)%o]-

being the p-adic g-expansion map at infinity.
Regarding the g-expansion of £, .r and & r, we have the following proposition.

Proposition 2.4.1. Let (31, B2) be a pair of elements in N~! Sym(n, Z)%. For admissible (k, ™) e
Homont <Z; X Tp(Zp),@;> with ¢px(—1) = (=1)¥, we have

Eg-exp (/817 Ba, SKQP) = Z CrtP (18)7

B= ( %} gg ) EN-1Sym(2n,2)%,
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where for B > 0, the coefficient ¢, .»(B) is given as

CrxP (8) — N—n(2n+1) Hev(QTrﬁo) . LNpoo(n +1—k, ¢X>‘B) . H 98w (¢X(qv)ql;—2n—1)

v|N v| det(28)
vtNpoo

d—1
x @, (B) [] det((260)n,)" ~'+1det(25)" ~*.
=1

For admissible T € Homcont(Tp(Zp),@;) with ¢pel (—1) = (=1)t, we have

€q-exp (ﬁly 627 EIP) = Z CP (18)7
_ ﬁl BO _ *
57(%0 /32>€N 1 Sym(2n,Z)20
where for B > 0, the coefficient c.r(B) is given as
cora;k(ﬂ)
crp(8) =N "D ] eu(2Trfo) - LNP(n+1 -t — g, oxra) - [I LV7@n+3—2t] — 24, (¢€])?)
v|N j=1
tPon—1\ . o (PP . .
X H 98w <¢X(QU)de ) * QP (B) H det((2/80)Ni) oL, if rank(/@) 15 even,
v| det*(23) =1
vtNpoo

corank(B)+1
2

cor(B) =N [Teu(@Tefo) - [T LY (20 + 3 = 217 = 2j, (6e7)*)
v|N J=1

d—1
th—2n—1\ P_yP . .
< I 980 (ext@)a ™) - e (8) T det(@80)n,) " 0, if rank(8) is odd,
v| det*(23) i=1
vt Npoo
Here for 8 € Sym(2n,Q)NSym(2n, Z,)*, det*(28) denotes the product of all the nonzero eigenvalues

of 2B. If rank(B) is even, the quadratic character \g is defined as A\g(¢qy) = <(_1)rank(2/2 det*(ﬁ))

The gg () appearing in above formulae is a polynomial with coefficients in Z. For an integer m,
(2680)m denotes the upper left m x m-minor of 25.

Proof. The proof is similar as [Liul6b, Proposition 4.4.1]. It relies on the formulae for local Fourier
coefficients as listed in the two tables in §2.4.8, and uses formulae of differential operators on p-adic
g-expansions. (|

It is not difficult to observe that all the terms in the above formulae for ¢, .r(8), ¢.p(B) are

ready for p-adic interpolation with respect to (, F ), TP, except the last terms
d—1
(2.4.9) Gy or (8) [T det((280)n,)" 1 det(260)" ~F,
i=1
d—1 Lo
(2.4.10) der (8) [] det((280)n,)F 1.
i=1

(The p-adic interpolation of the Dirichlet L-values in the formulae follows from the existence of the
Kubota—Leopoldt p-adic L-function [Hid93, Theorem 4.4.1].)
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In order to make (2.4.9) and (2.4.10) p-adically interpolable, one needs to require that if 3
belongs to the support of the Schwartz function a, .» (resp. a.r), then det ((25)x;) is a p-adic
unit for 1 <7 < d (resp. 1 <i < d—1). The very natural choices of amp and a.r are

d
(2.4.11) Ay P (B) =112 symn,z,)* (B1) Lsym(n,z,)+ (B2) H Larw,,z,) ((280)N;)
=1

H 3 (det(260)x,) - € (det(260)),

and
-1

(2.4.12) aer(B) =12 sym(n,z,) (B Lsym(n.z,)* (B2)La, z,) (B0) [ Terv,.z,) ((280)n:)
=1

f[ ! (det((260),)).

Here M,, denotes the space of n X n matrices.

Since Wg ,(1p, frxP ) = Q1 (B), our choice (2.4.11) makes ¢, .r(3) vanish unless 3 is invert-
ible. The semi-positivity of @ implies that both 31 and 32 are positive definite. Thus €4.exp (ﬂl, Bo, (‘:HﬂP)
is nonzero only if 31,32 > 0. Similarly, €gexp (51, /8275TP) is nonzero only if 81,8y > 0 and their
ranks are at least n — ngy.

With @, p, @.p being set as in (2.4.11), (2.4.12), we have

Eqexp (ExP) = Z Z ¢ P (B) ¢ q%,
PrpeeN~ Sym(nZ) B= ( %1 gO ) eN~1Sym(2n,Z)%
Eg-exp (gzP ) = Z Z cr (B8) 7" ¢,

P1,P2€Sym(n,Z)3% (ﬁl 50) —1Sym x
rk(ﬁl) rk(ﬁ2)>n nqg B tﬂo 52 EN Sy (anz‘)zo

and each ¢, .r (B) (resp. P (B)) appearing here admits p-adic interpolation with respect to (x, ot )
(resp. TF).

If we look at the g-expansions of &, .» and £p at other cusps in the ordinary locus (which is
equivalent to look at Wpg (L(gl, 92), f,{’lp), Ws (L(gl,gg), flp) for g; € G(A) with gip, =1, gico = 92,
i = 1,2), the support of @, r (resp. @.r) again makes the term indexed by degenerate (51, 32)
(resp. 1 or [y of rank < n — ng) vanish. Hence
(2.4.13) EpnP € @hgvgfo op anzio’ Ep € T&Hﬁgvsind ®o, VDM,

m ] m ]

m,l

Remark 2.4.2. Compared to @, .r, the support of @ r is enlarged. As the cyclotomic variable  is

fixed to be equal to T, the term det(25;) does not appear in (2.4.10), and one does not need to
require 253y € GL(n,Z,) for the support of a.r(8). Later, we will see that it is this relaxation on

the support that saves us the factor A" (r, (ﬁef ) in the local zeta integral for fpa =” (2”; L_ tf , gbeg )

(0%
compared to that for f, roxl (Q”Q—Jrl -k, 9x) - This relaxation also means that the resulting &.»
K=T -

is not necessarily cuspidal as p-adic forms. Thus, the Hida theory for non-cuspidal Siegel modular
forms developed in §1 is needed to construct the improved p-adic L-function from the & r’s.



NON-CUSPIDAL HIDA THEORY AND TRIVIAL ZEROS 43

2.4.8. The two tables. In the tables on the next two pages, we summarize our choices of sections for
Siegel Eisenstein series, the formulae of the corresponding local Fourier coefficients, and the local
zeta integrals.

We explain some notation. In the tables, ¢ € 7 is a P-ordinary cuspidal holomorphic Siegel
modular form of weight 1(t”) fixed by I' N S P;(Z,) with p-nebentypus €.

The operator % is defined as

(2.4.14) wielo) = [ L P

As explained in §2.2, the form %/(p) belongs to 7. If ¢ is holomorphic of weight t”, then so is
W(p). The operator W should be viewed as an analogue of the operator sending a modular form

f of level Ty(N) to f€

<](\)f _01> . In the same way as [LiulGb, Proposition 5.7.2], one can show

that the P-ordinary projection epW(¢p) is nonzero if epp is nonzero.
We denote by v,y € D,,r) the highest weight vector inside the lowest K¢ oo-type, and vZ\E Py €

151@1:) is the dual vector to v,p).
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. 9
foar Woro (hewos frcr ) with 8= (52 (75, .0..7)

1Sym(2n,Z@)* (18)

the standard unramified sec- | X dv(n+1—k, ¢X)_1Lv(n +1—Fk,dxAs)

ti Con— dy 1—k,dx) "

v < ga (Ox(an)at ™) L (("+1 k¢X) X) - W()
Ly(n+1— , T X QX) - ®

for det(B) # 0, where gg.,(T) € Z[T]

with ¢g,,(0) = 1 and degree at most

4n - val, (det(23))

RN [,

the “big cell” section
vol
v (8, 0%) et

associated to the characteris- \N|2<2n+1)ev (2Trpo) - 1N*18ym(2n,zu)* (8) ¢vXu((—1)n)V01(F(N)v) - W(p)
tic function of

—( o I") + NSym(2n,Z,)

SIS

I, 0
Ay .r (B) R =
. , - AL [ (0 =p77)
the “big cell” section :]lpzsymm,zp)*(,31)]1sym(n,zp)*(ﬁ2) X(=1)" == n 1](1 — )
o P d J=
fo™% swbx‘ ; . _ :
e o=k x [T Lori 2, (260)w) Ep(n+1 =k, mx dx) - erW(p)
where «, .p is the inverse =1 (after f, .p, being modified
Fourier transform of the azt P P_1 by appropriate Uf; -operators
Schwartz function in the x H & €ipr (det((260)n,)) in accordance with  ordi-
next column 11:31 . nary projection applied to
X €gx (det(2f)) E* (s frxP)|gre)

8@

vanishing unless 3 > 0 and equals
A 2n72n2+2nk:

-
( ) P2n ( 2n2+1 )

n+2n2
P_,P
—tip1

d—1 ~ t
(M(;L)Ni ) ‘
det ( a-1 P_,P P
( 21:[1 dmy/—1 X H det((2B0)n,)" ~'i+rdet(2B0)" "
i=1

e (28 ) = Boolfr oo Vi, ver)
- det -
Amy=1 x [T det((yo)w,)" "1 det(yo) e () ver )
=1
'f’fo(873gnk)>’

W(p) #0

xdet(y) Teq (TrB2)

s 2ntl
2 .
+ terms irrelevant to €g-exp(E, oP)

v1 yo)
o y2

where y = Im(z) = (

TABLE 1. data for (d 4 1)-variable p-adic L-function
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. 0
fer Wa v (hz7 fzp,v) with 8 = (gé gg) (TfTP U@)
1Sym(2n,Zv)* (5) : dv(n + 1- k? ¢65)71
Ly(n+1—t] —Z,¢ei\g) r even,
r/2
X H Lv(2n +3 - 2td - 2J7 (d)ed ) )
the standard unramified sec- | x J=
v | tion 4 du(n+1—k, ¢eg) ™"
N ur 0(2 3 —2th — 2, dd,
ol eod)| I Lo@nt3 =260 =25, (9e)®) rodds | p oy p gl ()
-2 d
X 9p.o (aﬁx(qﬂ)q'i n 1)
for B > 0 with rank 2n — r, where gg.(T) €
Z[T] with gg,,(0) = 1 and degree at most 4n -
val, (det*(23))
the “big cell” section

vol

Vs, el >]5:2n2+17t5

[N associated to the characteris- \N|Z(2n+1)eu (2TrBo) - ]lN_lsym(Qn,Zv)* (8) &u(—1)"vol(T'(N),) - W(p)

tic function of
—( 0 I”) + NSym(2n,Z,)
AP (B) = Lp25ym(n,z,) (B1) Lsym(n,z,)* (B2) ed (—1)" Hl 11 ( 3 )
the “big cell” section d—1 H (1=p~ ])
= (s, (]565)‘ s X L, (z,)(Bo) 111 LTanvi,z,) ((2B0)n;) - EF"™P(n+ 1 —th, 7 x ¢el)

v o= s=T5 -ty s = ~epW(p)

P where a.p is the inverse P P_1 . .
Fourier transform of the x H € €1 (det((260)n;)) (after  frr , belr.lg moc}ijl—
Schwartz function in the next =t fied by appropriate U -
column The major difference from the previous &, . is | operators in accordance

that here the support of &,p has been enlarged with ordinary projection
and is no longer contained in GL(2n,Z,). applied to E*(-, flp)|GxG)
vanishing unless 3 > 0 and equals
n—2n2+2nt{;
S
P2n ( 2 )
d—1 ~ tF—tF
Hdet (M) % i:[ld t((zﬁ ) )tf_tvi»l (.fr 007 tPavtP)
v o=\ dmy/—1 | [ det(ZFo)n: wW(p)
00 i=1 <U£P,’U£P>

P
)

2n+1
2

— _+P
s= td

P
td

d—1
x T det((yo)n,)"* ~"1det(y) ¥ eoe(TrBz)
=1

+ terms irrelevant to eg-exp (€, P)

where y = Im(2)

Y1 yO)

= (¢

Yo Y2

£0

TABLE 2. data for d-variable improved p-adic L-function
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2.5. The construction of ug p.orq and EP ords Assume ¢?> # triv. Then it follows from our
choices of the sections f, .r € IQH(Q”“'1 — k,¢x) and for € I, (25—t ¢el’) that there exist
p-adic measures

1 g-exp € Meas (2 x Tp(Zy), Op[N "' Sym(n, 7)) ,
Pgimp gexp € Meas (Tp(Zp), OpﬂNf Sym(n,Z)z%QD

satisfying the interpolation properties

P ~ egexp (Exrr) if (k,7F) is admissible with ¢x(—1) = (—1)F,
R, T d -exp — = :
I SL T & if 6(~1) # r(~1)
/ P dptgimn o o = { eqexp (Ep)  if T is admissible with ¢el’(—1) = (~1)%,
Tp(Zp) TP 0 if o(—1) # 4 (-1),

(see [Liul6b, §5.1, 5.2] for more details on how to obtain these p-adic measures from the formulae
for €g-exp (SH’IP), Eg-exp (SIP) in §2.4.7).

Remark 2.5.1. The assumption ¢? # triv is not essential. Without it, due to the pole of the
Kubota—Leopoldt p-adic L-function, we need to make some modification accordingly to allow a
possible pole in the constructed measures.

Let VP4 be the subspace of L lg VS " R0 /pm V ’ consisting of elements annihilated by

Y®1—-1®~ for all v € P(Z). By defimtlon and (2.4.13), we know that &, p € VSPOA and
Ep € VSPaA  Then due to the Zariski density of the admissible points (k, ") (resp. ©) inside
Zy x Tp(Zp) (resp. Tp(Zp)), the measure fig gexp (T€SP. flgimp 4exp) lies inside the image of the
following embedding induced by p-adic g-expansion

Meas (L) x Tp(Zp), VSPOA) — Meas (2 x Tp(Zy), Op[N~' Sym(n, Z)557])
(resp. Meas (Tp(Zp), ySPna.A ) — Meas (Tp( ), Or[N~! Sym(n, Z)“;%Q ))
Viewing fig gexp (T€SP. fgimp 4 exp) @8 @ p-adic measure valued in VIPOA (resp. VSPmaA) | Propo-
sitions 1.9.4 and 1.10.1 show that one can apply ep X ep to it and get
pig,p-ord € Meas (L x Tp(Zy), epVSP’O’A) (resp. pgimp porg € Meas (Tp(Zy), epVSP’”d’A)).

For v € Homeont (TP(Z/p), pip—1) and an Op[Tp(Zy)]-module, we use a subscript , to denote its
v-isotypic part for the action of Tp(Z/p). Then like [Liul6b, (6.1.8)], for all 0 < r < ng and ¥
such that ¥ |7p(z/p) = ¥, We have the commutative diagram

@A

v

Meas (TP (Zp)v ePVSPmA)i MTP—ord,g QAp M};—ord,g

mod P_p
quTP(Zp) Fdu

limlim ep V> [27] @0, epV " [27],
m

where Meas (Tp(Zp), ePVSP’T’A)h is the subspace of Meas (Tp(Z,), epVSP"A) consisting of mea-
sures u satisfying

/ IP d,u c GPVSP’T’A[IP].
TP(ZP)
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Set
= @ CI)ZA ‘Meas (TP(Zp), evaP,r,A)h _ @ Meas (TP(Zp); ePVSP,T’,A)i

r r _ r r
MP—ord ®0F[[TP(Zp)ﬂ MP—ord = @ MP—ord,g QAp MP—ord,g’

where v runs over Homeont (Tp(Z/p), ptp—1). This Ap-module morphism d2 also induces

D2 : Meas (Z; x Tp(Zyp), epVSP’T’A)h

We define

— Meas (Z;,M}_Ord QOp[Tr(Zp)] M?D-ord) :

HE P-ord = (I)A(MS,P—ord) € Meas (Z;’M(I]D—ord ®0F[[TP(Zp)]] M(I]D—ord) )

ggl-lgrd = Q) (/’Lgimp,P-Ord) € M;’O-lord ®0F[[TP(Z1>)]] M?Dford'

2.6. The p-adic L-functions and their interpolation properties. Let ']I‘P ord (TESp. ']I‘Pd(’)rd)
be the Op[Tp(Z,)]-algebra as defined at the end of §1.10. Let €p be a geometrlcally irreducible

component of Spec (T%_jzrd). Because of the natural quotient map TZ‘% q T p. Ord, %p can also

be viewed as a geometrically irreducible component of Spec (T;ﬁdg d) Denote by Fy, the function

field of €p and by I, the integral closure of Ap inside Fi,. Let g, : "If-.d_(’)% — Iz, be the

homomorphism of Ap-algebra associated to €p.
As Fiy,-algebras, we have the decomposition

THina ©ap Pap = Fp © R,
such that the projection onto Fy, is given by Ag,. Define 14, as the element in Tzdérd ®ap Fep
which corresponds to (id, 0) in Fi, @ Re,.
Proposition 2.6.1.
Lgp (MErq) © M ora @0, 1021 Fip-

Proof. The cuspidality condition is about the vanishing of the restriction to the boundary, there-
fore an element in M%‘f ord 1s cuspidal as long as its specializations at a Zariski dense subset in

Homeont <T p(Zp),@; ) are cuspidal. We know that for all tf > tg > > tf; > 0, the specializa-

tion of ./\/l?;ford at the algebraic point tP € Homeopt (T p(Zp),@; ) consists of classical holomorphic

Siegel modular forms of weight +(t) and level T'(N) N I'p(p). We reduce to show that for all
th >l > ... > tg > 0, if a Hecke eigenform ¢ (for all unramified Hecke operators away from

Npoo) in M"(‘;P) (I'(N)NTI'p(p); C) shares the same eigenvalues as a cuspidal Hecke eigenform in
Mo(tp) (D(N)NTp(p); C), then ¢ is cuspidal. When ' > 2n + 1 this is true according to [Har84,
Theorem 2.5.6]. O

As explained in [Liul6b, §6.1.5], for each pair (f1,32) € N~ Sym(n, Z)"‘692 there is a Ap-linear
map

0 0
Eqexp,fp1,B2 - MPpord ®0p[Tp2,)] MP-orda — AP,

which, when specialized at primes P r, gives the map of taking the coefficients indexed by 1, 52
in the p-adic g-expansion €y exp.
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Define
Hep,¢,81,82 = Eg-exp,B1,82 © ]l(fp (,ug P—Ord) € Meas (Zg;vM(I)D—ord) Ap F%Pa

Ezf?;:%ﬁlﬁz = Eg-exp,B1,82 © Ligp (5131 ord) € Fgp.
Theorem 2.6.2. For a Dirichlet character ¢ with conductor dividing N and ¢*> # 1, a geometrically

irreducible component €p C Spec (T%{er> , and (B, B2) € N~ Sym(n, Z)’;%Q, the above constructed

Hsp. 6,818, and Eé:;?ﬁl,ﬁz satisfy the following interpolation properties. Let x : Iy, — F' be an
F'-point of ¢p with F' being a finite extension of F. Suppose that the weight projection map
Ap — TP Ord is étale at x mapping x to an arithmetic point T € Homeont (Tp(Zy), F'*).

If (k,T) is admissible, then

¢(B1, p)c(B2, epW(p))
Kk dpg, x) =Cpp - p—
( /Z p %p,wlﬂa) () =Cpr ;@; (0. 9)

X Ep(n+1—k,mp x ¢x) - LNP®(n+1— k,my x ¢X),

if k(—=1) = ¢(—1), and otherwise vanishes.
Assume that the parity of €p is compatible with ¢. If T is admissible, then

«(B1,p ﬂz epW(p))
imp y P )
E‘fpﬁﬁ ﬂ1,52 C Z 0. D)
PpESL
X Eflmp(n+ 1—th 1 x gpel) - LNPO(n 1 — ]y x pel)).
The following are some explanations of the interpolation formulae.

e The constant Cyr (resp. Cyp) only depends on k,tP ¢, N (resp. t¥' ¢, N) and is defined
as

DL L) Do () 2 (farier v oir))

n _2j " 9—2n2+4n+2nk 2n2+n ’

Crp = ¢(—1)"vol <f(N))

CLP - thfl’7§P.

The nonvanishing of Cy, ,p is shown in §2.7.

e 5, is a finite set consisting of an orthonormal basis of the eigenspace for the Hecke eigensys-
tem parametrized by x inside epM?(tp) (I'(N)NTsp(p™),€C). The set s, is empty and the
evaluation is 0 if x is not classical, i.e. if there exists no cuspidal irreducible automorphic
representation m, C Ao(G(Q)\G(A)) with w00 = D,ypy such that the Hecke eigensystem
parametrized by T appears in my.

e ¢(Bi,-), i = 1,2, denotes the coefficient indexed by [3; in the q-expansion.

e The operator W is defined as in (2.4.14), and by the reasoning as in [LiulGh, Proposition
5.7.2] we know that epW(p) # 0 for ¢ € 5.

Proof. By our construction, for a classical = as in the theorem, the evaluations of 1¢, ( fz; kdug, p_ord)

and 1, <5 Poor d) at x are classical cuspidal Siegel modular forms obtained by projecting the forms

in (2.4.7) and (2.4.8) to the eigenspace associated to the Hecke eigensystem parametrized by z.
Thus the interpolation formulae follow from the formulae for

261)  Z((er xer) B Chugrlgre)  and  Z((er x ep) BCfor)l )
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for ¢ € s,, which are proved later in Proposition 2.8.1. The nonvanishing of the archimedean zeta
is proved in the next section. ]

Remark 2.6.3. For each j € (Z/(p — 1) such that ¢w?(—1) = 1, applying the p-adic Mellin trans-
form with respect to w’ to the measure g, ¢ 8, 5,, one gets the p-adic L-function Ly, 4 8, 8, €
I, [[S]] ®1, Fp as described in the theorem in the introduction.

2.7. The nonvanishing of the archimedean zeta integral. Since f.r ., = foj,gP,ooa it suffices

to show the nonvanishing of Z., (f,{ P 001 UrP UTP> for all (x,t") such that t© > ... > th >k >

n + 1. This nonvanishing will follow from the proposition belOW.

Proposition 2.7.1. With f, p o € Iqy 00 (25t — k,sgn®) as in (2.4.4), the map

Zoo( [P o0r ) Dyary X Dypry — C
18 nonzero.

Proof. Let M(s,sgn®) : I, 00(s,580%) — I, co(—5,sgn*) be the intertwining operator defined as

(smtipatosmt) = [ petosmt) (i, T57) k) b

Set

=t fid ty —k
foo(s,sgn®) Hdet (47“/7) - det <47r\/7> - fE (s, sgn®).

According to [LR05], the local zeta integral for 7o, and fuo(s,sgn®) € Iy (s,sgn®) satisfies the
functional equation

(2‘7'1) Zoo (M(S, Sgnk)foo(57 Sgnk)a "y ) = Foo(sv oo, Sgnk) : Zoo (foo(sa Sgnk)a Y ) )
with
(2.7.2)
5 1 X on—1 .\ .
Lo (8, Moo, 880") = Too(—1) Yoo | s+ 3o X 80" || Yoo | 8 = —5—sen H'yoo (28 — 2n + 27, triv)
j=1
On the other hand, it follows from [Shi82, (1.31)(4.34K)] that
(2.7.3) M (s,sgn") foo (s, 520%)
Ty,
= (—1)"k . 22n2ns  pn(2nl) 20(8) - foo(—s,sgn®).

Ton (3(s + #57) + 3) Dan (3(s + #57) = 3)
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Combining (2.7.3), (2.7.1), and (2.7.2), we get for moo = D,;p),
Zoo (fli,IP,oo’ ) ) = Zoo (foo(sa Sgnk)7 ) > ‘s:%;rl_k

— (_1)nk . 22n—2ns . ﬂ_n(2n+1) . an(s)
Tan (3(s + 257 + &) Dan (505 + 257) — §))
n
Yoo (8 — 22 sg0®) T Yoo (25 — 2n + 2, triv)
j=1
Yoo (84 &, Moo X sgnk)

n
Yoo (1 — k,5g0*) TT voo (1 + 25 — 2k, triv)
j=1

S (el
-2

= (—1)"k . Q2nh=2n% 40 an(@ntl) L gy

2 1
< 7o (foo(k— ”; ,sgnk),.’).

The nonvanishing of Zso (foo(k — 25, sgn®), -, ) for D,ry is shown in [Liul6b, Proposition 4.3.1]
using results in [[Li90, JV79]. The voo-factors appearing here has neither poles nor zeros at the

relevant points because the condition n +1 < k < tf guarantees that those points are critical. [J

| (#) Yoo (N +1 =k, moo X sgn¥)

2.8. Computing the zeta integrals at p. The goal of this section is to prove the following
proposition, which will give the interpolation properties for our p-adic L-functions.

Proposition 2.8.1. Let 71 C Ag(G(Q)\G(A)) be an irreduicble cuspidal automorphic representa-
tion with T =2 D, Py Also, assume that m contains a P-ordinary Siegel modular form ¢ of weight

1(tF) and p-nebentypus €, invariant under the translation of (I'(N)NTgp(p™))" C G(A¢). Then
e ((ep x ep) E*('ffﬁ,zp)‘GxG>

H?:l H?lzl(l —-p) . Zoo (fmIP,owUz(tP)’ Uzv(;P))
H;‘l:l(l —p~2) <Uz(§P), v, >

o(tF)
XEp(TL+1*k’7TX ¢X)LNpoo(n+1ik77Tx ¢X)6PW so)a

(2.8.1) = ¢x(—1)"vol (f(N))

and
L5 ((ep X ep) E*('7flp)’G><G)
d n —Jj !
282 g1y (P Bl o p D) 2 (et i)
n 27
It —p) (v ver)

X B (n 41—t m % dey) - LN (n+ 1=t m % gef) - epW ().

The proof of the proposition is mainly about computing the zeta integrals at p. There is a little

bit of subtlety here. One needs to first apply the ordinary projection ep x ep to E*(-, fﬁ’lp)‘GxG

and E*(, pr)‘ GxG before pairing it with ». Thus, what we need to compute at p for proving the
proposition is not Tfn PP T f.pPs but the zeta integrals with f, .r and f.r replaced by R(U; ) X
R(UYL) fy.r and R(Ujf’5 ) X R((}f )fzp, where R is a polynomial depending on 7, and a sufficiently
small open compact subgroup K, C G(Z,) satisfying ep = R(U]f ) on 787, Recall that with a fixed

tP, we make Ug -operators act on smooth G(Q))-representations by (2.3.4).
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Our computation will essentially use Proposition 2.3.2 and is similar as the computation in
[Liul6b, p.39-42].

Proof. Since the projections to m, of P-ordinary forms inside 7 span a one-dimensional subspace, we
know that % ((ep X ep) E*("fﬁvlp)‘GxG> (resp. L <(ep X ep) E*("flp)‘GxG>) equals epW(p)
up to a scalar, given by
<$¢ ((ep X eP) E*('afn,gp)‘GXG) 790/19> <$¢ ((eP X eP) E*(a fIP)|G’><G’> 790/19>
(epW(p),¢") ’ (epW(p),¢"")

for an arbitrary ¢’ € 7 such that the denominator is nonzero. We will always assume that ¢’ is
fixed by both K, and ¥SP;(Z,)Y and epy’ # 0. Then

<6p‘7/1/((p)790/19> _ <¢7 ePSO/> ?é 0.

(resp.

Letb= (by,...,b1,...,bq,...,bg) for by > by > --- > by > 0 and denote diag(p®,...,p",...,p%, ...
N—— S———r
ni ng
by pb. A direct computation shows that
<$¢ ((EP X U;fb) E*('afm,gp)‘GxG> a‘p/ﬂ>
~ ZOO (fn,IPyooavz@Pva\EtP)) N
= o(~1)"vol (T(V)) - LA LN (01— k7 x gy)
v
(ouary r))
xplt+2rc.e.t) <s0, R(U,) / Fp "= (5,0%) (S7'ulg ™' 1) mp(gpP)e! dg>‘
G(Qp) s=2ntl g
The ratio
— an,IP — _
(2.8.3) (B RUD) Jagy £ (5,60 (S ulg ™', 1) mylap)e dg)
- <¢7 ePQO’)
is independent of the choice of . Let 01, ...,0,, a1,...,a, be as in Proposition 2.3.2, and o1, ..., 04

be as in the definition (2.3.11). We know that the P-ordinary space (with respect to t') inside
Indgg{’gp)ﬁ is one dimensional. Therefore, if we take from Indg(c(%gp)ﬁ a function G : G(Q,) — C
invariant under the right translation by K, and 9SPg(Z,)V, then

(R(U]f) Jaay o= (5:0%) (S71ulg™ 1)) mylgph) g dg) (1)
(R(U7)6) (1) ’

as long as the denominator is nonzero. Now we further assume that G(1) = 1. Then by our
description of the [U]f -eigenvalues for the P-ordinary vector in terms of the «;’s in Proposition

2.3.2, we have (R(UL)G) (1) = 1.
Now let G € md% %) 9 be the smooth function on G(Qp) supported on Bg(Qp)ISPg(Zy,)0

(2.8.3) =

BG(QP)
_nt1
and taking the value 1 on ¥SPg(Zy,)9. We also put tv(a) = |detal, *> G <<g ta91>>‘ Then
e Indg]&é:’)(@p )Q and is invariant under the right translation of u for 'u € SP(Z,) and takes the
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value 1 at identity. Let ®, » be the Schwartz function on M, (Qp) whose Fourier transform is

~

P\ (Bo) = H]leL (N:,zp) ((Bo) H e el 1 (det(—(Bo)n,)) - e X (det(—B)),  Bo € Min(Qp).
An easy computation shows that

®px — a - S+M —l ,—n(n
fo ™ (5, 0) (ST ((25) 1)) =Idetal, ™% px(det(—a))1p D
X ]lGL(n,Qp)(a) : ]117‘2 Sym(n,Zp)(ailb)]lSym(n,Zp)(cail) : (I)x,ep (ail)v

and

(UP / = (s, 00x0) (S7e(9711) 7Tp(gpb)gdg) (1)

G(Qp)
Hj—l(l — / s+%
== ~(pcnb ay detalp, 2¢x(det(—a))®, p(a)to ap?) da,

e H gy | et Xty o (@) (o)
forc=(c1,...,¢1,...,Cqy. . ,Cq)y 1 >Ca >+ >cqg > 0.

~— ~—

ni nqg

Therefore, in order to show (2.8.1), it suffices to show that with our chosen to € IndGL(n Qg

(Qp) =’

/ . | det a];Jr%(bpxp(det a)®, r(a)w (ap9> da
P

= HZ 1H H a?i - Ep(s,m x ¢x).

[T (
J=1 1=1j=N;_1+1

(2.8.4)

By the same reasoning, in order to show (2.8.2), it suffices to show

/ . | det a];+%¢p6£p(det a)®.r(a)w (apb) da
,¢p
(2.8.5)

:HHH IO TL ok B x o),

H’?
J=1 1=1j=N;_1+1

where ®.r is the Schwartz function on M,,(Q,) whose Fourier transform is

d—1

. (Bo) = Lar,z,) (Bo) [ [ Larviz,) ((260)n H Hdet(—=(260)n,)),  Bo € Min(Qp).

=1
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n  ng
. . . . n (d n I, 0
We will show (2.8.4) and (2.8.5) by induction. Write n’ = Ny_1, a = o .
ng 0 A >\ 12 Ind

"Ld
Define 1o € Tnda "% (6, ... 6,/) by w'(d/) = |det a'|p e ((% IO >> and the SL(ng, Z,)-
nq

w0 (@)
fixed oy € IndGL(?é’%P)(en,H,...,en) by g(\) = ydetayp << ) . Also, let
R d—1 d—2
Ler(B0) = T Laviv,z,) ((B0)w) x [T el el (det(=(Bo)w) - ed-ix " (det(=55)), By € M (Qp),
=1 =1
d—2

d—1
0) = I Larwvz,) ((Bo)w,) x H Ll (det(—(B)N,)) - eyl T (det(=B))), B € M (Qyp),
i=1 =1

and let <I);< .»> ®p be the inverse Fourier transform of Cf;( P <I> . Denote by F, Pyt the inverse

Fourier transform of the Schwartz function A = lgn,.z,)(A) - el x1(det(—\)) on Mnd(Qp) Then
by a routine computation we get

(2.8.6)
T, (1 —p ) [T}, (- p) +r ,
LHS of (2.7.3) =—2= - = / detd’|," 2 dpxp(deta )’ (a'p? ) & a')dad
(2.7.3) szl(l_p,]) w11 drp(det s () ) n(a)
s d
/ [det Al 2 @pxp(det Awog(A) For -1 (N) dA,
i= Nd 1+l GL(na,Qp)
(2.8.7)
[T, (1= p ) [T, (1 — p) 2 ,
LHS of (2.7.1) === — I / detd’|," 2 dpxp(deta )’ (a'p? ) &' p(a) da’
(2.7.1) T w11 drp(det s (o) @n(a)

n s ng
< J[ e / [det Alp " 2 ¢pxp(det Mwa(M 1y, (z2,)(A) dX.
i=Ng_1+1 GL(n4,Qp)

For feg’x—l, we have the following formula [BS00, Proposition 6.1, Appendix of §6]. If cond(edlD x 1) =
pe>1,

ng(ng+1l)c

(2.8.8) Fegxfl(A) =p 2 G Hne. LaLng,z,) (P°N) el " Ix(det(p°N)),
and if ef; =X,
(2.8.9) Fuie (V) i( 1)ip" / 1 (Ag)d
-0. triv = —1)yp 2 . M, ,(Z,)\AG) ag.
=0 GL(ndvzp)(péJ In;)—j) GL(n4,Zp) o

We first look at the easier case (2.8.7), where for the integral in the second line of it, since tog is
fixed by SL(ng,Z,) and GL(ng,Z,) acts on it by 65;1 o det, we have

1
(2.8.10) / | det )\‘p—i_ 2 ¢pedp(det )\)md()\)]an (Zp)(A) d\ = L, <S + —,04® ¢p> .
GL(na,Qy) 2
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Next we treat the integral in the second line of (2.8.6) with e’y ~! # triv. Plugging in (2.8.8), we
get

(2.8.11)
/ [det X5 7 x Xp(det Mwg(A) Fepy -1 (A H Gledx™) <¢( )*a}lp*%)
G (nd:Qp) j e
1
H VP( 8¢p1 ):fyp(z sad®¢p Xp edp)
j=n’'+1

Lastly, we consider the integral in the second line of (2.8.6) with ¢ x~! = triv. The formula for
the Hecke action on spherical representations of GL(Q,) gives

j(ng—3) _1 _1
/ I my(Ag)dg =p 2 Z Q1)+ Qg .)md()\).
GL(nd,Zp)(p 0’ I, ﬂ_) GL(ng4,Zp) L:{l,.(.l,g'}%{l,(.i.),nd} ’
v(l)<--<e(y

d

Combining this with (2.8.9), we get

/ et ATy, (det A)og(A) Fuuiy () dA
GL(TLd,Qp)
- -1 -1 _s—1 s+7d
(2.8.12) ~ H (1= oép(p) 104j 'p 2)/GL( 0 )‘det)"p # ¢pfdp(det )\>md<)‘)]1Mnd(Zp)()\) dA
j=n'+1 nd,p

n

= H (1 —¢p(p) oz 'p® é)-Lp<s+;,J®¢p>—’yp<;—s,5d®¢p1).

j=n'+1
The identities (2.8.10), (2.8.11), and (2.8.12) allows us to compute (2.8.4) and (2.8.5) by induction,
and this finishes the proof. O

3. THE DERIVATIVE OF THE p-ADIC STANDARD L-FUNCTION

In this section we explicit the trivial zeros of the p-adic L-function
muép, ¢, b1, B2 of Theorem 2.6.2 and interpret them from the point of view of the (conjectural)
associated p-adic Galois representation. This will allow us to interpret a factor appearing in the
derivative of the p-adic L-function as Greenberg’s /-invariant in the case when the trivial zero is
semi-stable (or of type M as called in [Gre94]). At the end, we shall prove the main theorem of the
paper which relates the derivative of Ly, 4nt1 3, 3, at the semi-stable trivial zero to the ¢-invariant
and the complex special value.

3.1. Greenberg—Benois conjecture and /-invariants. That idea at the base of the conjecture
by Greenberg and Benois is that when a p-adic L-function has trivial zeros one should be able to
recover the value of the complex L-function from a suitable derivative of the p-adic L-function. The
first studied case is the one of an elliptic curve with split multiplicative reduction at p [MTT86].
They conjectured that the order of the p-adic L-function is 1 plus the order of the complex L-
function and that the leading coefficient of the p-adic L-function is the same as the one of the
complex L-function, up to an error term equal to log,(qr)/ord,(qr) (for ¢ the Tate uniformizer
of F) that they call the /-invariant.

Later Greenberg interpreted this number in Galois theoretical terms and proposed a similar
conjecture for a great number of ordinary motives [Gre94]; succesively Benois generalised this
conjecture to most semistable representations [Benll1]. Let us be more precise. Let V the p-adic
Galois representation associated with the motive, and suppose that it is absolutely irreducible and
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satisfies Pantchishkine condition, i.e. that there is a sub space V' of V stable under the action of
Gq, and containing all positive Hodge-Tate weights. Assume moreover that the Frobenius acts
semisimply on the semi-stable module (in the sense of Fontaine) associated with V.

Greenberg defines two subspaces V1! ¢ V* C V% such that V*+/V!! contains all the eigenvalues
pand VP /V™ contains all the eigenvalues 1. Then we can decompose VO /VH as Qo & M @Q,(1)",
where M is a non split extension of @Z by Q,(1)". According to Greenberg’s conjecture, the number
of trivial zeros of the p-adic L-function is e = ¢ty + ¢t + t;. Assume furthermore that ¢; = 0 (certain
motivic conjectures imply t1tg = 0, so this hypothesis is not really restrictive). Then by picking a
subspace TCH 1(G@, V') of dimension e, Greenberg defines an e-dimensional subspace ’i‘p inside
HY(Gq,,V)/H{}(Gg,,V) which injects into

t+eo
H'(Gg,,V'/V') = @ Qp - ord, ® Q- log,, .
i=1
If we denote by p, (resp. p.) the projection of ’f‘p to EB:I‘I’O Qp - ord,, (resp. @fifo Qp - log,,), then
Greenberg shows that p, is an invertible map and defines ¢(V') := det(p,op_!). Note that in general
'f‘p depends on V' as Gg-representation, but if ey = 0 too then it depends only on the restriction
to Gg, [Gre94, p. 169][Ros15, p. 1239]. We can finally state:

Conjecture 3.1.1. [Greenberg—Benois conjecture] Let r be the order of the complex L-function
L(s,V) at s =0, and suppose that L,(S,V) has eg + t trivial zeros, then ST divides L£,(S,V)
exactly and
L2200, V)

log,, (1 + p)eotttr(eg +t +1)!
where Ey(s, V) is defined as in [Coa9l, §6], V*(1) is the dual representation twisted by 1, Ly(s, V)
is the Buler factor of the motivic L-function for V and (E,(s,V)Ly(s,V)™1)" is obtained from
E,(s,V)Ly(s,V)™L by eliminating all the Euler factors vanishing at s = 0. The function L¥%(s, V)
is the L-function for V divided by the period.

Ly(S, V) ST = 0(V*(1))(Bp(0, V) Lyp(0,V) 1)

mod S,

Note that the conjecture implies the non-vanishing of the ¢-invariant (V).

This conjecture has been first shown in the case of an elliptic curve with bad multiplicative
reduction by Greenberg—Stevens [G593]. Their method has been generalised many times to different
contexts [Mok09, Rosl6b, Rosl6a, Rosss] and is at the base of our current approach. It is worth
to point out that many new strategies have recently arisen [DDP11, Das16, Spil4, Depl6].

3.2. The trivial zero of the p-adic standard L-function. Let L, 4.0 6, 8, = Lp,6,81,8. (5 T) €
I, [S]] ®1y, Figp to be the Mellin transform of the component corresponding to the character w
on (Z/p)™ of the measure jig, 4.8, 3, constructed in Theorem 2.6.2.

Suppose that x¢ : Iy, — F is a point as in Theorem 2.6.2 and it is classical. Denote by s,
a cuspidal irreducible automorphic representation of Sp(2n,A) generated by a P-ordinary Siegel
modular T?;_]Zrd—eigenform of weight +(t”') whose eigenvalues are parametrized by z. The isomor-
phism class of 7, is determined by zg for v { N (the isomorphism class of 7, , can be read off
from the eigenvalues for all TU]I; -operators by the discussion in §2.3.1. We are interested in possible
trivial zeros of L, gnt1 8, 8, at S = (1 + p)"*t — 1, where the corresponding critical L-value is
the near-central value L(0, 7, X ¢). There are two types of trivial zeroes that can show up there.

3.2.1. Crystalline trivial zero. We say that L, s,n+1 5, 3, has a crystalline trivial zero at ((1 +
)" — 1,20) if ¢(p) = 1 and the local L-factor Ly(s, Tz, X ¢) contains the factor (1 — ¢,(p)p~*).
In particular, if 7, p is unramified, then a crystalline trivial zero shows up at S = (1 + p)"t — 1.
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One can also think of types of trivial zeroes in terms of the corresponding Galois representation
restricted to G, (if admitting the local-global comptibility for p;, attached to 7y, ). Let pgy : Go —
GL(2n + 1,@p) be the Galois representation attached to 7y, [Art13, CH13]. Then conjecturally
PaolGq, admits the following description. The Hodge-Tate weights are 0, £(tF —1),..., &t -
N, £t =Ny —1),..., £(ta—No)y oo, £t = Ng—1 —1),..., £(t] —n), and the eigenvalues of the
Frobenius are 1, afl, ..., !, Hence the Hodge polygon and the Newton polygon meet at the points
with horizontal coordinates 0, Ny, No,...,Ng,2n+1— Ng,....2n+1 — No,2n+ 1 — Ny, 2n + 1.
Therefore, p,, : Gg admits a decreaing filtration Fil/, —d < j < d, such that Fil/ /Fil’*! has
Hodge-Tate weights tcllj—j—&-l —Ng—j—1,... 7tzli)—j+1 — Ng_jy1 (resp. tljj —N_j1—1,... ,tljj - N_j)
if1 <j<d(resp. —d <j < —1), and FilO/Fil1 is one dimensional with trivial Gg,-action. If
Fil’ /Fil? is a trivial extension of Q, by Fil' /Fil?, then Ly swnt1 p, 8, has a crystalline trivial zero
at ((1+p)"*t —1,2¢) if ¢(p) = 1.

3.2.2. Semi-stable trivial zero. The other case is when the local L-factor L,(s, 75, X ¢) does not
contain the factor (1 — ¢,(p)p~*), but the factor (1 — ¢, (p) Loy, p*~1) in E,(s, 7z, x ¢) contributes
a trivial zero at ((1 4 p)" ™! — 1,20) when ¢(p) = 1 and oy, = p~'. We call this type of trivial zero
semi-stable. Since Newton polygon lies above the Hodge polygon and for pm0|GQp they coincide
along the slope 0 segment, we have v,(a;,) < —th +n < —1. If a, = p~', then tf =n+1 and
the Newton and Hodge polygons coincide along the the segments of slope —1,0,1. Therefore, if
Legp gn+1.8,.5,(S 0) € OF[[S]] ®o, F has a semi-stable trivial zero at S = (1 + p)"*! — 1, then
there exists a partition n = nj + --- + ng with ng = 1 such that m,, is P-ordinary for P C GL(n)
the standard parabolic subgroup attached to the partition.

The above discussion shows that in order to use p-adic deformation of 7., to study the trivial
zero at S = (14 p)"*! — 1 of the p-adic L-function attached to Tz, ONE can always choose P such
that ng = 1 and consider the P-ordinary families passing through z. In the following, we assume
that ng = 1.

In terms of the local Galois representation, a semi-stable appears if Fil° /Fil2 is a non-trivial
extension of @p by @p(l).

3.3. A formula for the derivative. In this section we prove the main theorem of the paper
applying the strategy of Greenberg—Stevens. Recall that a;, 1 < a; < n, denotes the eigenvalue
of the operator U;’ ; (see Proposition 2.3.2). They are invertible elements inside Ig,. In order
to state [Benl0, Theorem 2] in our setting, we need to fix a coordinate for a rigid analytic open
neighborhood of zy in €p. Since we have assumed that the weight projection map is étale at xg,
we can take the coordinate to be the natural coordinate Tlp e ,Tf of the weight space. Then it
follows from [Benl0, Theorem 2| and [Benll, Proposition 2.2.24] that

Theorem 3.3.1. Let g € €p(F) be a classical point where the weight projection map is étale and
has image 150 € Homeont (TF(Zy), F*). Suppose that S = (1 + p)"*1 — 1 is a semi-stable trivial

zero for L, i1, 3,(5,20) and the local-global compatibility is satisfied by the p-adic Galois
representation py,. Then

_ Olog, (an(TF, ... TP)Jana (TF, ..., TY))
orr

E(ﬂzo) - e(p;o(l)) -
(TPv---va):Igo(l-i-p)

(For the proof see [Ros15, Theorem 1.3], where the theorem is stated for parallel weight, but the
proof is the same.)

Remark 3.3.2. When n = 2 one can calculate the f-invariant also for crystalline trivial zero using
the method of [Hid06].
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Remark 3.3.3. In our case, there is a trival zero for the whole p-adic L-function L, 4,nt1 8, 5, at
S = (14 p)™*! — 1. It is possible to define an algebraic /-invariant ¢(%p), which is a meromorphic
function on €p, using the definition of [Benll] in the context of [Pot13].

Define j(¢p) € Z/(p—1) by wi(¢P) = 1/ | (z/p)x for a 1 inside the i 1mage of the projection of €p
to the weight space. The relation of the improved p-adic L-function E(gp 651,82 and the restriction
of £%P7¢wj(cgp)’ﬁl’52 to kK = szx is given as:

Proposition 3.3.4. Suppose that ng = 1. As elements in Fg,,

P -im:
Lo 03P gy, 52(Td 2:8) = (1= ¢p(p)” L1 () /an (2 ) £ Cp, ¢pﬁl,5Z( z).
Proof. This follows straightforwardly from the two 1nterpolat10n formulae of Theorem 2.6.2 by
noticing that when ng = 1, A" (7 x €) = (1 — ¢,(p) Loy, 1p"~ t7), so
Epn+1—15,,m, x 9eb) = (1= 6p(p) " an1(2) /an(2)) B (n + 1 — £, m, x 6¢f)
(cf. (2.3.13)). O

Now we are ready to prove the main theorem.

Theorem 3.3.5. Let z¢ be an F-point of €p where the weight projection map Ap — T}D’{er is €tale
and maps g to T. Suppose that the p-adic L-function L, gun+1., 5, € Lp[[S]] Oy, Fep has a

semi-stable trivial zero at (14 p)"*t —1,20) (s0 j(€p) = n+ 1) and the local-global compatibility
is satisfied by the p-adic Galois representation py,. Then we have

ALy puomt1,61,6, (5, ) ) O Y c(p, B1)c(epW(p), Ba)
ds S=(14p)n+t1-1 0 =0 PEsa <30)¢>

x BP0, 7y x @) - LNP(0, 4 X ),

Proof. Again, we use the natural coordinate Tlp yees ,Tf of the weight space to parametrize a rigid
analytic open neighborhood of z in €. Note that by Remark 3.3.3, we know that L, s,n+1 g, 5,((1+
p)"*t!t — 1, 2) is identically vanishing, so

8£gp,¢wn+17517ﬁ2 (S, Tlp, - ,Tf)

= 0.
TP

S=(1+p)+i-1

It follows that
dﬁ‘@”P#’ﬂlﬁz (57 :L'o)
ds S=(14p)m+1-1

_ (accgp,qﬁwnﬂﬁh@(s,z’f,...,T;’) OLog gumtt 13y (S, T ,...jj))

0S8 orr

S= (1+p)n+1 1(T17 7T ) TH (1+p)
0
~or7?

O (an(TF, ... TY) a1 (TL, ..., TT))
orr

5 (L= 0p0) anea (T, T fan(TE o T L0 5 5, (T TE))

(TF . T7) =15 (14p)

. pimp
E(KP7¢761762 (xo).
(TF,... 17 )=k (1+p)

Then the theorem follows from Theorem 3.3.1 and the interpolation property of E;I;p 651,82 in
Theorem 2.6.2.
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