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Abstract. We study the derivative of the standard p-adic L-function associated with a P -ordinary
Siegel modular form (for P a parabolic subgroup of GL(n)) when there presents a semi-stable trivial
zero. This implies part of Greenberg’s conjecture on the order and leading coefficient of p-adic L-
functions at such trivial zero. We use the method of Greenberg–Stevens. For the construction of
the improved p-adic L-function we develop Hida theory for non-cuspidal Siegel modular forms.
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Introduction

In the seminal paper [MTT86] the three authors consider an elliptic curve E and a prime p such
that E has split multiplicative reduction at p (for example E = X0(11) and p = 11). In this case
the p-adic L-function Lp(s, E) presents a trivial zero at s = 1 because of the modified Euler factor
at p. If the complex L-value L(1, E) is not vanishing, they conjecture that the first derivative of the
p-adic L-function at s = 1 interpolates the algebraic part of the complex L-value, up to an error
factor of the form logp(qE)/ordp(qE), which they call the `-invariant. Here qE is the Tate period
of E.

This conjecture has been proved in [GS93] using Hida theory and a two-variable p-adic L-function
togheter with a one-variable improved p-adic L-function. At the same time, Greenberg generalized
the conjecture of Mazur–Tate–Taitelbaum to the class of p-adic Galois representations V that sat-
isfy the so-called Pantchichkine condition. Assuming L(0, V ) 6= 0, his conjecture, roughly speaking,
predicts that the multiplicity of the trivial zero of Lp(s, V ) at s = 0 equals the order of vanishing
of Lp(s, V ) at s = 0, and gives an exact formula for the leading coefficient of the p-adic L-function.
This precise formula involves a factor `(V ), called the `-invariant of V , which is defined in purely
Galois theoretic terms and coincides with logp(qE)/ordp(qE) when V is the Tate module of an ellip-
tic curve E. This conjecture has been recently generalized to all semi-stable Galois representations
[Ben11]. For the precise statement, see Conjecture 3.1.1.

Let n be an integer and let P be the parabolic of GL(n) associated with the partition n =
n1 + . . .+ nd, i.e.

P =


a1 ∗ ∗

. . . ∗
ad

 ∈ GL(n)

∣∣∣∣∣∣∣ ai ∈ GL(ni), 1 ≤ i ≤ d

 .

The main objective of the paper is to study Conjecture 3.1.1 when V is the standard Galois repre-
sentation associated to an irreducible cuspidal automorphic representation π of Sp(2n,A) which is
P -ordinary, i.e. the archimedean component π∞ is isomorphic to a holomorphic discrete series Dt
of weight t = (tP1 , . . . , t

P
1︸ ︷︷ ︸

n1

, tP2 , . . . , t
P
2︸ ︷︷ ︸

n2

, . . . , tPd , . . . , t
P
d︸ ︷︷ ︸

nd

), and the action of certain UPp -operators (which

are Hecke operators at p whose normalization depends on t) on π admits a non-zero eigenvector
with eigenvalues being p-adic units.

Denote by L(s, π× ξ) the standard L-function for π twisted by a finite order Dirichlet character
ξ. It is defined as an infinite Euler product. The local L-factors for a place v where both π and ξ
are unramified is given as

Lv(s, πv × ξv) = (1− ξ(qv)q−sv )−1
n∏
i=1

(1− ξ(qv)αv,iq−sv )−1(1− ξ(qv)α−1
v,i q
−s
v )−1,

where α±1
v,i , 1 ≤ i ≤ n, are the Satake parameters of πv and qv is the cardinality of the residue field.

The Deligne critical points for L(s, π × ξ) are the integers s0 such that

1 ≤ s0 ≤ tn − n, (−1)s0+n = ξ(−1), or n+ 1− tn ≤ s0 ≤ 0, (−1)s0+n+1 = ξ(−1).

The algebracity of these critical L-values divided by certain Petersson norm period has been shown
in [Har81, Shi00, BS00]. In [Liu16b], the first author constructed an n+1-variable p-adic L-function
interpolating the critical values to the right of the center of the partial standard L-function with π
varying in a Hida family (ordinary for P = B).
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In this paper we generalize the results of [Liu16b] and construct a d+1-variable p-adic L-function
for P -ordinary Hida families (where P is general), interpolating critical values to the left of the
center of the partial standard L-function.

Let TP = P/SP be the maximal quotient torus of P . We say that τP ∈ Homcont(TP (Zp),Q
×
p ) is

arithmetic if it is a product of an algebraic character corresponding to integers (tP1 , . . . , t
P
d ) and a

finite order character (εP1 , . . . , ε
P
d ); we say that it is admissible if moreover tP1 ≥ tP2 . . . ≥ tPd ≥ n+1.

We fix a sufficiently large p-adic field F as coefficient field and denote by OF its valuation ring.
Suppose p ≥ 3. Hida theory for P -ordinary cuspidal Siegel modular forms has been developed

in [Pil12] generalizing the case P = B in [Hid02]. Let CP be a geometrically irreducible component

of the spectrum of T0,N
P -ord, the Hecke algebra acting on P -ordinary Hida families of cuspidal Siegel

modular forms of tame principal level N , and let FCP be its function field. We denote by ICP the
integral closure of ΛP := OF JTP (Zp)◦K in FCP , where TP (Zp)◦ is the maximal p-profinite subgroup
of TP (Zp). We prove the following theorem:

Theorem (Theorem 2.6.2). Let CP be as above. For a Dirichlet character φ with conductor dividing
N and φ2 6= 1, a pair (β1, β2) ∈ N−1 Sym(n,Z)∗⊕2

>0 , and j ∈ Z/(p−1) such that φωj(−1) = 1, there
is a p-adic L-function LCP ,φωj ,β1,β2

∈ ICP [[S]] ⊗ICP FCP which satisfies the following interpolation
property.

Let x : ICP → F ′ be an F ′-point of CP (with F ′ being a finite extension of F ). Suppose that the

weight map ΛP → T0,N
P -ord is étale at x and maps x to an admissible point τP ∈ Homcont (TP (Zp), F ′×).

For an integer n + 1 ≤ k ≤ tPd and a finite order character χ◦ : Z×p → Q× trivial on (Z/p)×, we
have

LCP ,φωj ,β1,β2
(χ◦(1 + p)(1 + p)k − 1, x) =Ck,tP ·

∑
ϕ∈sx

c(ϕ, β1)c(ePW (ϕ), β2)

〈ϕ,ϕ〉

× Ep(n+ 1− k, πx × φχ◦ωj−k) · LNp∞(n+ 1− k, πx × φχ◦ωj−k),

Here the factor Ep(n + 1 − k, πx × φχ◦ωj−k) is the modified Euler factor at p as predicted by
Coates–Perrin-Riou [Coa91].

We refer to Theorem 2.6.2 (which is formuated as p-adic measures) for the undefined notation and
§2.3 for the definition of the modified Euler factor at p. The construction of this p-adic L-function
is similar to the one in [Liu16b] and uses the doubling method [Gar84, PSR87].

Remark. For the whole paper, we assume that φ2 6= 1. This hypothesis is absolutely not necessary,
but when φ2 = 1 the p-adic L-function could have a possible pole in the cyclotomic variable
(outside the range of interpolation), which comes from the pole of the Kubota–Leopoldt p-adic
function appearing in the Fourier coefficients of the Siegel Eisenstein series on Sp(4n). When n = 1
this pole cancels out if and only if CP has no CM [Hid90, Proposition 5.2]. In general we expect a
cyclotomic pole if and only if the standard representation associated with CP is reducible and the
trivial representation appears as a sub-quotient of it.

When nd = 1 and εPd is trivial, the factor 1 − φp(p)−1α−1
n,xp

s−1 appears in Ep(s, πx × φ), where

αn,x is an algebraic number related with the UPp -eigenvalues (see §2.3 for the precise definition).
Supposing that x is classical, then αn,x corresponds to the Frobenius eigenvalue of p-adic valuation
−(tPd − n) in the Weil representation associated to πx,p. If φ(−1) = (−1)n+1, φp(p) = 1, and

αn,x0 = p−1 for a classical point x0 ∈ CP (F ), then the factor 1 − φp(p)
−1α−1

n,x0
pk−n vanishes if

k = n+1, and a trivial zero occurs at the point ((1+p)n+1−1, x0) for LCP ,φωn+1,β1,β2
. Denote by ρx0 :

GQ → GL(2n+ 1,Qp) the Galois representation attached to x0 [Art13, CH13]. We shall call ((1 +

p)n+1 − 1, x0) a semi-stable trivial zero for LCP ,φωn+1,β1,β2
if furthermore Fil0 ρx0 |GQp

/Fil2 ρx0 |GQp
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is a two dimensional indecomposable GQp-representation. When nd = 1 and πx0 is P -ordinary with

αn,x0 = p−1, the condition on ρx0 |GQp
is expected to be always satisfied (see Remark 2.3.3). It is

for this special type of trivial zeros that we can use the Greenberg–Stevens method to study the
derivative of the p-adic L-function.

The step of expressing the `-invariant in terms of the derivative of UPp -eigenvalues in the Greenberg–
Stevens method for the so-called trivial zero of type M (as named in [Gre94]) has already been
done [Ros15]. The other step in the method, which relates the derivative with respect to the
cyclotomic variable of the p-adic L-function to the derivative with respect to the weight variable
of the UPp -eigenvalues, applies in the following situation. Suppose that there is a d + 1-variable
p-adic L-function L(S, T1, . . . , Td) with S as the cyclotomic variable, and it has a trivial zero at
(s0, t1, . . . , td). If there exists a d-tuple integer (a1, . . . , ad) 6= 0, and integers a0 6= a′0, such that
L(S, T1, . . . , Td) vanishes along the line (s0, t1, . . . , td) + S(a0, a1, . . . , ad) and can be improved (in
the sense of saving the factor that causes the trivial zero in the interpolation result) along the line
(s0, t1, . . . , td) + S(a′0, a1, . . . , ad), then the strategy applies.

In our above mentioned case of the semi-stable zero, the assumption on ρx|GQp
implies that

the trivial zero is of type M . The p-adic L-function LCP ,φωn+1,β1,β2
vanishes along the hyperplane

S = (1+p)n+1−1 (because of the missing factor 1−φp(p)p−s for π with πp unramified). Meanwhile,

when k = tPd the factor 1 − φp(p)
−1α−1

n pn−k is a p-adic analytic function as αnp
tPd −n can be

expressed in terms of UPp eigenvalues. Hence there is the possibility to improve the p-adic L-

function along the hyperplane S = (1 + p)t
P
d − 1. The lines ((1 + p)n+1 − 1, x0) + S(0, 0, . . . , 0, 1)

and ((1 + p)n+1 − 1, x0) + S(1, 0, . . . , 0, 1) satisfy the conditions in the previous paragraph.
Now in order to carry out the Greenberg–Stevens method, we need to construct the improved

p-adic L-function. Indeed, by a different choice of the local sections at p for the Siegel Eisenstein
series on Sp(4n) (compare the tables in §2.4.8), we obtain a new Eisenstein series such that applying
to it the pullback formula from the doubling method produces the complex L-function without the
factor 1− φp(p)−1α−1

n ps−1.
However, a new difficulty arises. One useful fact about the sections selected for constructing

the p-adic L-function in Theorem 2.6.2 is that the restrictions to Sp(2n,A) × Sp(2n,A) of the
corresponding Siegel Eisenstein series are cuspidal, so Hida theory for cuspidal Siegel modular
forms can be applied to finish the construction. However, the new Eisenstein series for the improved
p-adic L-function do not restrict to (p-adic) cuspidal forms on Sp(2n,A) × Sp(2n,A). Therefore,
Hida theory for non-cuspidal Siegel modular forms needs to be developed in order to construct
the improved p-adic L-function. Such a theory has been developed for Siegel modular forms with
P = GL(n) [Pil12], and for U(2, 2) [SU14] which is later generalized to U(n, 1) [Hsi14a]. In the
second section we develop Hida theory for p-adic Siegel modular forms vanishing along the strata
of the toroidal compactification associated with cusp labels of rank strictly bigger than r, for an
integer r ≤ nd.

Our approach is different from that in [SU14, Hsi14a] where they introduce the subsheaf ω[t
inside ωt and prove the base change property for its global sections. Instead, ours is based on a

careful analysis of the quotient V SP,r
m,l

/
V SP,r−1
m,l , where V SP,r

m,l (resp. V SP,r−1
m,l ) denotes the space

of functions on the l-th layer of the Igusa tower modulo pm which vanish along the strata of the
toroidal compactification associated with cusp labels of rank strictly bigger than r (resp. r − 1).

This allows us to define a useful subspace V SP,r,[
m,l ⊂ V SP,r

m,l , and to establish the exact sequence

(0.0.1) 0 −→ V SP,r−1 −→ V SP,r,[ −→
⊕

V ∈CV/Γ
rkV=r

Zp[[TP (Zp)]]⊗Zp[[TPn−r (Zp)]] V SPn−r,0
V −→ 0,
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from which one can establish Hida theory for V SP,r by using cuspidal Hida theory and induction
on r.

The idea of using exact sequences involving non-cupidal Siegel modular forms and Siegel modular
forms of lower genus also appears in [Wei83, BR89]. As they work in characteristic 0, for an
irreducible algebraic representation W of GL(n), and a congruence subgroup L ⊂ GL(n) consisting

of elements of the form

(
Inr ∗
0 ∗

)
, one has

(0.0.2) W (R)L = W (Q)L ⊗R, for a Q-algebra R.

However, (0.0.2) fails if Q is replaced by Zp. The failure of equation (0.0.2) causes the difficulty
for directly generalizing the Hida theory for cuspidal Siegel modular forms to non-cuspidal Siegel
modular forms. The sheaf ω[t in [SU14, Hsi14a] is about remedying the failure of (0.0.2) when Q is

replaced by Zp. This issue is bypassed in our approach, as we study the space V SP,r via the terms
on the two ends of the exact sequence (0.0.1).

Our results are summarized as follows:

Theorem (Theorem 1.3.1). For the given parabolic subgroup P ⊂ GL(n) and an integer 1 ≤ r ≤ nd,
the following holds:

(i) An ordinary projector eP = e2
P can be defined on V SP,r, and the Pontryagin dual of its

ordinary part

V r,∗
P -ord = HomZp

(
ePV SP,r,Qp/Zp

)
(which is naturally an OF [[TP (Zp)]]-module) is finite free over ΛP = OF [[TP (Zp)◦]].

(ii) Define

Mr
P -ord = HomΛn

(
V r,∗
P -ord,ΛP

)
.

Given a dominant arithmetic weight τP ∈ Homcont(TP (Zp),Q
×
p ) with dominant algebraic

part tP ∈ X(TP )+ and finite order part εP ∈ Homcont(TP (Zp),Q
×

), let PτP be the corre-
sponding prime ideal of OF [[TP (Zp)]]. Then

Mr
P -ord ⊗OF [[TP (Zp)]] OF [[TP (Zp)]]

/
PτP

∼−→ lim←−
m

lim−→
l

ePV
SP,r
m,l [τP ],

and (see (0.0.5)(1.2.2) and (0.0.7) for the definition of the congruence subgroup ΓSP ⊂
Sp(2n,Z) and weight ι(tP ) ∈ X(T ) associated to tP ∈ X(TP ))

lim−→
l

ePM
r
ı(tP )

(
Γ ∩ ΓSP (pl), εP ;F

)
↪−→

(
Mr

P -ord ⊗OF [[TP (Zp)]] OF [[TP (Zp)]]
/
PτP

)
[1/p].

Here the maps are equivariant under the action of the unramfied Hecke algebra away from
Np and the UPp -operators.

(iii) When εP is trivial and tP1 � tP2 � · · · � tPd � 0, the above embedding is an isomorphism.
(iv) There is the following so-called fundamental exact sequence (in the study of Klingen Eisen-

stein congruence),

0 −→Mr−1
P -ord −→M

r
P -ord −→

⊕
V ∈CV/Γ
rkV=r

M0
V,Pn−r- ord ⊗OF [[TPn−r (Zp)]] OF [[TP (Zp)]] −→ 0,

andM0
V,Pn−r- ord is the OF [[TPn−r(Zp)]]-module of families of p-adic ordinary Siegel modular

forms of degree n−r over YV,ord for the parabolic Pn−r ⊂ GL(n−r) defined by the partition
n− r = n1 + · · ·+ nd−1 + (nd − r).
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This construction can be generalized to other PEL type Shimura varieties, both with (using
[Hid02]) and without (using [EM17, BR17]) ordinary locus.

With the new choice of sections at p for the Siegel Eisenstein series and the Hida theory for
non-cuspidal Siegel modular forms we can then construct the improved p-adic L-function:

Theorem (Theorem 2.6.2). With the same notation as above, assume that the parity of CP is
compatible with φ (i.e. φ(−1) = τPd (−1) for a τP in the image of the projection of CP to the weight

space). There is a p-adic L-function LP -imp
CP ,φ,β1,β2

(x) ∈ FCP which satisfies the following interpolation

property. If x is étale and its projection τP in the weight space is admissible, then

LP -imp
CP ,φ,β1,β2

(x) =CtP ·
∑
ϕ∈sx

c(ϕ, β1)c(ePW (ϕ), β2)

〈ϕ,ϕ〉

× EP -imp
p (n+ 1− tPd , πx × φεPd ) · LNp∞(n+ 1− tPd , πx × φεPd ),

for EP -imp
p defined as in §2.3.

The Greenberg–Stevens method [GS93] allows us to prove the following theorem on semi-stable
trivial zeroes:

Theorem (Theorem 3.3.5). Let x0 be an F -point of CP where the weight projection map ΛP →
T1,N
P -ord is étale and maps x0 to τP0 . Suppose that the p-adic L-function LCP ,φωn+1,β1,β2

∈ ICP [[S]]⊗ICP
FCP has a semi-stable trivial zero at ((1+p)n+1−1, x0) and the local-global compatibility is satisfied
by the p-adic Galois representation ρx0. Then we have

dLCP ,φωn+1,β1,β2
(S, x0)

dS

∣∣∣∣
S=(1+p)n+1−1

= − `(ρx0) · CtP0 ·
∑
ϕ∈sx0

c(ϕ, β1)c(ePW (ϕ), β2)

〈ϕ,ϕ〉

× EP -imp
p (0, πx0 × φ) · LNp∞(0, πx0 × φ),

where `(ρx0) is the `-invariant as defined by Greenberg.

This result almost implies the conjecture of Greenberg, up to the non-vanishing of the `-invariant
and of the imprimitive L-function. The non-vanishing of the `-invariant is a very hard problem and
it is known only in the case of [MTT86], thanks to a deep result in transcendental number theory
stating that qE is trascendental [BSDGP96]. Note that for n = 2 we know the non-vanishing of
`(ρx0) whenever πx0 = Sym3(πfE ), where fE is the weight two modular form associated with an
elliptic curve with semi-stable reduction at p. The imprimitive L-function could vanish because
of the vanishing of some of the Euler factors at a prime ` dividing N . One may deal with such
vanishing by selecting better sections at `|N .

Acknowledgments. The authors thank Kai-Wen Lan, Vincent Pilloni, Eric Urban for many useful
discussions. Part of this work has been done while GR was a Herchel Smith fellow at Cambridge
University and supernumerary fellow at Pembroke College, and during many visits at Columbia
University; he would like to warmly thank these institutions. This material is based upon work
supported by the National Science Foundation under Grant No. DMS-1638352

Notation. For the whole length of the paper we fix an odd prime p as well as isomorphism between
Qp and C. Also, we fix a positive integer N ≥ 3 prime to p and an integer n ≥ 1 together with a
partition n = n1 + · · ·+ nd with n1, . . . , nd ≥ 1.

We denote by V a free Z-module of rank 2n with a standard basis e1, . . . , en, f1, · · · , fn equipped

with a symplectic pairing given by

(
0 In
−In 0

)
with respect to the standard basis. Then e1, · · · , en
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span a maximal isotropic subspace Vn inside V. Set V ∗n = V/V ⊥n . One can canonically identify
V ∗n with the maximal isotropic subspace of V spanned by f1, · · · , fn and there is the polarization
V = Vn ⊕ V ∗n .

Let G = Sp(2n) be the algebraic group acting on V preserving the symplectic pairing. In matrix
form it is {

g ∈ GL(2n) : tg

(
0 In
−In 0

)
g =

(
0 In
−In 0

)}
.

Let QG be the standard Siegel parabolic subgroup of G preserving Vn, whose unipotent subgroup
we denote by UQG . We identify the Levi subgroup of QG with GL(n) via the map

QG −→ GL(n)(0.0.3) (
a b
0 ta−1

)
7−→ a.

Denote by B the standard Borel subgroup of GL(n) consisting of upper triangular matrices, and
by UB, T its unipotent radical and maximal torus respectively. We fix the isomorphism of Gn

m with
T which sends (a1, . . . , an) to diag(a1, . . . , an). The inverse image under (0.0.3) of B constitutes
the standard Borel subgroup BG of G with unipotent radical NG and maximal torus TG. The tori
T and TG are identified via the map (0.0.3).

We put ourselves in the setting of [Pil12], i.e. considering Siegel modular forms ordinary with
respect to a general parabolic subgroup of GL(n) containing B associated to our fixed partition
n = n1 + · · · + nd (the ordinarity considered in [Hid02] is the ordinarity with respect to B). Set

Ni =
∑i

j=1 ni, 1 ≤ i ≤ d. Define

P =


a1 ∗ ∗

. . . ∗
ad

 ∈ GL(n)

∣∣∣∣∣∣∣ ai ∈ GL(ni), 1 ≤ i ≤ d

 ,(0.0.4)

SP =


a1 ∗ ∗

. . . ∗
ad

 ∈ SL(n)

∣∣∣∣∣∣∣ ai ∈ SL(ni), 1 ≤ i ≤ d

 ,(0.0.5)

and UP to be the unipotent radical of P . When the partition is taken as n = 1 + 1 + · · · + 1, the
group P , (resp. both SP and UP ) is just B (resp. UB). Let TP = P/SP and we fix the following
isomorphism

TP = P/SP
∼−→ Gd

m(0.0.6) a1

. . .

ad

u 7−→ (det(a1), . . . ,det(ad)) .

Note here that TP is not the maximal torus in P . Denote by X(TP ) the group of characters of
TP (which are also naturally viewed as characters of P ). We identify it with Zd by associating to

tP := (tP1 , . . . , t
P
d ) the character sending diag(a1, . . . , ad) to

∏d
i=1 det(ai)

tPi . When working with B,
we shall drop the superscript from the notation for the characters when there is unlikely confusion.
The map (0.0.6) restricts to a map T → TP , which induces an embedding

(0.0.7)

ı : X(TP ) −→ X(T )

tP := (tP1 , . . . , t
P
d ) 7−→ (tP1 , . . . , t

P
1︸ ︷︷ ︸

n1

, tP2 , . . . , t
P
2︸ ︷︷ ︸

n2

, . . . , tPd , . . . , t
P
d︸ ︷︷ ︸

nd

).
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Denote by X(T )+ the subset of X(T ) of dominant weights with respect to B and set X(TP )+ =
X(TP ) ∩ X(T )+. Then tP ∈ X(TP ) belongs to X(TP )+ if and only if tP1 ≥ tP2 ≥ · · · ≥ tPd . Fix
a finite extension F of Qp (assumed to be sufficiently large in the context) and denote by OF its
ring of integers. The weight space in Hida theory for P -ordinary Siegel modular forms over F is
Spec (OF [[TP (Zp)]]). For an arithmetic point of the weight space τP ∈ Spec (OF [[TP (Zp)]]) (Qp),

i.e. a character in Homcont

(
TP (Zp),Q

×
p

)
that is the product of an algebraic and a finite order

character, we write its algebraic part (resp. finite order part) as τPalg = tP = (tP1 , . . . , t
P
d ) (resp.

τPf = εP = (εP1 , . . . , ε
P
d )).

We fix the standard additive character eA =
⊗

v ev : Q\A→ C× with local component ev defined

as ev(x) =

{
e−2πi{x}v , v 6=∞
e2πix, v =∞

where {x}v is the fractional part of x.

1. Non-cuspidal Hida theory

In this section we develop Hida theory for non-cuspidal Siegel modular forms, or more precisely,
for the P -ordinary Siegel modular forms vanishing along the strata with cusp labels of rank > r for
some 0 ≤ r ≤ nd. Later, the family of Siegel Eisenstein series on Sp(4n) we shall use to construct
the improved p-adic L-function, unlike the ones for the usual p-adic L-function, do not restrict
to cuspidal forms on Sp(2n) × Sp(2n) (see the discussion at the end of §2.4.7). The Hida theory
developed here will be applied to them. Also, we expect such a theory to be of independent interest
and to find applications elsewhere, for instance in the study of Eisenstein congruences.

The main difficulty in directly generalizing Hida theory for cuspidal forms on PEL Shimura
varieties to non-cuspidal forms is that for an algebraic representation W of GL(n)/Z of finite rank,
an algebra R and a subgroup L ⊂ GL(n,Z) of the form

L =

{(
In−r ∗

0 ∗

)
∈ GL(n,Z)

}
, 1 ≤ r ≤ n,

the module W (R/pm)L is not necessarily equal to W (R)L ⊗R/pm.

In [SU14, §6][Hsi14b, §4], a subsheaf of ω[t ⊂ ωt is introduced to remedy this failure of base

change property. The sheaf ω[t is not free and differs from ωt along the boundary of the toroidal

compactification. The base change property for global sections of ω[t is shown loc. cit. With this

base change property, by mimicking Hida’s method [Hid02], Hida theory for certain non-cuspidal
forms on U(2, 2) and U(n, 1) is established loc. cit.

Here we take a different approach. Let V SP,r be the space of p-adic forms for the parabolic P
vanishing along strata indexed by cusp labels of rank > r with p-power torsion coefficients. Instead
of studying the space V SP,r via the classical Siegel modular forms embedded in it through (1.2.1)
(for which a base change property for the space of certain non-cuspidal classical Siegel modular
forms is required), we make a careful analysis of the Igusa tower over the boundary and define a

nice subspace V SP,r,[ inside V SP,r. The exact sequences in Proposition 1.7.1 plus Proposition 1.9.3
allow us to deduce desired properties for the space V SP,r,[ from those for the space of cuspidal
p-adic Siegel modular forms. Meanwhile, Proposition 1.9.4 shows that the desired properties for
V SP,r,[ imply the existence of a nice ordinary projection on V SP,r. Then we obtain Hida theory for
non-cuspidal Siegel modular forms as summarized in Theorem 1.3.1.

Exact sequences for automorphic bundles and p-adic analytic deformation of automorphic bun-
dles, similar to those in Proposition 1.7.1, are used in [Wei83] and [BR15], where things are simpler
than our case here because everything is in characteristic zero and the issue of base change does
not appear.
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1.1. Compactifications of Siegel varieties. We start by briefly recalling some facts on the
toroidal and minimal compactifications of Siegel varieties of principal level. We mainly follow the
notation in [Pil12]. Fix an integer N ≥ 3 coprime to p. Let Y be the degree n Siegel variety of
principal level N defined over Z[1/N, ζN ]. All the objects we consider in the following are endowed
with principal level N structure and we shall omit N to lighten the notation.

Recall that V = Z2n with standard basis e1, · · · , en, f1, · · · , fn and the symplectic pairing given

by

(
0 In
−In 0

)
. For 1 ≤ r ≤ n, let Vr be the submodule of V spanned by e1, · · · , er (we sometimes

call it the standard submodule of rank r in V), and we put V0 = {0}. The group Sp(V) ∼= Sp(2n,Z)
acts on V preserving the symplectic pairing. Denote by Γ the kernel of the projection Sp(2n,Z)→
Sp(2n,Z/NZ).

Denote by CV the set of cotorsion free isotropic Z-submodules of V. The group Sp(2n,Z) acts
naturally on CV. The quotient CV/Γ is called the set of cusp labels of level Γ (or of principal level
N). For a free Z-module X of finite rank, we write C(X) to denote the cone of positive semi-definite
symmetric bilinear forms on X ⊗ R with rational radicals. A surjective morphism X → X ′ of free
Z-modules induces an inclusion C(X ′) ↪→ C(X). Define CV as the quotient of the disjoint union∐
V ∈CV

C(V/V ⊥) by the equivalence relations induced by the inclusions C(V/V ⊥) ↪→ C(V/V ′⊥) for

V ⊂ V ′, V, V ′ ∈ CV. The group Sp(2n,Z) acts on CV.
A GL(n,Z)-admissible smooth rational polyhedral cone decomposition Σ of C(Zn) ([FC90, Def-

inition 2.2]) gives rise to a rational polyhedral cone decomposition ΣCV of CV. Corresponding to it
is a toroidal compactification XΣ of Y endowed with an action of Sp(2n,Z) [FC90, §IV.6].

The toroidal compactification XΣ comes with a stratification indexed by ΣCV/Γ, and we denote
by Zσ the stratum in XΣ associated with σ ∈ ΣCV . There is a canonical map ΣCV → CV sending
σ to the unique Vσ ∈ CV satisfying σ ⊂ C(V/V ⊥σ )◦. The locally closed subscheme ZV ⊂ XΣ is
defined as the union

∐
σ∈ΣCV/Γ,Vσ=V

Zσ. For 0 ≤ r ≤ n, define Ir
XΣ to the sheaf of ideals associated

to the closed subscheme
∐

V ∈CV/Γ,rkV >r

ZV .

Over XΣ, there is the canonical semi-abelian scheme G/XΣ whose restriction to Y is the universal
principally polarized abelian scheme of genus n with principal level N structure. The coherent sheaf
ω over XΣ is defined as the sheaf of invariant differentials of G/XΣ , which is locally free of rank n.

From the toroidal compactification, the minimal compactification is constructed as

X? = Proj

⊕
k≥0

H0(XΣ,detkω)

 .

The projection π : XΣ → X? is proper with connected fibres. The minimal compactification X? is
stratified by CV/Γ. The stratum YV corresponding to V ∈ CV/Γ is defined as the image of ZV . As
a scheme it is isomorphic to the Siegel variety of degree (n− rkV ) and principal level N .

1.2. The Igusa tower over the ordinary locus and p-adic forms. The invertible sheaf detkω
descends to an invertible sheaf on X?, which we still denote by detkω. For sufficiently large k, it is
very ample over X?. Choose k such that the k-th power of the Hasse invariant, which is an element

in H0
(
X?
/Fp[ζN ], detp−1ω

)
, lifts to a global section E ∈ H0

(
X?,dett(p−1)ω

)
. We write its pull-back

in H0
(
XΣ,dett(p−1)ω

)
also as E.
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Let X?,ord = X?[1/E] and XΣ,ord = XΣ[1/E], and define Y ord
V , Zord

σ , Zord
V similarly. The

reductions modulo powers of p of these schemes are independent of the choice of E and are called
the ordinary loci. Note that X?,ord is affine, while XΣ,ord is not (except when n = 1).

Fix a finite extension F of Qp containing all N -th roots of unity. We regard all above schemes
as defined over OF . For m ≥ 1, we use a subscript m to indicate the reduction modulo pm. Over

XΣ,ord
m , we consider the full Igusa tower

T Σ
m,l = Isom

XΣ,ord
m

(
µnpl ,G/XΣ,ord [pl]◦

)
,

for l ≥ 1. It is an étale cover of XΣ,ord with Galois group isomorphic to GL(n,Z/plZ). The group

Γ0(pl) =

{
g =

(
ag bg
cg dg

)
∈ G(Z) : cg ≡ 0 mod pl

}
naturally acts on T Σ

m,l with g acting on the principal level N structure and ag acting by the Galois

action of GL(n,Z/plZ) on T Σ
m,l over XΣ,ord.

Define

T Σ
SP,m,l = T Σ

m,l

/
SP (Zp/plZp)

(see (0.0.4)(0.0.5) for the definition of the algebraic subgroups P , SP of GL(n)). It parametrizes

(in addition to the structure parametrized by XΣ,ord
m ) the level structure (Ei, εi)1≤i≤d, pl , where

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Ed = G[pl]◦ is a d-step increasing filtration and εi is an isomorphism∧ni µni
pl
∼=
∧ni Ei/Ei−1. There is a natural TP (Zp)-action on T Σ

SP,m,l.

Write fm,l : T Σ
SP,m,l → XΣ,ord

m for the natural projection. Define

V SP,r
m,l = H0

(
T Σ
SP,m,l, f

∗
m,lIrXΣ

m

)
,

V SP,r = lim−→
m

lim−→
l

V SP,r
m,l .

The space V SP,r is called the space of p-adic Siegel modular forms for the parabolic P vanishing
along the strata indexed by cusp labels of rank > r with p-power torsion coefficients. When P = B
we shall drop the P from the notation, and when r = n we shall drop r from the notation.

The TP (Zp)-action on T Σ
SP,m,l equips V SP,r

m,l and V SP,r with an OF JTP (Zp)K-module structure.

The space V 0 is the space of cuspidal p-adic Siegel modular forms with p-power torsion coefficients,
which is considered in Hida theory (for the Borel B) for cuspidal Siegel modular forms, while V SP,0

(for general P ) is the one in [Pil12].
Besides the torsion Zp-module V SP,r (which is in fact p-divisible by Remark 1.5.1), we will also

consider the Zp-module lim←−
m

lim−→
l

V r
m,l, i.e. taking the inverse instead of direct limit with respect to

m (which is torsion free over Zp by Remark 1.5.1). It is the torsion Zp-module V SP,r that will be
used to construct the OF JTP (Zp)K-module of Hida families. Meanwhile, the space lim←−

m

lim−→
l

V r
m,l is

more easily seen related to the classical Siegel modular forms.

More precisely, for tP ∈ X(TP )+, εP ∈ Hom
(
TP (Z/pl),C×

)
, and τP ∈ Homcont

(
TP (Zp),Q

×
p

)
which is the product of tP and εP , there is a canonical Hecke-equivariant embedding [Pil12, §4.2.1]

(1.2.1) lim−→
l

Mr
ı(tP )

(
Γ ∩ ΓSP (pl), εP ;F

)
↪−→

(
lim←−
m

lim−→
l

V SP,r
m,l [τP ]

)
[1/p].
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Here Mr
t

(
Γ ∩ ΓSP (pl), εP ;F

)
denotes the space of classical holomorphic Siegel modular forms of

weight t = ı(tP ) and level Γ ∩ ΓSP (pl) with nebentypus εP vanishing along strata with cusp labels
of rank > 1, and the congruence subgroup ΓSP (pl) is defined as

(1.2.2) ΓSP (pl) =
{
g ∈ Sp(2n,Z) : gmod pl belongs to SP (Z/pl)

}
.

The vanishing condition here for the classical Siegel modular forms is equivalent to requiring that at

all cusps all the Fourier coefficients with indices of corank > r vanish. The space lim←−m lim−→l
V SP,r
m,l [τP ]

is the τP -eigenspace for the action of TP (Zp) on lim←−m lim−→l
V SP,r
m,l . The construction of the embedding

(1.2.1) mainly relies on the Hodge–Tate map

HomR(G[p∞]◦, µp∞)⊗Zp R
∼−→ ωG/R

for an ordinary semi-abelian scheme G over a Zp-algebra R.

1.3. The main theorem. Our goal is to establish the following theorem.

Theorem 1.3.1. For given P ⊂ GL(n) as in (0.0.4) and an integer 1 ≤ r ≤ nd, we have the
following.

(i) An ordinary projector eP = e2
P can be defined on V SP,r, and the Pontryagin dual of its

ordinary part

V r,∗
P -ord = HomZp

(
ePV SP,r,Qp/Zp

)
(which is naturally an OF JTP (Zp)K-module) is finite free over ΛP = OF JTP (Zp)◦]], where
TP (Zp)◦ is the maximal p-profinite subgroup of TP (Zp).

(ii) Define

Mr
P -ord = HomΛP

(
V r,∗
P -ord,ΛP

)
.

Given an arithmetic weight τP ∈ Homcont(TP (Zp),Q
×
p ) with dominant algebraic part tP ∈

X(TP )+ and finite order part εP ∈ Homcont(TP (Zp),Q
×

), let PτP be the corresponding
prime ideal of OF JTP (Zp)K. Then

Mr
P -ord ⊗OF JTP (Zp)K OF JTP (Zp)K

/
PτP

∼−→ lim←−
m

lim−→
l

ePV
SP,r
m,l [τP ],

which combining with (1.2.1) gives

(1.3.1) lim−→
l

ePMr
ı(tP )

(
Γ ∩ ΓSP (pl), εP ;F

)
↪−→

(
Mr

P -ord ⊗OF JTP (Zp)K OF JTP (Zp)K
/
PτP

)
[1/p] .

Here the maps are equivariant under the action of the unramfied Hecke algebra away from
Np and the UPp -operators.

(iii) When εP is trivial and tP1 � tP2 � · · · � tPd � 0, the embedding (1.3.1) is an isomorphism.
(iv) There is the following so-called fundamental exact sequence (in the study of Klingen Eisen-

stein congruence),

0 −→Mr−1
P -ord −→M

r
P -ord −→

⊕
V ∈CV/Γ
rkV=r

M0
V,Pn−r- ord ⊗OF JTPn−r (Zp)K OF JTP (Zp)K −→ 0,

where

Pn−r =


a1 ∗ ∗

. . . ∗
ad

 ∈ GL(n− r)

∣∣∣∣∣∣∣ ai ∈ GL(ni), 1 ≤ i ≤ d− 1, ad ∈ GL(nd − r)

 ,
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andM0
V,Pn−r- ord is the OF JTPn−r(Zp)K-module of families of p-adic cuspidal ordinary Siegel

modular forms of degree n− r over YV,ord for the parabolic Pn−r.

Remark 1.3.2. For two different P , P ′, there are no inclusion relations betweenMr
P -ord andMr

P ′-ord,
thus in order to study certain Siegel modular forms by using Hida theory, one needs first to specify
a parabolic P containing the standard Borel subgroup of GL(n) such that the Siegel modular forms
under inspection are SP (Zp)-invariant and P -ordinary. There is not such Hida theory (as to the
authors’ knowledge) that studies P -ordinary Siegel modular forms for all P simultaneously. On the
contrary, when studying families of finite slope families, there is no need to specify a parabolic as
the theory established for the Borel (e.g. [AIP15]) treats all Siegel modular forms of finite slope.

The remaining part of this section is devoted to proving this theorem. The proof relies on a
careful study of the quotient V SP,r/V SP,r−1 and the boundary of the Igusa tower, which leads to

the definition of the subspace V SP,r,[
m,l ⊂ V SP,r

m,l . This subspace is characterized by the vanishing

along certain connected components of the Igusa tower over
∐

V ∈CV/Γ
rkV=r

ZV,ord, and plays an important

role in our proof of the above theorem.

1.4. The Mumford construction. We quickly recall the Mumford construction which will be
used in the description of the fibre of the push-forward of the ideal sheaf Ir

XΣ , as well as in the
definition of q-expansions.

Given a free Z-module Xr of rank r with basis x1, · · · , xr, set X∗r to be its dual free Z-module
with dual basis x∗1, · · · , x∗r . Let Tn−r,m,l the Igusa tower, m, l ≥ 1, over the degree (n − r) Siegel
variety of principal level N and (A/Tn−r,m,l , ψN,Tn−r,m,l , φp,Tn−r,m,l) be the universal object over it.

The extensions ofA/Tn−r,m,l by the torusX∗r⊗Gm are parametrized by HomTn−r,m,l(Xr,A/Tn−r,m,l).
Let BX∗r ,m,l be an abelian scheme which is isogenous to

HomTn−r,m,l(N
−1Xr,A/Tn−r,m,l)

via an isogeny of degree a power of p, related to the p-level structure of the Igusa tower. Given
µ ∈ N−1Xr, there is tautologically a map c(µ) : BX∗r ,m,l → A/Tn−r,m,l through evaluation at µ.

Denote by S2(Xr) the symmetric quotient of Xr ⊗ZXr. Let P → A/Tn−r,m,l ×Tn−r,m,l A/Tn−r,m,l be

the Poincaré bundle and P× → A/Tn−r,m,l ×Tn−r,m,l A/Tn−r,m,l be its associated Gm-torsor.

Pick a basis [µi ⊗ νi], 1 ≤ i ≤ r(r − 1)/2, of N−1S2(Xr) with µi, νi belonging to N−1Xr.
Associated to each [µi ⊗ νi] there is a map

c(µi)× c(νi) : BX∗r ,m,l −→ A/Tn−r,m,l ×Tn−r,m,l A/Tn−r,m,l ,
along which one can pull back the Poincaré bundle and its associated Gm-torsor. Define

MX∗r ,m,l =
∏
i

(c(µi)× c(νi))∗(P×)⊗N ,

which is a torsor over BX∗r ,m,l for the torus HomZ(N−1S2(Xr),Gm). For λ =
∑r(r−1)/2

i=1 ai[µi⊗νi] ∈
S2(Xr), define the invertible sheaf L(λ) over BX∗r ,m,l as

L(λ) =
⊗
i

c(µi)× c(νi))∗P⊗aiN .

We have (
MX∗r ,m,l → Tn−r,m,l

)
∗OMX∗r ,m,l

=
⊕

λ∈N−1S2(Xr)

H0
(
BX∗r ,m,l, L(λ)

)
.

Now suppose σ ⊂ C(Xr)
◦ is a cone generated by a set of elements that extends to a basis of the

space of symmetric bilinear forms on Xr. LetMX∗r ,m,l ↪→MX∗r ,m,l,σ be the affine torus embedding
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over BX∗r ,m,l corresponding to σ. Denote by S2(Xr) the symmetric quotient of Xr ⊗ Xr, and by

σ∨ the dual cone of σ consisting of elements in S2(Xr) ⊗ R whose pairing with any element in σ
is non-negative. Let σ∨,◦ be the interior of σ∨. Let IσMX∗r ,m,l,σ

be the ideal sheaf inside OMX∗r ,m,l,σ

attached to the boundary of the affine torus embedding. Then(
MX∗r ,m,l,σ → Tn−r,m,l

)
∗OMX∗r ,m,l,σ

=
⊕

λ∈N−1S2(Xr)∩σ∨
H0
(
BX∗r ,m,l, L(λ)

)
,(1.4.1)

(
MX∗r ,m,l,σ → Tn−r,m,l

)
∗ I

σ
MX∗r ,m,l,σ

=
⊕

λ∈N−1S2(Xr)∩σ∨,◦
H0
(
BX∗r ,m,l, L(λ)

)
.(1.4.2)

Let M̂X∗r ,m,l,σ be the formal completion along the boundary of the torus embedding. The natural

map Xr → Hom(Xr, S
2(Xr)) defines a period subgroup N−1Xr ⊂ X∗r ⊗ Gm/Z[N−1S2(Xr)] with a

polarization given by the duality between Xr and X∗r . The Mumford construction gives a principally
polarized semi-abelian scheme G

/M̂X∗r ,m,l,σ
, together with a canonical principal level N structure

ψN,can : (Z/NZ)2n → G
/M̂X∗r ,m,l,σ

[N ] and a canonical trivialization φp,can : µn
pl
∼→ G

/M̂X∗r ,m,l,σ
[pl]◦,

which comes from the level structure parametrized by Tn−r,m,l, the extension data parametrized
by BX∗r ,m,l plus the fixed basis of Xr.

1.5. The fibre of the push-forward to the minimal compactification. Let T ?
SP,m,l be the

Stein factorization of T Σ
SP,m,l → X?,ord,

(1.5.1) T Σ
SP,m,l

fm,l //

πT

��

XΣ,ord
m

π

��

T ?
SP,m,l

// X?,ord
m .

The scheme T Σ
SP,m,l (resp. T ?

SP,m,l) can also be viewed as the partial toroidal (resp. minimal)

compactification of the Igusa tower TSP,m,l over Y ord
m , which is a special case of the construction

in [Lanar]. They admit a similar description as XΣ, X?.
Let CV, pl ⊂ CV be the orbit of {V0, V1, · · · , Vr} under the action of the group

Γ0(pl)

{(
a b
c d

)
∈ Sp(2n,Z) : c ≡ 0 mod pl

}
,

and define CV, pl from CV, pl in the same way as CV from CV. The partial compactification T ?
SP,m,l

(resp. T Σ
SP,m,l) is stratified by CV, pl/Γ∩ΓSP (pl) (resp. the rational polyhedral cone decomposition

ΣCV, pl induced from Σ). The natural maps

pC,l : CV,pl/Γ ∩ ΓSP (pl) −→ CV/Γ,(1.5.2)

pC,l : ΣCV,pl/Γ ∩ ΓSP (pl) −→ ΣCV/Γ

are surjective.
In order to distinguish from the notation for the stratum indices for X?, XΣ, we use an extra ˜ to

denote the stratum indices for T ?
SP,m,l, T Σ

SP,m,l, i.e. we write Ṽ , σ̃ for elements in CV, pl/Γ∩ΓSP (pl),

ΣCV, pl/Γ ∩ ΓSP (pl). The stratum in T ?
SP,m,l (resp. T Σ

SP,m,l) associated to Ṽ (resp. σ̃, Ṽ ) will be

denoted as T
Ṽ ,m,l

(resp. Zσ̃,m,l, ZṼ ,m,l).
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The stratum T
Ṽ ,m,l

is isomorphic to the quotient of the full level l Igusa tower over Y
Ṽ ,m

by

Im
(

Γ
Ṽ
∩ ΓSP (pl)→ Sp(Ṽ ⊥/Ṽ ,Z/pl)

)
, where Γ

Ṽ
⊂ Γ is the subgroup mapping Ṽ to itself. For

Ṽ = Vσ̃, the diagram below describes the completion of T Σ
SP,m,l along the stratum Zσ̃,m,l,

M
Ṽ ,m,l

� � //

��

M
Ṽ ,m,l,σ̃

yy

� � //M
Ṽ ,m,l,Σ

Ṽ

tt
B
Ṽ ,m,l

��
T
Ṽ ,m,l

.

Here B
Ṽ ,m,l

, M
Ṽ ,m,l

, M
Ṽ ,m,l,σ̃

are the objects constructed in §1.4 with X∗r = Ṽ , andM
Ṽ ,m,l,Σ

Ṽ
is

the torus embedding associated to the rational polyhedral cone decomposition Σ
Ṽ

of C(V/Ṽ ⊥) given

by ΣCV, pl . Let M̂
Ṽ ,m,l,σ̃

be the completion ofM
Ṽ ,m,l,Σ

Ṽ
along the closure of the stratum attached

to σ. Then the completion of T Σ
SP,m,l along Zσ̃,m,l is isomorphic to M̂

Ṽ ,m,l,σ̃
/Γ

GL(V/Ṽ ⊥)
(pl), where

Γ
GL(V/Ṽ ⊥)

(pl) equals Im
(

Γ
Ṽ
∩ ΓSP (pl)→ GL(V/Ṽ ⊥)

)
.

Denote by Ir
T Σ
SP,m,l

(resp. IrT ?
SP,m,l

) the ideal sheaf attached to the union of all strata inside

T Σ
SP,m,l (resp. T ?

SP,m,l) with cusp labels of rank > r. The ideal sheaf Ir
T Σ
SP,m,l

equals f∗m,lIrXΣ,ord
m

as

fm,l is étale.
Since πT ,∗OT Σ

SP,m,l
= OT ?

SP,m,l
, applying πT ,∗ to the short exact sequence

0 −→ IrT Σ
SP,m,l

−→ OT Σ
SP,m,l

−→ ιr,∗O∐
Ṽ ∈CV, pl /Γ∩ΓSP (pl), rkṼ >r

Z
Ṽ ,m,l

−→ 0,

we get

(1.5.3) 0 −→ πT ,∗IrT Σ
SP,m,l

−→ OT ?
SP,m,l

−→ (π ◦ ιr)∗O∐
Ṽ ∈CV, pl /Γ∩ΓSP (pl), rkṼ≥r ZṼ ,m,l

,

where ιr :
∐
Ṽ ∈CV, pl/Γ∩ΓSP (pl), rkṼ >r

Z
Ṽ ,m,l

→ T Σ
SP,m,l is the canonical closed embedding. Since by

definition the stratum T
Ṽ ,m,l

is the image of Z
Ṽ ,m,l

, we see from (1.5.3) that

IrT ?
SP,m,l

= πT ,∗IrT Σ
SP,m,l

.

The above description of the completion of T Σ
SP,m,l along Zσ̃,m,l, combined with (1.4.1) and

(1.4.2), gives the following description of the fibre of the structure and ideal sheaves at a closed
point x ∈ T

Ṽ ,m,l
⊂ T ?

SP,m,l,

(
OT ?

SP,m,l

)∧
x

=
(
πT ,∗OT Σ

SP,m,l

)∧
x

=

 ⋂
σ∈C(V/Ṽ ⊥)◦

∏
λ∈N−1S2(V/Ṽ ⊥)∩σ∨

H0(B̂
Ṽ ,m,l,x

, L(λ))

Γ
GL(V/Ṽ⊥)

(pl)

(1.5.4)

=

 ∏
λ∈N−1S2(V/Ṽ ⊥)≥0

H0(B̂
Ṽ ,m,l,x

, L(λ))


Γ

GL(V/Ṽ⊥)
(pl)

,
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and

(
IrT ?

SP,m,l

)∧
x

=
(
πT ,∗IrT Σ

SP,m,l

)∧
x

(1.5.5)

=
(
πT ,∗OT Σ

SP,m,l

)∧
x
∩

 ⋂
σ∈C(V/Ṽ ⊥)◦

rk Ṽσ̃>r

∏
λ∈N−1S2(V/Ṽ ⊥)∩σ∨,◦

H0(B̂
Ṽ ,m,l,x

, L(λ))


Γ

GL(V/Ṽ⊥)
(pl)

=


∏

λ∈N−1S2(V/Ṽ ⊥)≥0

rkλ≥ rk Ṽ−r

H0(B̂
Ṽ ,m,l,x

, L(λ))


Γ

GL(V/Ṽ⊥)
(pl)

,

where B̂
Ṽ ,m,l,x

denotes the completion of B
Ṽ ,m,l

along its fibre over x.

Remark 1.5.1. The invertible sheaf L(λ) is the pull-back of an ample line bundle on a quotient
of the abelian scheme B

Ṽ ,m,l
. Thus in particular, taking the global sections commutes with base

change (cf. [FC90, p. 155]). Therefore (1.5.5) implies that for the ideal sheaf IrT ?
SP,m,l

, the push-

forward πT ,∗ commutes with the base change. Since T ?
SP,m,l is affine, we see that the base change

property holds, i.e.

(1.5.6) V SP,r
m,l = V SP,r

m+1,l ⊗ Z/pm.

1.6. The quotient V SP,r
m,l

/
V SP,r−1
m,l . Since X?,ord is affine, we have

V SP,r
m,l

/
V SP,r−1
m,l = H0

(
X?,ord
m , π∗fm,l,∗IrT Σ

SP,m,l

/
π∗fm,l,∗Ir−1

T Σ
SP,m,l

)
.

We need to analyze the quotient π∗fm,l,∗IrT Σ
SP,m,l

/
π∗fm,l,∗Ir−1

T Σ
SP,m,l

. It is easily seen that this quo-

tient sheaf is supported on
∐

W∈CV/Γ,rkW≥r
Y ord
W,m ⊂ X

?,ord
m . For x ∈ T

W̃ ,m,l
with W̃ ∈ CV, pl/Γ∩ΓSP (pl)
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of rank ≥ r, using (1.5.5) we get

(
πT ,∗IrT Σ

SP,m,l

/
πT ,∗Ir−1

T Σ
SP,m,l

)∧
x

=


∏

λ∈N−1S2(V/W̃⊥)≥0

rkλ=rkW̃−r

H0(B̂
W̃ ,m,l,x

, L(λ))


Γ

GL(V/W̃⊥)
(pl)

(1.6.1)

=


∏

Ṽ ∈CV, pl/Γ∩ΓSP (pl)

Ṽ⊂W̃ , rkṼ=r

∏
λ∈N−1S2(V/W̃⊥)≥0

kerλ=Ṽ

H0(B̂
W̃ ,m,l,x

, L(λ))


Γ

GL(V/W̃⊥)
(pl)

=
∏

Ṽ ∈CV, pl/Γ∩ΓSP (pl)

Ṽ⊂W̃ , rkṼ=r

 ∏
λ∈N−1S2(Ṽ ⊥/W̃⊥)>0

H0(B̂
W̃ ,Ṽ ,m,l,x

, L(λ))

Γ
GL(Ṽ⊥/W̃⊥)

(pl)

.

Here B
W̃ ,Ṽ ,m,l

is the abelian scheme over T
W̃ ,m,l

obtained as the quotient of B
W̃ ,m,l

by Ṽ . It is

p-power isogenous to

HomT
W̃ ,m,l

(N−1(Ṽ ⊥/W̃⊥), AT
W̃ ,m,l

).

The invertible sheaf L(λ) over B
W̃ ,Ṽ ,m,l

with λ ∈ N−1S2(Ṽ ⊥/W̃ )>0 is defined in the way as

described in §1.4. The group Γ
GL(Ṽ ⊥/W̃⊥)

(pl) is the image of the stablilizer of Ṽ ⊥/W̃⊥ inside

Γ
GL(V/W̃⊥)

(pl).

For each Ṽ ∈ CV, pl/Γ ∩ ΓSP (pl), there is a closed embedding

ι?
Ṽ

: T ?
Ṽ ,m,l

↪−→ T ?
SP,m,l,

where T ?
Ṽ ,m,l

is the partial minimal compactification of the stratum T
Ṽ ,m,l

. The image is the

Zariski closure of the stratum T
Ṽ ,m,l

inside T ?
SP,m,l, which equals the union of all strata with cusp

labels containing Ṽ . Like before one can define the sheaf of ideals IsT ?
Ṽ ,m,l

for 0 ≤ r ≤ rk Ṽ .

We define the group P ◦n,r(Z/pl) as the image of the map

ΓVr ∩ Γ0(pl) −→ GL(n,Z/pl)
r n− r r n− r


α u ∗ ∗ r
0 a ∗ b n− r
0 0 α−1 0 r
0 c v d n− r

7−→
(
α u
0 a

)
mod pl,

which is easily seen equal to

(
SL(r,Z/pl) ∗

0 GL(n− r,Z/pl)

)
.
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Proposition 1.6.1. There are the following short exact sequence,

(1.6.2) 0 −→ πT ,∗Ir−1
T Σ
SP,m,l

−→ πT ,∗IrT Σ
SP,m,l

−→
⊕

Ṽ ∈CV, pl/Γ∩ΓSP (pl)

rk Ṽ=r

ι?
Ṽ ,∗I

0
T ?
Ṽ ,m,l

−→ 0,

(1.6.3) 0 −→ π∗fm,l,∗Ir−1
T Σ
SP,m,l

−→ π∗fm,l,∗IrT Σ
SP,m,l

−→
⊕

V ∈CV/Γ
rkV=r

 ⊕
Ṽ ∈p−1

C,l(V )

ι?
Ṽ ,∗I

0
T ?
Ṽ ,m,l

 −→ 0,

where pC,l is the projection defined in (1.5.2) and

(1.6.4) p−1
C,l (V ) ' Γ

Ṽ
∩ Γ0(pl)

∖
Γ ∩ Γ0(pl)

/
Γ ∩ ΓSP (pl) ' P ◦n,r(Z/pl)

∖
GL(n,Z/pl)

/
SP (Z/pl).

Proof. The short exact sequence (1.6.2) follows directly from our above description in (1.5.5) and
(1.6.1) of the fibres of the relevant sheaves on the partial minimal compactification. The term at

the right end is a direct sum because the intersection between T ?
Ṽ ,m,l

and T ?
Ṽ ′,m,l

, Ṽ 6= Ṽ ′, lies

inside the closed subscheme defining the ideal sheaf I0
T ?
Ṽ m,l

. The exact sequence (1.6.3) is obtained

from (1.6.2) by rewriting the term at the right end. �

By taking global sections, (1.6.3) gives

(1.6.5) 0 −→ V SP,r−1
m,l −→ V SP,r

m,l −→
⊕

V ∈CV/Γ
rkV=r

 ⊕
Ṽ ∈p−1

C,l(V )

H0

(
T ?
Ṽ m,l

, I0
T ?
Ṽ m,l

) −→ 0.

We see that the quotient V SP,r
m,l

/
V SP,r−1
m,l is a direct sum of cuspidal p-adic Siegel modular forms

with pm-torsion coefficients of level l and degree n− r with respect to certain parabolics.

The action of the group TP (Zp) permutes the summands of V SP,r
m,l

/
V SP,r−1
m,l . There are too many

summands in the quotient in order for it to form a nice Z/pmJTP (Zp)K-module after taking direct
limit with respect to l, or in other words the structure of the TP (Zp)-action on (1.6.4) is in some
sense too complicated as l grows. The idea is that we pick out a single TP JZpK-orbit from (1.6.4)
which patch nicely with l growing.

1.7. The space V SP,r,[. For V ∈ CV/Γ of rank r, consider

TZord
V ,SP,m,l = Zord

V,m ×XΣ
m

T Σ
SP,m,l =

∐
Ṽ ∈p−1

C,l(V )

Z
Ṽ ,m,l

,

the restriction of the SP -Igusa tower to the stratum Zord
V,m. It is not connected if the set p−1

C,l (V ) '
P ◦n,r(Z/pl)

∖
GL(n,Z/pl)

/
SP (Z/pl) has more than one element. For r ≤ nd, we will define a

subscheme T [
Zord
V ,SP,m,l

⊂ TZord
V ,SP,m,l consisting of certain connected components which form a

single orbit for the TP (Zp)-action. The space V SP,r,[
m,l will be defined as the subspace of V SP,r

m,l

consisting of sections vanishing outside T [
Zord
V ,SP,m,l

.

Recall that the semi-abelian scheme G
/M̂X∗r ,m,l,σ

in the Mumford construction carries canonical

level structures

ψN,can : (Z/NZ)2n −→ G
/M̂X∗r ,m,l,σ

[N ], φp,can : µnpl
∼−→ G

/M̂X∗r ,m,l,σ
[pl]◦.
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We decide that if Ṽ = Vr, the standard submodule of V of rank r, and σ̃ ∈ C(V/Ṽ ⊥), then
the restriction of the semi-abelian scheme (G/T Σ

SP,m,l
, ψN , (Ei, εi)1≤i≤d, pl) to the formal completion

along Zord
σ̃,m,l is isomorphic to the one induced from (G

/M̂X∗r ,m,l,σ̃
, ψN,can, φp,can) (in other words, the

level structures parametrized by cusps at infinity are the canonical ones).

Then for γ =

(
aγ bγ
cγ dγ

)
∈ Γ0(pl), Ṽ = γ · Vr and σ̃ = γ · σ ∈ C(V/Ṽ ⊥) for some σ ∈ Σ, the

restriction of
(
G/T Σ

SP,m,l
, ψN , (Ei, εi)1≤i≤d, pl

)
to the formal completion along Zord

σ̃,m,l is isomorphic

to the one induced from (
G
/M̂X∗r ,m,l,σ̃

, ψN,can ◦ γ, φp,can ◦ aγ
)
.

If we fix V ∈ CV,pl , the connected components of TZord
V ,SP,m,l can be thought of in terms of the

relation between the two-step filtration of G/Zord
V,m

[p∞]◦ induced from

(1.7.1) 0 −→ V ⊗Gm −→ G/ZV ,m[p∞]◦ −→ A/YV ×YL ZV −→ 0,

and the d-step filtration

{0} = E
Ṽ ,0
⊂ E

Ṽ ,1
⊂ · · · ⊂ E

Ṽ ,d
= G/Zord

V ,m[pl]◦

induced from the universal object
(
G/T Σ

SP,m,l
, ψN , (Ei, εi)1≤i≤d, pl

)
restricted to Z

Ṽ ,m,l
⊂ T Σ

SP,m,l.

From now on assume r ≤ nd. Define

p−1
C,l (V )[ =

{
Ṽ ∈ p−1

C,l (V ) : E
Ṽ ,d−1

∩ V ⊗ µpl = 0
}
,

T [
Zord
V ,SP,m,l

=
∐

Ṽ ∈p−1
C,l(V )[

Z
Ṽ ,m,l

⊂ TZord
V ,SP,m,l,

i.e. the union of the connected components of TZord
V ,SP,m,l for which the first d − 1 steps of the

parametized filtrations of G/Zord
V,m

[pl]◦ intersect trivially with the pl-torsion of the torus part in

(1.7.1).
Under the natural map

p−1
C,l (V ) −→ P ◦n,r(Z/pl)

∖
GL(n,Z/pl)

/
SP (Z/pl)

Ṽ = γ · Vr (γ ∈ Γ0(pl)) 7−→ aγ ,

the set p−1
C,l (V )[ corresponds to

P ◦n,r(Z/pl)
∖
Pn,r(Z/pl)

(
0 Ir

In−r 0

)
SP (Z/pl)

/
SP (Z/pl) ⊂ P ◦n,r(Z/pl)

∖
GL(n,Z/pl)

/
SP (Z/pl),

with Pn,r =

(
GL(r,Z/pl) 0

0 GL(n− r,Z/pl)

)
. The action of TP (Zp) on p−1

C,l (V )[ is transitive, and

we have

p−1
C,l (V )[ =


{(

0 Ir
In−r 0

)}
, if r < nd,(

0 Ir
In−r 0

)(
INd−1

0
0 GL(nd,Z/pl)/ SL(nd,Z/pl)

)
'
(
Z/pl

)×
, if r = nd.

(1.7.2)
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We now define Ir,[
T Σ
SP,m,l

⊂ Ir
T Σ
SP,m,l

to be the sheaf of ideals associated to the closed subscheme

given as the complement of
∐

V ∈CV/Γ, rkV <r

TZord
V ,SP,m,l∪

∐
V ∈CV/Γ, rkV=r

T [
Zord
V ,SP,m,l

inside T Σ
SP,m,l, and

define

V SP,r,[
m,l = H0

(
T Σ
SP,m,l, I

r,[

T Σ
SP,m,l

)
⊂ V SP,r

m,l ,

V SP,r,[ = lim−→
m

lim−→
l

V SP,r,[
m,l ⊂ V SP,r.

If follows from the definition and (1.6.5) that

(1.7.3) V SP,r,[
m,l

/
V SP,r−1
m,l =

⊕
V ∈CV/Γ
rkV=r

 ⊕
Ṽ ∈p−1

C,l(V )[

H0

(
T ?
Ṽ m,l

, I0
T ?
Ṽ m,l

) .

The natural TP (Zp)-action on the left hand side induces a TP (Zp)-action on

(1.7.4)
⊕

Ṽ ∈p−1
C,l(V )[

H0

(
T ?
Ṽ m,l

, I0
T ?
Ṽ m,l

)
.

Let

Pn−r =


a1 ∗ ∗

. . . ∗
ad

 ∈ GL(n− r)

∣∣∣∣∣∣∣ ai ∈ GL(ni), 1 ≤ i ≤ d− 1, ad ∈ GL(nd − r)

 ,(1.7.5)

SPn−r =


a1 ∗ ∗

. . . ∗
ad

 ∈ SL(n− r)

∣∣∣∣∣∣∣ ai ∈ SL(ni), 1 ≤ i ≤ d− 1, ad ∈ SL(nd − r)

 ,(1.7.6)

TPn−r = Pn−r/SPn−r =

{
Gd
m if r < nd,

Gd−1
m if r = nd.

(1.7.7)

We know that for each Ṽ ∈ p−1
C,l (V )[, we have

(1.7.8) Im
(

Γ
Ṽ
∩ ΓSP (pl)→ Sp(Ṽ ⊥/Ṽ ,Z/pl)

)
' Γ(N) ∩ SPn−r(Z).

The embedding Pn−r ↪→ P induces a morphism TPn−r → TP , and the induced action of TPn−r(Zp)

on (1.7.4) preserves each direct summand, so equips each H0

(
T ?
Ṽ m,l

, I0
T ?
Ṽ m,l

)
, Ṽ ∈ p−1

C,l (V )[, with

an OF JTPn−r(ZP )K-module structure.

From (1.7.8), we also know that for each Ṽ ∈ p−1
C,l (V )[, the scheme T ?

Ṽ ,m,l
is isomorphic to the

minimal compactification of the quotient by SPn−r(Z/pl) of the full level pl Igusa tower over Y ord
V,m.

Denote by V
SPn−r,0
V,m,l the space of cuspidal sections over that Igusa tower over Y ord

V,m, which carries a

natural TPn−r(Zp)-action.
Then

H0

(
T ?
Ṽ m,l

, I0
T ?
Ṽ m,l

)
' V SPn−r,0

V,m,l
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as OF JTPn−r(Zp)K-modules. Furthermore, we have⊕
Ṽ ∈p−1

C,l(V )[

H0

(
T ?
Ṽ m,l

, I0
T ?
Ṽ m,l

)
' ZpJTP (Zp)K⊗ZpJTPn−r (Zp)K V

SPn−r,0
V,m,l ,

because by (1.7.2) and (1.7.7) the action of TP (Z/pl)/TPn−r(Z/pl) on p−1
C,l (V )[ is simply transitive.

Summarizing the above discussion, we get

Proposition 1.7.1. There are the following short exact sequences of OF JTP (Zp)K-modules,

(1.7.9) 0 −→ V SP,r−1
m,l −→ V SP,r,[

m,l −→
⊕

V ∈CV/Γ
rkV=r

ZpJTP (Zp)K⊗ZpJTPn−r (Zp)K V
SPn−r,0
V,m,l −→ 0,

(1.7.10) 0 −→ V SP,r−1 −→ V SP,r,[ −→
⊕

V ∈CV/Γ
rkV=r

ZpJTP (Zp)K⊗ZpJTPn−r (Zp)K V SPn−r,0
V −→ 0.

1.8. The q-expansions. Later our analysis of the action of the UPp -operators on V SP,r,[
m,l , V SP,r,[

will mostly rely on q-expansions.
Specializing the construction in §1.4 to the case r = n, for γN ∈ Sp(2n,Z/NZ) and ap ∈

GL(n,Zp), the evaluation at the testing object(
G
/M̂X∗n,m,l,σ

, ψN,can ◦ γN , φp,can ◦ ap
)
, σ ∈ Σ,

defines the q-expansion map

ε
γN ,ap
q-exp,m,l : Vm,l −→

⋂
σ∈Σ

OF /pmJN−1S2(Xn) ∩ σ∨K = OF /pmJN−1S2(Xn)≥0K.

These ε
γN ,ap
q-exp,m,l’s glue to the q-expansion map on V ,

(1.8.1) ε
γN ,ap
q-exp : V −→ F/OF JN−1S2(Xn)≥0K = F/OF JN−1 Sym(n,Z)∗≥0K.

With our fixed basis x1, · · · , xn of Xn, we will freely identify S2(Xn) with Sym2(n,Z)∗, the set of
symmetric n×n matrices with integers as diagonal entries and half-integers as off-diagonal entries,
by identifying β ∈ Sym2(n,Z) with

∑
1≤i,j≤n

βijxi ⊗ xj . For β ∈ N−1S2(Xn) and f ∈ V , write

ε
γN ,ap
q-exp (β, f) for the β-th Fourier coefficient of f , i.e. the coefficient associated with β in ε

γN ,ap
q-exp (f).

One can check that given a ∈ GL(n,Z)

(1.8.2) ε
m(a)γN ,aap
q-exp (β, f) = ε

γN ,ap
q-exp ( taβa, f),

where m(a) =

(
a 0
0 ta−1

)
.

As illustrated in [FC90, V Lemma 1.4 and its proof], since the closure of every stratum associated
with a cone in the toroidal compactification is irreducible and contains a stratum corresponding
to a top dimensional cone, many properties of (p-adic) Siegel modular forms can be verified by
examining the q-expansion. The following two propositions give a characterization of the space
V SP,r, V SP,r,[ in terms of q-expansions.

Proposition 1.8.1. Given f ∈ V , it belongs to V SP,r if and only if ε
γN ,ap
q-exp (β, f) vanishes for all

γN ∈ Sp(2n,Z), ap ∈ GL(n,Zp) and β ∈ N−1S2(Xn)≥0 of rank less or equal to n− r − 1.
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Proof. Given σ̃ ∈ ΣCV,pl , pick a top dimensional cone τ̃ ∈ ΣCV,pl with σ̃ as a face. Fix an isomorphism

of Spf
(
OF /pmOF JN−1S2(Xn) ∩ τ̃∨K

)
with the completion of T Σ

SP,m,l along the point Zτ̃ ,m,l (here

for a cone in ΣCV,pl we use the same notation to denote a corresponding cone in C(Xn)). Then

the embedding of the completion of the Zariski closure of Zσ̃,m,l along the point Zτ̃ ,m,l to the

completion of T Σ
SP,m,l along Zτ̃ ,m,l corresponds to the quotient map from OF /pmJN−1S2(Xn)∩ τ̃∨K

onto OF /pmJN−1S2(Xn) ∩ τ̃∨ ∩ σ̃⊥K, sending all β ∈ N−1S2(Xn) ∩ τ̃∨ that does not belong to σ̃⊥

to 0. This description shows that the vanishing condition in the proposition implies the vanishing
of f along Zσ̃,m,l, and the proposition follows. �

In the following, by the radical of β ∈ N−1S2(Xn)≥0, we mean the sub-Z-module of X∗n consisting
of elements that pair trivially with β via the natural map X∗n × S2(Xn)→ Xn, and by a primitive
vector in X∗n, we mean an element not divisible by p in X∗n.

Proposition 1.8.2. Given f ∈ V SP,r, it belongs to V SP,r,[ if and only if ε
γN ,ap
q-exp (β, f) vanishes for

all β of corank r such that the radical of tapβap contains a primitive vector inside Z · x∗1 + · · ·+ Z ·
x∗Nd−1

+ pZ · x∗Nd−1+1 + · · ·+ pZ · x∗n.

Proof. We use the description of the completion of the Zariski closure of Zσ̃,m,l along the point

Zτ̃ ,m,l given in the proof of the previous proposition, and assume that Ṽσ̃ is of rank r. Identify Vn
and X∗n (together with standard basis). Take a γ ∈ Γ0(pl) such that Ṽτ̃ = γ−1 ·Vn and use it to fix an
isomorphism between OF /pmOF JN−1S2(Xn)∩τ̃∨K and the formal completion of the structure sheaf
at the point Zτ̃ ,m,l. Then the evaluation of f at the formal neighborhood of Zτ̃ ,m,l corresponds to the

q-expansion ε
γ,aγ
q-exp(β, f), and the E

Ṽτ̃ ,d−1
corresponds to the Z-span of aγ(x∗1)/pl, . . . , aγ(x∗Nd−1

)/pl

(recall that E
Ṽτ̃ ,d−1

is the d − 1-th step of the filtration in the level structure of the SP -Igusa

tower). On the other hand, the canonical two-step filtration of the semi-abelian scheme over Zσ̃,m,l
corresponds to Ṽσ̃ ⊂ Ṽτ̃ . Therefore the vanishing condition in the definition of V SP,r,[ requires the

vanishing of ε
γ,aγ
q-exp(β, f) for all β ∈ N−1S2(Xn) ∩ τ̃∨ ∩ σ̃⊥ with Ṽσ̃ containing a primitive element

in aγ

(
Z · x∗1 + · · ·+ Z · x∗Nd−1

+ pZ · x∗Nd−1+1 + · · ·+ pZ · x∗n
)

. Also, for a semi-positive definite β

inside σ̃⊥, the radical of β equals Ṽσ̃. Hence the vanishing condition in the proposition agrees with
that for defining V SP,r,[. �

1.9. The UPp -operators. To each matrix

γp,i =


pIi 0 0 0
0 In−i 0 0
0 0 p−1Ii 0
0 0 0 In−i

 , 1 ≤ i ≤ n,

corresponds a Hecke operator UPp,i acting on V SP . The ordinarity condition for P requires the

eigenvalues of UPp,N1
, UPp,N2

, . . . , UPp,Nd to be p-adic units (recall that Ni =
∑i

j=1 nj). In [Pil12,

§5.1.4], only these UPp,N1
, UPp,N2

, . . . , UPp,Nd are introduced as they are sufficient for defining the
ordinary projection in order to establish Hida theory. However, given an automorphic representation
π of Sp(2n,A) generated by a holomorphic Siegel modular form ordinary for the parabolic P , in
order to retrieve the full information on πp, one needs to consider the action of all the UPp,i, 1 ≤ i ≤ n
(see §2.3 for details). If i 6= N1, . . . , Nd, the eigenvalue of UPp,i on P -ordinary forms is not necessarily
a p-adic unit.

Let T ◦SP,m,l be the restriction of TSP,m,l to Y ord
m ⊂ XΣ,ord

m . The algebraic correspondence in-
side T ◦SP,m,l × T ◦SP,m,l associated to γp,i is defined as follows. For Nj ≤ i < Nj+1, let Ci,m,l be
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the moduli scheme over OF /pm parametrizing the quintuple
(
A, λ, ψN , (Ei, εi)1≤i≤d, pl , L

)
, where

(A, λ, ψN ) is an ordinary abelian scheme of genus n with principal polarization λ and princi-

pal level structure ψN : (Z/N)2n ∼→ A[N ], defined over an OF /pm-algebra, (Er, εr)1≤r≤d, pl is

the structure used to define TSP,m,l in §1.2, and L ⊂ A[p2] is a Lagrangian subgroup such that
rankZ/pL[p] = 2n−i, L[p]∩Ej [p] = 0, L[p]+Ej+1[p] = A[p]. Denote by p1 the projection from Ci,m,l
to TSP,m,l which forgets L. There is another projection p2 sending

(
A, λ, ψN , (Er, εr)1≤r≤d, pl , L

)
to
(
A/L, λ′, p ◦ π ◦ ψN , (E′r, ε′r)1≤r≤d, pl

)
, where π : A → A/L is the natural isogeny, λ′ is defined

by π∗λ′ = p2λ, and

E′r = π(Er), ε′r = π ◦ ε, 1 ≤ r ≤ j

E′r = π
(
p−1(Er ∩ p−l+1L)

)
, ε′r = p−min{Nr−i, nr}π ◦ εr, j + 1 ≤ r ≤ d.

For Nj ≤ i < Nj+1, we have the following composition

H0
(
T ◦SP,m,l,OT ◦SP,m,l

)
p∗2−→ H0

(
Ci,m,l,OCi,m,l

) Trp1−→ pi(n+1)H0
(
T ◦SP,m,l,OT ◦SP,m,l

)
.

The image of Trp1 belongs to pi(n+1)H0
(
T ◦SP,m,l,OT ◦SP,m,l

)
because the pure inseparability degree

of p1 is pi(n+1) [Pil12, Appendice]. One can also check (for example by q-expansions) that such
defined UPp,i preserves various kinds of growth conditions along the boundary, i.e. the above map

restricts to a map from V SP
m,l to pi(n+1)V SP

m,l . If m > i(n+ 1), there is a well defined map p−i(n+1) :

pi(n+1)V SP
m,l → V SP

m−i(n+1),l. Now given f ∈ V SP
m,l , thanks to (1.5.6), we can take f̃ ∈ V SP

m+i(n+1) such

that f ≡ f̃ mod pi(n+1), and we define

UPp,i(f) = p−i(n+1) ◦ Trp1 ◦ p∗2(f̃).

In this section, only UPp,N1
, UPp,N2

, . . . , UPp,Nd will be used. In order to show the desired properties

of their action on V SP,r,[, V SP,r, we use the following proposition and Proposition 1.8.1, 1.8.2 to
reduce to computations on q-expansions.

Proposition 1.9.1 (cf. [Hid02, Proposition 3.5]). For f ∈ V SP , γN ∈ Sp(2n,Z) and ap ∈ T (Zp) ⊂
GL(n,Zp), the formula on q-expansions for the action of the UPp -operators on f is given by

ε
γN ,ap
q-exp (β, UPp,Nif) =

∑
x∈MNi,n−Ni (Z/pZ)

ε
(γPp,i)

−1γN ,ap
q-exp

((
pINi 0
N tx In−Ni

)
β

(
pINi Nx

0 In−Ni

)
, f

)
,

for β ∈ N−1S2(Xn) and 1 ≤ i ≤ d.

One can also write down the formula for general ap ∈ GL(n,Zp) which is a little bit more
complicated. We omit it here because the case ap being diagonal suffices for our purpose thanks to
(1.8.2).

Proposition 1.9.2. All the spaces V SP,r, 0 ≤ r ≤ n, and V r,SP,[, 0 ≤ r ≤ nd, are stable under the
UPp -operators.

Proof. The statement for V SP,r follows immediately from Proposition 1.8.1, 1.9.1. By Proposition
1.8.2, 1.9.1, in order to show the statement for V SP,r,[, it is enough to show that if the radical
of β contains a primitive vector inside Z · x∗1 + · · · + Z · x∗Nd−1

+ pZ · x∗Nd−1+1 + · · · + pZ · x∗n,

then the same holds for

(
pINi 0
N tx In−Ni

)
β

(
pINi Nx

0 In−Ni

)
. In fact, it is not difficult to check that
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if v ∈ Z · x∗1 + · · · + Z · x∗Nd−1
+ pZ · x∗Nd−1+1 + · · · + pZ · x∗n is a primitive vector, then for all

x ∈MNi,n−Ni(Z),

Q ·
(
pINi Nx

0 In−Ni

)−1

vβ ∩Xn ⊂ Z · x∗1 + · · ·+ Z · x∗Nd−1
+ pZ · x∗Nd−1+1 + · · ·+ pZ · x∗n.

�

Now we want to define a UPp -action on the quotient of the exact sequences in Proposition 1.7.1,

and verify that the exact sequences are UPp -equivariant.

For V ∈ CV with rank r ≤ nd, we define the UPp -action on V SPn−r,0
V as follows. For γ =

diag
(
a1, . . . , an, a

−1
1 , . . . , a−1

n

)
∈ Sp(2n), set γ′ = diag

(
a1, . . . , an−r, a

−1
1 , . . . , a−1

n−r
)
∈ Sp(2n − 2r).

We make UPp,Ni act on V SPn−r,0
V (the space of p-adic Siegel modular forms of degree n − r for the

parabolic Pn−r) by the UPn−rp -operator attached to γ′p,Ni .

Let us denote by UP,[N ]
p ⊂ UPp the subalgebra generated by the ϕ(N)-powers of UPp,Ni , 1 ≤ i ≤ d.

Here ϕ(N) = N ·
∏
q prime factors of N (1− 1

q ). Rather than showing the UPp -equivariance of the exact

sequences in Proposition 1.7.1, we are only able to show the UP,[N ]
p -equivariance. However, this

suffices for establishing Hida theory for V SP,r.

Proposition 1.9.3. The exact sequences in Proposition 1.7.1 are UP,[N ]
p -equivariant.

Proof. We show the UP,[N ]
p -equivariance of the projection p

Ṽ
: V SP,r,[

m,l → V
SPn−r,0
V,m,L , from V SP,r,[

m,l to

the summand of V SP,r,[
m,l

/
V SP,r−1
m,l indexed by Ṽ ∈ p−1

C,l (V )[, by computing the q-expansions. Pick

γ ∈ Γ0(pl) such that γ−1Vn contains Ṽ (where Vn is identified with X∗n with standard basis), and

we view Ṽ as a subspace of X∗n via γ. Then Ṽ ∈ p−1
C,l (V )[ implies that Ṽ is spanned by

(x1, . . . , xn)

(
INd−1

0
0 w

)(
α1

α2

)
,

with w ∈ SL(nd,Z), w ≡ Ind mod N , α1 ∈Mn−r,r(Z) and α2 ∈Mr,r(Z) ∩GL(r,Zp).
Take s ≥ max {l, ϕ(N)}. There exists

n− r r( )
n− r A B
r C D

∈ GL(n,Z)

with A ≡
(
A1 0
0 A2

)
mod ps, A1 ∈ GL(Ni,Z), A2 ∈ GL(n− r−Ni,Z), C ≡ 0 mod ps, such that

(
A B

)(α1

α2

)
= 0.

Define

i
Ṽ

: Sym(n− r,Q) −→ Sym(n,Q)

β′ 7−→
(
INd−1

0
0 tw−1

)(
tA
tB

)
β′
(
A B

)(INd−1
0

0 w−1

)
.

Then for γ′N ∈ Sp(2n − 2r,Z) and a′p ∈ Tn−r(Zp), there exists γN ∈ Sp(2n,Z), ap ∈ T (Zp) such
that

ε
γ′N , a

′
p

q-exp,Ṽ

(
β′, p

Ṽ
(f)
)

= ε
γN , ap
q-exp

(
i
Ṽ

(β′), f
)
.
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To prove the proposition, it suffices to check that for β′ ∈ Sym(n− r,Q)>0 and f ∈ V SP,r,[
m,l ,

(1.9.1) ε
(γP
′

p,i)
ϕ(N)γ′N , a

′
p

q-exp,Ṽ

(
β′, (UPp,Ni)

ϕ(N)p
Ṽ

(f)
)

= ε
(γPp,i)

ϕ(N)γN , ap
q-exp

(
i
Ṽ

(β′), (UPp,Ni)
ϕ(N)f

)
.

We have

LHS of (1.9.1)

=
∑

x∈MNi,n−r−Ni (Z/p
ϕ(N)Z)

ε
γ′N , a

′
p

q-exp,Ṽ

((
pϕ(N)INi 0
N tx In−r−Ni

)
β′
(
pϕ(N)INi Nx

0 In−r−Ni

)
, p

Ṽ
(f)

)

=
∑

x∈MNi,n−r−Ni (Z/p
ϕ(N)Z)

ε
γN , ap
q-exp

((
tA
tB

)(
pϕ(N)INi 0
N tx In−r−Ni

)
β′
(
pϕ(N)INi Nx

0 In−r−Ni

)(
A B

)
, f

)
.

(1.9.2)

Set

xA = A−1
1 xA2 ∈MNi,n−r−Ni(Z/p

ϕ(N)), y(x) = N−1A−1
1

(
−INi Nx

)
B ∈MNi,r(Z/p

ϕ(N)).

The map x 7→ xA is a bijection from MNi,n−r−Ni(Z/pϕ(N)Z) to itself. One can check that, by the
definition of xA, y(x),
(1.9.3)
pϕ(N)INi Nx 0

0 In−r−Ni 0
0 0 Ir

−1(
A B
C D

)pϕ(N)INi NxA Ny(x)
0 In−r−Ni 0
0 0 Ir



−1(

A B
C D

)
∈ Γ(N)∩ΓSP (ps),

where x, xA, y(x) can be taken to be any lift to Z. Then(
pϕ(N)INi Nx

0 In−r−Ni

)
(A B ) =

(
pϕ(N)INi Nx

0 In−r−Ni

)
( In−r 0 )

(
A B
C D

)
= ( In−r 0 )

(
pϕ(N)INi Nx 0

0 In−r−Ni 0

0 0 Ir

)(
A B
C D

)
= (A B )

(
pϕ(N)INi NxA Ny(x)

0 In−r−Ni 0

0 0 Ir

)(
pϕ(N)INi NxA Ny(x)

0 In−r−Ni 0

0 0 Ir

)−1 (
A B
C D

)−1
(
pϕ(N)INi Nx 0

0 In−r−Ni 0

0 0 Ir

)(
A B
C D

)
= (A B )

(
pϕ(N)INi NxA y(x)

0 In−r−Ni 0

0 0 Ir

)[(
pϕ(N)INi Nx 0

0 In−r−Ni 0

0 0 Ir

)−1 (
A B
C D

)( pϕ(N)INi NxA Ny(x)

0 In−r−Ni 0

0 0 Ir

)]−1 (
A B
C D

)
∈ (A B )

(
pϕ(N)INi NxA Ny(x)

0 In−r−Ni 0

0 0 Ir

)
· Γ(N) ∩ ΓSP (ps).

Plugging into (1.9.2), we get
(1.9.4)

LHS of (1.9.1)

=
∑

x∈MNi,n−r−Ni (Z/p
ϕ(N)Z)

ε
γN , ap
q-exp

((
pϕ(N)INi 0 0

NtxA In−r−Ni 0

Nty(x) 0 Ir

)(
tA
tB

)
β′ (A B )

(
pϕ(N)INi NxA Ny(x)

0 In−r−Ni 0

0 0 Ir

)
, f

)
.
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Next we need to use the condition f ∈ V SP,r,[
m,l to show that its Fourier coefficient in ε

γN , ap
q-exp (f)

indexed by

(1.9.5)

pϕ(N)INi 0 0
N txA In−r−Ni 0
N ty 0 Ir

(tA
tB

)
β′
(
A B

)pϕ(N)INi NxA Ny
0 In−r−Ni 0
0 0 Ir


is nonzero only if y = y(x) in MNi,r(Z/pϕ(N)). By Proposition 1.8.2, the coefficient indexed by
(1.9.5) is nonzero only if the radical of (1.9.5) does not contain a primitive vector inside Z · x∗1 +
· · ·+Z ·x∗Nd−1

+pZ ·x∗Nd−1+1 + · · ·+pZ ·x∗n. The radical tensored with Q is spanned by the columns

ofpϕ(N)INi NxA Ny
0 In−r−Ni 0
0 0 Ir

−1(
−A−1B
Ir

)
=

−(p−ϕ(N)Ny
0

)
−
(
p−ϕ(N)INi −p−ϕ(N)NxA

0 In−r−Ni

)
A−1B

Ir

 ,

which contains no primitive vector in Z · x∗1 + · · ·+ Z · x∗Nd−1
+ pZ · x∗Nd−1+1 + · · ·+ pZ · x∗n only if

Ny +
(
INi −NxA

)
A−1B ≡ 0 mod pϕ(N),

and this equation is satisfied exactly when y = y(x). Therefore, the coefficient indexed by (1.9.5)

is nonzero only if y = y(x) in MNi,r(Z/pϕ(N)), and from (1.9.4) we get

LHS of (1.9.1)

=
∑

x∈MNi,n−r−Ni (Z/p
ϕ(N)Z)

y∈MNi,r
(Z/pϕ(N)Z)

ε
γN , ap
q-exp

((
pϕ(N)INi 0 0

NtxA In−r−Ni 0

Nty 0 Ir

)(
tA
tB

)
β′ (A B )

(
pϕ(N)INi NxA Ny

0 In−r−Ni 0

0 0 Ir

)
, f

)

=
∑

x∈MNi,n−Ni (Z/p
ϕ(N)Z)

ε
γN , ap
q-exp

((
pϕ(N)INi 0

Ntx In−Ni

)
i
Ṽ

(β′)
(
pϕ(N)INi Nx

0 In−Ni

)
, f

)
=RHS of (1.9.1).

�

Proposition 1.9.4. Let s ≥ m, l. Then
(
UPp,Nd−1

)2s
V SP,r
m,l ⊂ V

SP,r,[
m,l .

Proof. By Proposition 1.8.2, what we need to show is that for all γN ∈ Sp(2n,Z), ap ∈ T (Zp),
f ∈ V SP,r

m,l and β ∈ N−1S2(Xn)≥0 whose radical is of rank r and contains a primitive vector vβ
inside Z · x∗1 + · · ·+ Z · x∗Nd−1

+ pZ · x∗Nd−1+1 + · · ·+ pZ · x∗n,

ε
γN ,ap
q-exp

(
β,
(
UPp,Nd−1

)2s
f

)
= 0.

One can easily check that for all x ∈MNd−1,nd(Z),

Q ·
(
psINd−1

Nx
0 Ir

)−1

vβ ∩X∗n ⊂ Z · x∗1 + · · ·+ Z · x∗Nd−1
+ psZ · x∗Nd−1+1 + · · ·+ psZ · x∗n,

i.e. the radical of

(
psINd−1

0
N tx Ir

)
β

(
psINd−1

Nx
0 Ir

)
contains a primitive vector inside Z ·x∗1 + · · ·+

Z · x∗Nd−1
+ psZ · x∗Nd−1+1 + · · ·+ psZ · x∗n. Since by Proposition 1.9.1,

ε
γN ,ap
q-exp

(
β,
(
UPp,Nd−1

)2s
f

)
=

∑
x∈MNd−1,nd

(Z)

ε
γ−sp,n−1γN ,ap
q-exp

((
psINd−1

0
N tx Ir

)
β

(
psINd−1

Nx
0 Ir

)
,
(
UPp,Nd−1

)s
f

)
,
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we reduce to showing

ε
γN ,ap
q-exp

(
β,
(
UPp,Nd−1

)s
f
)

= 0,

for β whose radical contains a primitive vector vβ inside Z · x∗1 + · · ·+ Z · x∗Nd−1
+ psZ · x∗Nd−1+1 +

· · ·+ psZ · x∗n.
Write vβ = t(vβ,1, . . . , vβ,n). Then ps | vβ,i, Nd−1 +1 ≤ i ≤ n, and there exists 1 ≤ j ≤ Nd−1 such

that vβ,j is not divisible by p. Put wβ = t(0, . . . , 0︸ ︷︷ ︸
j−1

, vβ,n, 0, . . . , 0,−vβ,j) ∈ Zn. Then In−Nη · vβtwβ

belongs to GL(n,Z) for all integer η. Moreover,

In −Nη · vβtwβ ≡ In +



0 · · · 0 Nηvβ,j · vβ,1
. . .

...
0 · · · 0 Nηvβ,j · vβ,j

. . .
...

0 · · · 0 Nηvβ,j · vβ,Nd−1

0 · · · 0 0


mod Nps.

Let xβ = vβ,j · t(vβ,1, · · · , vβ,Nd−1
) ∈ ZNd−1 . Then(

In−1 Nηxβ
0 Ir

)−1 (
In − η · vβtwβ

)
≡ In mod Nps

and
(1.9.6)(

psIn−1 Nx+Nηxβ
0 Ir

)−1 (
In − η · vβtwβ

)(psIn−1 Nx
0 Ir

)
∈ Im (Γ ∩ ΓSP (ps)→ GL(n,Z)) .

By definition the vector xβ ∈ ZNd−1 is not divisible by p. Thus we can pick C ⊂ MNd−1,nd(Z/ps)
such that

MNd−1,nd(Z/p
s) = (Z/ps) · xβ ⊕ C.

We have

ε
γN ,ap
q-exp

(
β,
(
UPp,Nd−1

)s
f
)

=
∑

x∈MNd−1,nd
(Z/ps)

ε
(γPp,d−1)−sγN ,ap
q-exp

((
psINd−1

0
N tx Ir

)
β

(
psINd−1

Nx
0 Ir

)
, f

)

=
∑
x∈C

∑
η∈Z/psZ

ε
(γPp,d−1)−sγN ,ap
q-exp

((
psINd−1

0
N tx+Nηtxβ Ir

)
β

(
psINd−1

Nx+Nηxβ
0 Ir

)
, f

)
.

Applying (1.9.6), we get

ε
γN ,ap
q-exp

(
β,
(
UPp,Nd−1

)s
f
)

=
∑
x∈C

∑
η∈Z/psZ

ε
(γPp,d−1)−sγN ,1
q-exp

((
psINd−1

0
N tx Ir

)(
In − η · wβtvβ

)
β
(
In − η · vβtwβ

)(psINd−1
Nx

0 Ir

)
, f

)
.
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Since vβ belongs to the radical of β, we know that
(
In − η · wβtvβ

)
β
(
In − η · vβtwβ

)
= β, and

ε
γN ,ap
q-exp

(
β,
(
UPp,Nd−1

)s
f
)

=
∑
x∈C

∑
η∈Z/psZ

ε
(γPp,d−1)−sγN ,ap
q-exp

((
psINd−1

0
N tx Ir

)
β

(
psINd−1

Nx
0 Ir

)
, f

)

=
∑
x∈C

ps · ε
(γPp,d−1)−sγN ,ap
q-exp

((
psINd−1

0
N tx Ir

)
β

(
psINd−1

Nx
0 Ir

)
, f

)
= 0.

�

1.10. Hida families of p-adic Siegel modular forms vanishing along strata with cusp

labels of rank > r. Set UPp =
d∏
i=1

UPp,Ni . We first show the existence of an ordinary projector on

V r,SP by applying induction on r and using V r,SP,[ plus Proposition 1.9.4.

Proposition 1.10.1. For each f ∈ V SP,r, the limit lim
j→∞

(
UPp
)j!
f exists in V SP,r.

Proof. We remark that for any endomorphism of finitely generated OF /pm-modules, its j!-th power
stabilizes when j is large enough.

Given f inside an OF /pm-module with an action by UPp , we define the following finiteness
property for f .

(F) The submodule generated by
(
UPp
)nϕ(N)

f , n ≥ 0, is finitely generated over OF /pm.

It suffices to show that (F) holds for all elements in V SP,r
m,l . For r = 0 this is known thanks to

[Hid02, Pil12]. Now assume (F) holds for V SP,r−1
m,l . Due to Proposition 1.9.4, we only need to show

that (F) for all f ∈ V SP,r,[
m,l . Take f ∈ V SP,r,[

m,l , since (F ) holds for the quotient in (1.7.9), there

exists a0, a1, . . . , aj1 ∈ OF such that

(1.10.1) g =
(
UPp
)(j1+1)ϕ(N)

f −
j1∑
i=0

ai
(
UPp
)iϕ(N)

f ∈ V SP,r−1,[
m,l .

Then we apply (F) for (1.10.1). There exists b0, b1, . . . , bj2 ∈ OF such that

(
UPp
)(j2+1)ϕ(N)

((
UPp
)(j1+1)ϕ(N)

f −
j1∑
i=0

ai
(
UPp
)iϕ(N)

f

)

=

j2∑
s=0

bs
(
UPp
)sϕ(N)

((
UPp
)(j1+1)ϕ(N)

f −
j1∑
i=0

ai
(
UPp
)iϕ(N)

f

)
.

Therefore
(
UPp
)(j1+j2+2)ϕ(N)

f belongs to theOF /pm-span of f,
(
UPp
)ϕ(N)

f, . . . ,
(
UPp
)(r1+r2+1)ϕ(N)

f ,
and (F) holds for f . �

The above proposition shows that lim
j→∞

(
UPp
)j!

can be well defined on V SP,r. Define the P -

ordinary projector on V SP,r as

eP = lim
j→∞

(
UPp
)
.
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It is an idempotent projecting the spaces into the subspaces spanned by generalized UPp -eigenvectors
with eigenvalues being p-adic units. Similarly a Pn−r-ordinary projector can be defined for the
quotient terms in the exact sequences in Proposition 1.7.1.

Set

V r
P -ord = ePV SP,r = ePV SP,r,[, V 0

V,Pn−r- ord = ePn−rV SPn−r,0
V , V ∈ CV, rkV = r ≤ nd.

Applying eP , ePn−r to (1.7.10), we get

(1.10.2) 0 −→ V r−1
P -ord −→ V r

P -ord −→
⊕

V ∈CV/Γ
rkV=r

ZpJTP (Zp)K⊗ZpJTPn−r (Zp)K V 0
V,Pn−r- ord −→ 0.

Define V r,∗
P -ord to be the Pontryagin dual of V r

P -ord, i.e. HomZp(V r
P -ord,Qp/Zp), and similarly

define V 0,∗
V,Pn−r- ord. Then (1.10.2) gives

0 −→
⊕

V ∈CV/Γ
rkV=r

V 0,∗
V,Pn−r- ord ⊗ZpJTPn−r (Zp)K ZpJTP (Zp)K −→V r,∗

P -ord −→ V r−1,∗
P -ord −→ 0.(1.10.3)

Let ΛP = OF JTP (Zp)◦K (resp. ΛPn−r = OF JTPn−r(Zp)◦K), where TP (Zp)◦ is the maximal p-
profinite subgroup of TP (Zp) (resp. TPn−r(Zp)).

Proposition 1.10.2. V r,∗
P -ord, 0 ≤ r ≤ nd, is a free ΛP -module of finite rank.

Proof. We prove the proposition by induction. For r = 0 the control theorem in [Pil12, Théorème

1.1 (7)] for V 0,∗
P -ord (resp. V 0,∗

V,Pn−r- ord) says that it is a free ΛP -module (rep. ΛPn−r -module) of finite

rank. Suppose that V r−1,∗
P -ord is a free ΛP -module of finite rank. Then the terms at the two ends of

(1.10.3) are free ΛP -modules of finite rank. Since Ext1
ΛP

(M,N) vanishes if M is a free ΛP -module,

V r,∗
P -ord is isomorphic, as a ΛP -module, to the direct sum the terms at the two ends of (1.10.3). �

Now we have established (i) in Theorem 1.3.1.
For 0 ≤ r ≤ nd, the OF JTP (Zp)K-module of Hida families of p-adic Siegel modular forms ordinary

for the parabolic P vanishing along the strata associated with cusp labels of rank > r, is defined as

Mr
P -ord := HomΛP

(
V r,∗
P -ord,ΛP

)
.

Similarly, define

M0
Pn−r- ord := HomΛPn−r

(
V 0,∗
V,Pn−r- ord,ΛPn−r

)
.

Applying HomΛP (·,ΛP ) to (1.10.3) gives (iv) of Theorem 1.3.1.

Let τP ∈ Homcont

(
TP (Zp),Q

×
p

)
be an arithmetic dominant weight. Attached to it is a prime

ideal PτP of OF JTP (Zp)K. Then unfolding the definitions, one gets the following isomorphisms,

(1.10.4) Mr
P -ord ⊗OF JTP (Zp)K

/
PτP

∼−→ Hom
(
(V r

P -ord[τP ])∗,OF
) ∼−→ lim←−

m

lim−→
l

ePV
SP,r
m,l [τP ]

equivariant under the action of the unramfied Hecke algebra away from Np and the UPp -operators.
Combining (1.10.4) with the embedding (1.2.1) proves (ii) in Theorem 1.3.1.

The proof of (iii) relies on the uniform boundedness with respect to k ≥ 0 of the dimension of
ordinary forms of weight t+k [TU99], and the argument proceeds in the same way as [Hid02, §3.7].

For applications in §2.6, define Tr,NP -ord as the OF JTP (Zp)K-algebra generated by all the unramified

Hecke operators away from Np∞ and the Up-operators UPp,1, U
P
p,2, . . . , U

P
p,n acting on Mr

P -ord. The

algebra Tr,NP -ord is finite and torsion free over OF JTP (Zp)K. Also, the uniqueness of the P -ordinary
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vectors (the last statement in Proposition 2.3.2) plus the Zariski density of arithmectic points in

Homcont

(
TP (Zp),Q

×
p

)
with tP1 � tP2 � · · · � tPd � 0 implies that T0,N

P -ord and Tnd,NP -ord are reduced.
x

2. p-adic L-functions

In this section, for a given geometrically irreducible component of Spec
(
T0,N
P -ord ⊗ F

)
, we con-

struct the (d + 1)-variable p-adic standard L-function and its d-variable improvement as called in
[GS93] (missing the cyclotomic variable). The construction uses the doubling method formula as
the integral representation for the standard L-function. The d-variable improvement will be used
to employ the Greenberg–Stevens method to prove Theorem 3.3.5 on the derivatives of cyclotomic
p-adic L-functions at the so-called semi-stable trivial zeros. The Hida theory for non-cuspidal Siegel
modular forms developed in the previous section will be used for the construction of the d-variable
improved p-adic L-function.

Before starting the construction, we briefly mention several works on constructing p-adic L-
functions using the doubling method. It is Böcherer and Schmidt [BS00] who first carried out
such a construction in the special case where π is fixed and is GL(n)-ordinary with π∞ isomorphic
to a scalar weight holomorphic discrete series. Later, the case where π varies in a cuspidal Hida
family which is ordinary for the Borel subgroup is treated in [Liu16b] for symplectic groups and
in [EW14, EHLS16] for unitary groups. Here we look at the more general case of P -ordinary Hida
families for a general parabolic P . Moreover, we also construct its improvement as an important
input for applying the Greenberg–Stevens method.

2.1. Generalities on standard L-functions for symplectic groups. Let π ⊂ A0(G(Q)\G(A))
be an irreducible cuspidal automorphic representation of G(A) and ξ : Q×\A× → C× be a finite
order Dirichlet character. Take S to be a finite set of places of Q containing the archimedean place
and all the finite places where πv or ξv is ramified.

For v /∈ S, there exist unramified characters θi : Q×v → C×, 1 ≤ i ≤ n, such that πv is isomorphic

to the normalized induction Ind
G(Qv)
BG(Qv)(θ1, . . . , θn) as G(Qv)-representations. Put αv,i = θi(qv)

where qv is the cardinality of the residue field of Qv. Then α±v,1, . . . , α
±
v,n are the Satake parameters

of πv, and the unramified local L-factor (for the standard representation LG◦ = SO(2n + 1,C) →
GL(2n+ 1,C)) is defined as

Lv(s, πv × ξ) = (1− ξ(qv)q−sv )−1
n∏
i=1

(1− ξ(qv)αv,iq−sv )−1(1− ξ(qv)α−1
v,i q
−s
v )−1.

The analytic properties (meromorphic continuation, functional equation, location of possible poles)
of the partial standard L-function

LS(s, π × ξ) =
∏
v/∈S

Lv(s, πv × ξ)

are established in [GPSR87, KR90].
Assuming π∞ ∼= Dt, the holomorphic discrete series of weight t = (t1, . . . , tn) (so t1 ≥ · · · ≥ tn ≥

n+ 1), the critical points of LS(s, π × ξ) are integers s0 such that

1 ≤ s0 ≤ tn − n, (−1)s0+n = ξ(−1), or n+ 1− tn ≤ s0 ≤ 0, (−1)s0+n+1 = ξ(−1).

The algebracity of these critical L-values divided by certain automorphic periods (expressed in
terms of Petersson inner product) is obtained in [Har81, Shi00, BS00].
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2.2. The doubling method for symplectic groups. One standard way to study the standard
L-function LS(s, π×ξ) and its critical values is to apply the doubling method developed by Piatetski-
Shapiro–Rallis [PSR87], Garrett [Gar84] and Shimura [Shi97].

For the convenience of the reader, we briefly recall the setting for the doubling method used in
[Liu16b]. Let V′ be another copy of V with standard basis e′1, . . . , e

′
n, f

′
1, . . . , f

′
n. Put W = V⊕ V′,

for which we fix the basis e1, . . . , en, e
′
1, . . . , e

′
n, f1, . . . , fn, f

′
1, . . . , f

′
n. Then W is endowed with a

symplectic pairing induced from that of V and V′. Let H = Sp(W) = Sp(4n). There is the
(holomorphic) embedding ι of G×G into H given by

ι : G×G ↪−→ H

(
a b
c d

)
×
(
a′ b′

c′ d′

)
7−→


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

 .

The space W =
∑n

i=1 Zei + Ze′i is a maximal isotropic subspace of W. Its stabilizer QH is the
standard Siegel parabolic subgroup of H. Besides W , there is another maximal isotropic subspace
relevant to us, which is W♦ = {(v, ϑ(v)) : v ∈ V }, where ϑ : V → V is the involution given by the

matrix

(
0 In
In 0

)
with respect to our fixed basis. Note that ϑ dose not preserve the symplectic

pairing but has similitude −1. The space W♦ is spanned by ei+f ′i , fi+e′i, 1 ≤ i ≤ n. The doubling

Siegel parabolic Q♦H is defined to be the stabilizer of W♦. We have

Q♦H = SQHS−1 with S =


In 0 0 0
0 In 0 0
0 In In 0
In 0 0 In

 .

For an element g ∈ G, define gϑ to be ϑgϑ ∈ G. This conjugation by ϑ is called the MVW
involution. The MVW involution of an irreducible smooth representation of G(Qv) is isomorphic to
its contragredient [MgVW87, p. 91]. For ϕ ∈ π we define its MVW involution ϕϑ as ϕϑ(g) = ϕ(gϑ).
Thanks to the multiplicity one theorem [Art13], ϕϑ lies inside π ⊂ A0(G(Q)\G(A)).

Remark 2.2.1. Our formulation here aligns with those in [Gar84, Shi00] but differs from [GPSR87]
in that the embedding used in [GPSR87] corresponds to the above defined ι composite with a
conjugation by ϑ on the second copy of G. Hence in our later computation using formulas from
[GPSR87], the involution ϑ shows up a lot.

Let s be a complex variable. Denote by ξs (resp. ξ♦s ) the character of QH(A) (resp. Q♦H(A))

sending

(
A B
0 tA−1

)
(resp. S

(
A B
0 tA−1

)
S−1) to ξ(detA)|detA|s. Let IQH (s, ξ) = Ind

H(A)
QH(A)ξs

(resp. IQ♦H
(s, ξ) = Ind

H(A)

Q♦H(A)
ξ♦s ) be the normalized induction consisting of smooth functions f on

H(A) that satisfy f(qh) = ξs(q)δ
1/2
QH

(q)f(h) (resp. f(qh) = ξ♦s (q)δ
1/2

Q♦H
(q)f(h)) for all h ∈ H(A) and

q ∈ QH(A) (resp. q ∈ Q♦H(A)). Recall that the modulus character δQH takes value |detA|
2n+1

2 at(
A B
0 tA−1

)
. The local degenerate principal series IQH ,v(s, ξ), IQ♦H ,v

(s, ξ) for all places of Q are
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defined similarly. There is the simple isomorphism

IQH (s, ξ) −→ IQ♦H
(s, ξ)

f(s, ξ) 7−→ f♦(s, ξ)(h) = f(s, ξ)(S−1h).

Given f(s, ξ) ∈ IQH (s, ξ), the associated Siegel Eisenstein series is defined as

E(h, f(s, ξ)) =
∑

γ∈QH(Q)\H(Q)

f(s, ξ)(γh) =
∑

γ∈Q♦H(Q)\H(Q)

f♦(s, ξ)(γh).

This sum is absolutely convergent for Re(s)� 0 and admits a meromorphic continuation.
For a finite place v we fix the Haar measure on G(Qv) such that the maximal compact sub-

group G(Zv) has volume 1. For the archimedean place we fix for G(R) the product measure

of the one on the maximal compact subgroup KG,∞ =

{(
a b
−b a

)
: a+ bi ∈ U(n,R)

}
which

has total volume 1 with the one on G(R)/KG,∞ = Hn = {z ∈ Sym(n,C) : Imz > 0} given by
det(y)−n−1

∏
1≤i≤j≤n

dxij dyij . The Haar measures on G(A) is taken to be the product of the local

ones.
For a given irreducible cuspidal automorphic representation π ⊂ A0(G(Q)\G(A)) and its com-

plex conjugation π ⊂ A0(G(Q)\G(A)), which is isomorphic to the contragredient of π, we fix
isomorphisms π ∼=

⊗′
v πv and π ∼=

⊗′
v π̃v such that for factorizable ϕ1, ϕ2 ∈ π with images⊗

v ϕ1,v ∈
⊗′

v πv and
⊗

v ϕ2,v ∈
⊗′

v π̃v, we have

〈ϕ1, ϕ2〉 =
∏
v

〈
ϕ1,v, ϕ2,v

〉
v
,

where the pairing on the left hand side is the bi-C-linear Petersson inner product with respect
to our fixed Haar measure on G(A) and the pairing on the right hand side is the natural pairing
between πv and its contragredient π̃v.

For a local section fv(s, ξ) ∈ IQH ,v(s, ξ), define

Tfv(s,ξ) : π −→ π

ϕ 7−→
(
Tfv(s,ξ)ϕ

)
(g) =

∫
G(Qv)

f♦v (s, ξ)(ι(g′v, 1))ϕ(gg′v)dvg
′
v.

We need to be careful with the convergence issue here, especially for v = p,∞. The doubling local
zeta integral is defined as

Zv(fv(s, ξ), ·, ·) : πv × π̃v −→ C

(v1, ṽ2) 7−→ Zv(fv(s, ξ), v1, ṽ2) =

∫
G(Qv)

f♦v (s, ξ)(ι(gv, 1)) 〈πv(gv)v1, ṽ2〉v dvgv.(2.2.1)

For factorizable ϕ1, ϕ2 ∈ π, we have〈
Tfv(s,ξ)ϕ1, ϕ2

〉
=
Zv(fv(s, ξ), ϕ1,v, ϕ2,v)〈

ϕ1,v, ϕ2,v

〉
v

〈ϕ1, ϕ2〉 .

Given ϕ ∈ π, we define the linear form

Lϕ : A(G(Q)×G(Q)\G(A)×G(A)) −→ A(G(Q)\G(A))

F 7−→ Lϕ(F )(g) =

∫
G(Q)\G(A)

F (g′, g)ϕ(g′) dg′.
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The doubling method formula is a formula on

Lϕ (E(·, f(s, ξ))|G×G) ,

involving the partial standard L-function of π and some local zeta integrals.
For a finite place v where ξ is unramified, we denote by fur

v (s, ξ) the unique section in IQH ,v(s, ξ)
that is fixed by the maximal compact subgroup H(Zv) ⊂ H(Qv) and takes value 1 at the identity.

Theorem 2.2.2 ([GPSR87, Gar84, Shi97]). Suppose f(s, ξ) =
⊗

s/∈S f
ur
v (s, ξ)⊗

⊗
v∈S fv(s, ξ) is a

section inside to IQH (s, ξ). If ϕ ∈ πKS
G with KS

G =
∏
v/∈S G(Zv), then

(2.2.2) Lϕ (E(·, f(s, ξ))|G×G) = dS(s, ξ)−1 · LS(s+
1

2
, π × ξ) ·

(∏
v∈S

Tfv(s,ξ)ϕ

)ϑ
.

Equivalently for all factorizable ϕ1, ϕ2 ∈ πK
S
G,〈

E(·, f(s, ξ))|G×G, ϕ1 ⊗ ϕϑ2
〉

= dS(s, ξ)−1 · LS(s+
1

2
, π × ξ) ·

∏
v∈S

Zv(fv(s, ξ), ϕ1,v, ϕ2,v)〈
ϕ1,v, ϕ2,v

〉
v

〈ϕ1, ϕ2〉 .

Here dS(s, ξ) =
∏
v/∈S dv(s, ξ) with

dv(s, ξ) := Lv(s+
2n+ 1

2
, ξ)

n∏
j=1

Lv(2s+ 2n+ 1− 2j, ξ2).

For later use we also define the normalized Siegel Eisenstein series

E∗(h, f(s, ξ)) = dS(s, ξ)E(h, f(s, ξ)).

Then the identity (2.2.2) from the above theorem becomes

(2.2.3) Lϕ (E∗(·, f(s, ξ))|G×G) = LS(s+
1

2
, π × ξ) ·

(∏
v∈S

Tfv(s,ξ)ϕ

)ϑ
.

The identities provided by the doubling method reduce the study of the standard L-function
LS(s, π × ξ) to that of the Siegel Eisenstein series E(·, f(s, ξ)), or more precisely its restriction to
G×G, and local zeta integrals at places v ∈ S.

2.3. The modified Euler factor at p. Before starting the construction of p-adic L-functions, we
first recall some basic theory of Jacquet modules and unfold the definition in [Coa91] in our case
to write down explicitly the expected modified Euler factor at p in the interpolation formula. We
also define the modified Euler factor at p for the improved p-adic L-function, and see that when
restricting to the leftmost critical points with χ = εPd , the difference of the two factors lies inside a
finite extension of OF [[TP (Zp)◦]].

2.3.1. Jacquet modules and UPp -operators. Suppose πp is the component at the place p of an ir-
reducible automorphic representation π generated by a P -ordinary Siegel modular form. Our
discussion on Jacquet modules aims to: (1) show the uniqueness of the P -ordinary forms inside π,
or more precisely that the space of P -ordinary Siegel modular forms projects into a one dimensional
subspace inside πp; (2) explain how to retrieve the information on πp from the eigenvalues of the
UPp -operators. The uniqueness result will also play an important role in our later computation of
the local zeta integral at p.

Let PG (resp. SPG, UPG) be the inverse image of P (resp. SP , UP ) of the projection (0.0.3).
The Jacquet module of πp associated to the parabolic PG is defined as

JPG(πp) = Vπp
/{
πp(u) · v − v : u ∈ UPG(Qp), v ∈ Vπp

}
.
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It follows from Jacquet’s lemma [Cas, Theorem 4.1.2, Proposition 4.1.4] that JPG(πp) is naturally
isomorphic to the following subspace of Vπp ,

(2.3.1)
⋂

a=(a1, . . . , a1︸ ︷︷ ︸
n1

,...,ad, . . . , ad︸ ︷︷ ︸
nd

)

a1≥···≥ad≥0

{∫
UPG (Qp)

πp(up
a) · v du : v ∈ Vπp

}
,

where pa = diag(pa1 , . . . , pa1 , . . . , pad , . . . , pad , p−a1 , . . . , p−a1 , . . . , p−ad , . . . , p−ad). Denote by MP

the Levi subgroup of P and we identify it with the Levi subgroup of PG via (0.0.3). Both JPG(πp)
and the space in (2.3.1) are equipped with a natural action of MP (Qp), and the isomorphism
between them is MP (Qp)-equivariant.

Given irreducible smooth admissible representations σi of GL(ni,Qp), 1 ≤ i ≤ d, Frobenius
reciprocity gives
(2.3.2)

HomG(Qp)

(
πp, Ind

G(Qp)
PG(Qp)σ1 � σ2 � · · ·� σd

)
∼= HomMP (Qp)

(
JPG(πp), (σ1 � σ2 � · · ·� σd)⊗ δ

1/2
PG

)
,

where δPG is the modulus character sending diag(b1, b2, . . . , bd) ∈ MP (Qp), bi ∈ GL(ni,Qp), to∏d
i=1 |det(bi)|2n+1+ni−2Ni

p .

Suppose that the P -ordinary Siegel modular form generating π is of weight t = ı(tP ) with
tP1 ≥ · · · ≥ tPd ≥ n + 1, so π∞ ∼= Dı(tP ). Denote by πı(tP ) the subspace of π consisting of forms
whose projection to π∞ belongs to the lowest K∞-type in Dı(tP ). There is the canonical embedding

(2.3.3)

H0
(
XΣ

Γ∩ΓSP (pl), ωı(tP )

)
↪−→Mı(tP )

(
Hn,Γ ∩ ΓSP (pl)

) ϕG(·,ecan)
↪−→ A

(
G(Q)\G(A)/Γ̂ ∩ Γ̂SP (pl)

)
ı(tP )

from Siegel modular forms defined as global sections of the automorphic sheaf ωt into automorphic

forms on G(A) of K∞-type t = ı(tP ) (see, for example, [Liu16b, (2.3.1)(2.4.1)] for precise definition
of this embedding).

Under the embedding (2.3.3), the UPp -operator UPp,a =
n∏
i=1

(
UPp,i

)ai
, for a = (a1, a2, . . . , an) with

a1 ≥ a2 ≥ · · · ≥ an ≥ 0, on the left hand side corresponds to the following operator on the right
hand side,

(2.3.4) UPp,a = p〈t+2ρG,c, a〉
∫
SPG(Zp)

πp(up
a) du,

where ρG,c = (n−1
2 , n−3

2 , . . . , 1−n
2 ) is the half sum of positive compact roots of G.

We have assumed that π contains a P -ordinary Siegel modular. It follows immediately from the
definition of the P -ordinarity and (2.3.1), (2.3.4) that

JPG(πp)
SL(n1,Zp)×···×SL(nd,Zp) 6= {0},

which combined with the Frobenius reciprocity (2.3.2) implies that there exists spherical represen-
tations σi of GL(ni,Qp), 1 ≤ i ≤ d, and continuous characters η1, . . . , ηd of Q×p taking value 1 at p,
such that

(2.3.5) πp ↪−→ Ind
G(Qp)
PG(Qp)(σ1 ⊗ η1 ◦ det) � (σ2 ⊗ η2 ◦ det) � · · ·� (σd ⊗ ηd ◦ det).

In particular, πp embeds into a principal series. In general, πp being isomorphic a subquotient of a
principal series is equivalent to π containing a finite slope form.
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Remark 2.3.1. It does not make sense to say P -ordinarity for a purely local representation πp as
the normalization in the definition of the UPp -operators depends on the weight of the holomorphic
discrete series at the archimedean space. However, being of finite slope is a purely local property.

Next, we say more about the relation between the Satake parameters of the σ′is in (2.3.5) and
the eigenvalues of the UPp -operators. Let θ = (θ1, . . . , θn) be an n-tuple of continuous characters

of Q×p (valued in C×), viewed as a character of TG(Qp) via our fixed isomorphism of Gn
m with TG,

such that πp is isomorphic to a subquotient of the principal series Ind
G(Qp)
BG(Qp)θ. We consider the

eigenvalues for the UPp -action on Ind
G(Qp)
BG(Qp)θ.

Denote by WG (resp. WPG) the Weyl group with respect to TG (resp. the subgroup of WG

that maps PG to itself). Define [WG/WPG ] to be the subset of WG consisting of representatives
of smallest lengths of elements in WG/WPG . An element w ∈ WG acts on θ by sending it to
θw(t) = θ(w−1tw), t ∈ TG. Like θ, via our fixed isomorphism between TG and Gn

m, we can write
θw as an n-tuple of characters (θw1 , . . . , θ

w
n ).

It follows from [Cas, Proposition 6.3.1, 6.3.3] that the MP (Qp)-representation JPG
(

Ind
G(Qp)
PG(Qp)θ

)
has a filtration with graded pieces as

d

�
i=1

Ind
GL(ni,Qp)
Bni (Qp)

(
θwNi−1+1, . . . , θ

w
Ni

)
· δ−1/2
Bni

δ
1/2
BG

∣∣∣
Bni

, w ∈ [WG/WPG ],

where Bni is the standard Borel subgroup of GL(ni) with modulus character δBni .

Thus, the dimension of the SL(n1,Zp)×· · ·×SL(nd,Zp)-invariant space inside JPG(πp) is at most
|WG/WPG | = 2n · |Sn/(Sn1 × · · · ×Snd)|. Each w ∈ [WG/WPG ] corresponds to an eigensystem of
the UPp -operators, and the existence of a P -ordinary Siegel modular form in π indicates that there
exists w ∈WG satisfying

r∑
j=1

vp

(
θwNi−1+j(p)

)
≥ −r

(
tPi −Ni−1 −

r + 1

2

)
, 1 ≤ r ≤ ni, 1 ≤ i ≤ d,(2.3.6)

ni∑
j=1

vp

(
θwNi−1+j(p)

)
= −ni

(
tPi −

Ni−1 +Ni + 1

2

)
1 ≤ i ≤ d.(2.3.7)

These conditions on the p-adic valuation of θwi , 1 ≤ i ≤ n, imply

− (ti −Ni−1 + 1) ≤ vp
(
θwNi−1+1(p)

)
, . . . , vp

(
θwNi(p)

)
≤ −(ti −Ni), 1 ≤ i ≤ d.(2.3.8)

It is easily seen that given θ, there is at most one w ∈ [WG/WPG ] to make (2.3.8) hold. By

rearranging the θ±1
i ’s, we can assume that w = 1 in (2.3.6), (2.3.7), (2.3.8), and that vp(θ1(p)) ≤

· · · ≤ vp(θn(p)) ≤ 0.
The above discussion proves the following proposition.

Proposition 2.3.2. Suppose that π is an irreducible automorphic representation of G(A) con-
taining a nonzero P -ordinary holomorphic Siegel modular form of weight ı(tP ), tPd ≥ n + 1, and

p-nebentypus εP .

• There exists unramified characters θ1, . . . , θn : Q×p → C× satisfying

θ|Z×p = (εP−1
1 , . . . , εP−1

1︸ ︷︷ ︸
n1

, . . . , εP−1
d , . . . , εP−1

d︸ ︷︷ ︸
nd

),

θ(p) = (α1, α2, . . . , αn), · · · ≤ −(ti −Ni−1 + 1) ≤ vp(αNi−1+1) ≤ · · · ≤ vp(αNi)
≤ −(ti −Ni) ≤ −(t1 −Ni + 1) ≤ vp(αNi+1) ≤ . . .



NON-CUSPIDAL HIDA THEORY AND TRIVIAL ZEROS 35

such that πp ↪→ Ind
G(Qp)
BG(Qp)θ.

• Let ai be the eigenvalue for the action of UPp,i on the P -ordinary form in π. Then aN1 , . . . , aNd
are p-adic units given by

(2.3.9) aNi =
i∏

j=1

p
nj

(
tPj −

Nj−1+Nj+1

2

)
αNj−1+1αNj−1+2 · · ·αNj ,

More generally, for Nj ≤ i ≤ Nj+1, the eigenvalue ai is an p-adic integer given as

(2.3.10) ai = aNj · p
(i−Nj)

(
tPi+1−

Nj+i+1

2

) ∑
%∈Snj+1/Si−Nj×SNj+1−i

αNj+%(1)αNj+%(2) · · ·αNj+%(r).

• Inside Ind
G(Qp)
BG(Qp)θ, there is a unique generalized eigenvector (up to scalar) for the operator UPp =∏d

i=1 U
P
p,Ni

with eigenvalue being a p-adic unit. In particular, under the projection π → πp, the
image of P -ordinary Siegel modular forms is one dimensional.

Remark 2.3.3. Let θ be as in the above proposition. If εPd = triv and αn = p−1, since the P -

ordinary condition implies that πp ↪→ Ind
G(Qp)
BG(Qp)θ, in the Weil–Deligne representation attached to

πp, there should be a nontrivial monodromy between the eigenspaces with Frobenious eigenvalues
1 and αn = p−1.

2.3.2. The modified Euler factor at p for p-adic interpolation. If we consider the Weil–Deligne
representation attached to πp, the eigenvalues of Frobenius are 1, α±1

1 , . . . , α±1
n . Meanwhile, for

the p-adic representation associated to π [Art13, CHLN11, Shi11, CH13], the Hodge–Tate weights
are 0,±(tP1 − 1), . . . ,±(tP1 − n1), . . . ,±(tPd − (Nd−1 + 1)), . . . ,±(tPd − n). Thus, (2.3.6) and (2.3.7)
essentially say that the Newton polygon is above the Hodge polygon and the two polygons meet
at the points with horizontal coordinates 0, N1, N2, . . . , Nd, 2n+ 1−Nd, . . . , 2n+ 1−N2, 2n+ 1−
N1, 2n+ 1.

Since the definition of the modified Euler factor in [Coa91], formulated in terms of the Weil–
Deligne representation, does not depend on the monodromy operator, our above description of the
Weil–Deligne representation associated to πp is enough for us to unfold the definition in this case
to obtain the explicit modified Euler factor at p in terms of the UPp -eigenvalues.

From now on we fix a (tame) finite order Dirichlet character φ : Q×\A× → C× unramified

away from N∞. Suppose χ ∈ Homcont(Z×p ,Q
×
p ) is of finite order. We also view it also as a C×-

valued character of Q×\A× which sends the uniformizer in Qv to χ(qv) for finite places v 6= p. In
the same way, we view the finite order characters εP1 , . . . , ε

P
d as adelic characters. Let θ be as in

Proposition 2.3.2. Denote by σi the unramified representation of GL(n,Qp) such that σi⊗εPi,p◦det =

Ind
GL(ni,Qp)
Bni (Qp)

(
θNi−1+1, . . . , θNi

)
. Denote by σ̃i the contragredient of σi.

The modified Euler factor at p for p-adically interpolating the critical values of LS(s, π× φχ) to
the left of the center is

(2.3.11) Ep(s, π × φχ) =
d∏
i=1

γp
(
1− s, σ̃i ⊗ φ−1

p χ−1
p εPi,p

)
.
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Here we omit our fixed additive character ep from the usual notation for gamma factors. One can
also write the gamma factors in terms of the Satake parameters as
(2.3.12)

γp
(
1− s, σ̃i ⊗ φ−1

p χ−1
p εPi,p

)
=


Ni∏

j=Ni−1+1

1−φp(p)−1α−1
j ps−1

1−φp(p)αjp−s
, if χεP−1

i is trivial,

G(χpε
P−1
i,p )ni

Ni∏
j=Ni−1+1

(
φp(p)

−1α−1
j ps−1

)c(χεP−1
i )

, otherwise,

where pc(χε
P−1
i ) is the conductor of χεP−1

i , and the Gauss sum is defined as

G(χpε
P−1
i,p ) =

∫
p−mZp

χpε
P−1
i,p (x)ep(x) dx, m� 0.

We also define the improved modified Euler factor at p for the d-variable improved p-adic L-
function. The improved p-adic L-function is supposed to interpolate the leftmost critical L-values
with χ = εPd . Define

EP -imp
p (s, π × φεPd ) =

d−1∏
i=1

γp

(
1− s, σ̃i ⊗ φ−1

p εP−1
d,p εPi,p

)
· Lp(s, σd ⊗ φp)

It is easy to see that by (2.3.9)(2.3.10) both the Ep(s, π×φχ) and EP -imp
p (s, π×φεPd ) can be written

in term of the UPp -eigenvalues of the P -ordinary Siegel modular form contained in π.
We have

(2.3.13) Ep(n+ 1− tPd , π × φεPd ) = AP (π × φεPd ) · EP -imp
p (n+ 1− tPd , π × φεPd )

with

AP (π × φεPd ) =

n∏
j=Nd−1+1

(
1− φp(p)−1α−1

j pn−t
P
d

)

= 1 + a−1
n aNd−1

(
−φp(p)−1p

nd−1

2

)nd
+ a−1

n

nd−1∑
r=1

aNd−1+r

(
−φp(p)−1p

nd−1−r
2

)nd−r
.

Since all the ai’s are the UPp -eigenvalues of the P -ordinary Siegel modular forms, when (the eigen-

system of) π varies in a P -ordinary Hida family, AP (π, φ) becomes a d-variable p-adic analytic
function lying inside a finite extension of OF JTP (Zp)◦K. This explains why when restricting to the
leftmost critical values with χ = εPd , one expects the existence of the improved d-variable p-adic

L-function with the improved modified Euler factor EP -imp
p (π, φ) at p (improved in the sense of

saving part of the numerator from Ep(n+ 1− tPd , π × φεPd )).

2.4. The choices of local sections for the Siegel Eisenstein series. Our choices of local
sections for Siegel Eisenstein series on Sp(4n), and the formulae for local Fourier coefficients as well
as the doubling local zeta integrals corresponding to those selected sections are summarized in the
two tables in §2.4.8. This section explains the strategy for the section selections. The computation
of the zeta integrals at the place p is done in §2.8.

2.4.1. Criteria for selecting sections. We first describe the context and criteria for choosing the

sections for Siegel Eisenstein series on Sp(4n). Recall that Homcont

(
TP (Zp),Q

×
p

)
is the weight

space for Hida families which are ordinary for the parabolic for P . An arithmetic point in it

corresponds to a character τP = τPalg · τPf ∈ Homcont

(
TP (Zp),Q

×
p

)
, a product of the algebraic



NON-CUSPIDAL HIDA THEORY AND TRIVIAL ZEROS 37

part τPalg = tP = (tP1 , . . . , t
P
d ) and the finite order part τPf = εP = (εP1 , . . . , ε

P
d ). Similarly, the

parameterization space for the cyclotomic variable is Homcont

(
Z×p ,Q

×
p

)
, and an arithmetic point

in it is a character κ = κalg · κf , with algebraic part κalg = k and finite order part κf = χ.

We call an arithmetic point τP (resp. (κ, τP )) admissible if tP1 ≥ · · · ≥ tPd ≥ n + 1 and (resp.

tP1 ≥ · · · ≥ tPd ≥ k ≥ n+ 1).

Let CP be a geometrically irreducible component of Spec
(
T0,N
P -ord ⊗OF F

)
. The projection of

CP to the weight space is one of its |TP (Z/p)| connected components. We say the parity of CP is
compatible with φ if all the points τP in that connected component satisfy τPd (−1) = φ(−1).

A point x ∈ CP (Qp) is called arithmetic if its projection τP inside the weight space is arithmetic,

and an arithmetic pair (κ, x) (resp. an arithmetic point x) is called admissible if (κ, τP ) (resp.
τP ) is admissible. If the Hecke eigensystem parametrized by x appears in an irreducible cuspidal
automorphic representation πx ∈ A0(G(Q)\G(A)) with πx,∞ ∼= Dı(tP ), we call such an x classical,

and one can define the corresponding LNp∞(s, πx × φχ), Ep(s, πx × φχ), EP -imp
p (πx, φ). Note that

because of the lack of strong multiplicity one, πx may not be unique, but the partial L-functions
and the modified Euler factors at p do not depend on the choice of πx.

The (d+ 1)-variable p-adic L-function is intended to interpolate the critical values

Ep(n+ 1− k, πx × φχ) · LNp∞(n+ 1− k, πx × φχ)

divided by a Petersson inner product period for (κ, x) admissible with κ(−1) = φ(−1) and x
classical (by our construction, if (κ, x) is admissible but x is not classical, one can see that the
evaluation of our p-adic L-function there is 0). Its d-variable improvement (assuming the parity of
CP is compatible with φ) is supposed to interpolate

EP -imp
p (n+ 1− tPd , πx × φεPd ) · LNp∞(n+ 1− tPd , πx × φεPd )

divided by a Petersson inner product period for classical x.
From Theorem 2.2.2, we see that in order to get the above L-values, we need to pick a Siegel Eisen-

stein series on Sp(4n) with nice properties for each admissible (κ, τP ) ∈ Homcont(Z×p ×TP (Zp,Q
×
p ))

with κ(−1) = φ(−1) as well as for each admissible τP ∈ Homcont(TP (Zp,Q
×
p )) with τPd (−1) =

φ(−1), so that we can deduce the desired congruences among the L-values from those of the Siegel
Eisenstein series. Picking the Siegel Eisenstein series amounts to selecting sections in the degenerate
principal series.

More precisely, for (κ, τP ) (resp. τP ) as above and each place v of Q, we need to pick a section
fκ,τP ,v (resp. fτP ,v) from IQH ,v(

2n+1
2 − k, φχ) (resp. IQH ,v(

2n+1
2 − tPd , φεPd )), such that

• We have enough control of the local zeta integrals at places dividing Np∞. In particular,
we are able guarantee the nonvanishing of the archimedean zeta integrals and compute the
zeta integrals at p.
• The collection of the Eisenstein series E(·, fκ,τP )|G×G (resp. E(·, fτP )|G×G) (after suitable

normalizations) assembles to a p-adic family.

The way we treat the second requirement is via looking at their Fourier coefficients and invoking
the q-expansion principle. Also, the second requirement provides us a hint for making the choices
of the sections at p based on our selection of archimedean sections.

2.4.2. The Fourier coefficients for Siegel Eisenstein series. For β ∈ Sym(2n,Q), the β-th Fourier
coefficient of E

(
·, f(s, ξ)

)
is defined as

Eβ(h, f(s, ξ)) :=

∫
Sym(2n,Q)\Sym(2n,A)

E

((
I2n ς
0 I2n

)
h, f(s, ξ)

)
eA(−Trβς) dς.
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Suppose f(s, ξ) = ⊗vfv(s, ξ) is factorizable. If det(β) 6= 0 or there exists a finite place v such that

fv(s, ξ) is supported on the “big cell” QH(Qv)

(
0 −I2n

I2n 0

)
QH(Qv), then

(2.4.1) Eβ(h, f(s, ξ)) =
∏
v

Wβ,v(h, f(s, ξ))

with

Wβ,v(hv, fv(s, ξ)) =

∫
Sym(2n,Qv)

fv(s, ξ)

((
0 −I2n

I2n ς

)
hv

)
ev(−Trβς) dvς.

For z = x +
√
−1y, a point in the Siegel upper half space H2n, set hz = 1f ·

(√
y x

√
y−1

0
√
y−1

)
∈

H(A). It is a standard fact that if E(hz, f(s0, ξ)) is nearly holomorphic as a function in z for
some s0 ∈ 2−1 · Z, then Eβ(hz, f(s, ξ)) gives the β-th coefficient of the q-expansion associated to
E(h, f(s0, ξ)) viewed as a p-adic form by the maps (1.2.1)(2.3.3).

2.4.3. The unramified places. For v - Np∞, we simply take

fκ,τP ,v = fur
v (s, φχ)|s= 2n+1

2
−k , fτP ,v = fur

v (s, φεPd )
∣∣
s= 2n+1

2
−tPd

.

The formulae for Wβ

(
1v, fκ,τP ,v

)
and Wβ

(
1v, fτP ,v

)
are computed by Shimura [Shi97, Theorem

13.6, Proposition 14.9] and are listed in the tables in §2.4.8. The formulae for the local zeta integrals
are part of Theorem 2.2.2.

2.4.4. The archimedean place. For an integer k ≥ n + 1 satisfying ξ(−1) = (−1)k, the classical
section of weight k in IQH ,∞(s, ξ) is defined as

fk∞(s, sgnk)(h) = j(h, i)−k|j(h, i)|k−(s+ 2n+1
2

)

where j(h, i) = det (µ(h, i)) = det(Ci+D) for h =

(
A B
C D

)
.

Let µ̂+
0 =

(
µ̂+

0,ij

)
1≤i,j≤n

, where the entries are elements inside (LieH)C given as

µ̂+
0,ij =

(
I2n

√
−1 · I2n√

−1 · I2n I2n

)
0 0 0 Eij
0 0 Eji 0
0 0 0 0
0 0 0 0

( I2n

√
−1 · I2n√

−1 · I2n I2n

)−1

,

where Eij is the n× n matrix with 1 as the (i, j)-entry and 0 elsewhere.
The µ̂+

0,ij ’s act on A(H(Q)\H(A)) by differentiating the right translation of H(R). Their real-

izations on the Siegel upper half space are the Maass–Shimura differential operators (see [Liu16b,
§2.4]).

For admissible (κ, τP ) (resp. τP ) with φχ(−1) = (−1)k (resp. φεPd (−1) = (−1)t
P
d ), set

fκ,τP ,∞ =

(
d−1∏
i=1

det

(
(µ̂+

0 )Ni
4π
√
−1

)tPi −tPi+1

det

(
µ̂+

0

4π
√
−1

)tPd −k
· fk∞(s, sgnk)

)∣∣∣∣∣
s= 2n+1

2
−k

,

fτP ,∞ =

(
d−1∏
i=1

det

(
(µ̂+

0 )Ni
4π
√
−1

)tPi −tPi+1

· f t
P
d∞ (s, sgnt

P
d )

)∣∣∣∣∣
s= 2n+1

2
−tPd

.

The formulae for the corresponding Fourier coefficients (listed in tables in §2.4.8) are deduced
from Shimura’s computation [Shi82, Theorem 4.2] for the classical scalar weight section and formu-
lae for the action of differential operators on p-adic expansions (see the proof of [Liu16b, Proposition
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4.4.1]). The proof of the nonvanishing of the corresponding archimedean zeta integrals is postponed
to §2.7.

2.4.5. The “big cell” section at a finite place. We choose our sections at v|Np from a special type of
sections, the so-called “big cell” sections. Given a finite place v and a compactly supported locally
constant function αv on Sym(2n,Qv), the “big cell” section inside IQH ,v(s, ξ) associated to αv is
defined as

(2.4.2) fαvv (s, ξ)

((
A B
C D

))
=

{
ξ−1(detC)| detC|−(s+ 2n+1

2
)αv(C

−1D) if detC 6= 0,

0 if detC = 0.

An easy computation shows that

(2.4.3) Wβ,v(1v, f
αv
v (s, ξ)) =

∫
Sym(2n,Qv)

αv(ς)ev(−Trβς) dvς = α̂v(β).

2.4.6. The volume sections at places dividing N . For a positive integer N and a place v|N , the
volume section fvol

v (s, ξ) inside IQH ,v(s, ξ) is defined as the “big cell” section associated to the
characteristic function of the open compact subset

(2.4.4) −
(

0 In
In 0

)
+N Sym(2n,Zv) ⊂ Sym(2n,Qv).

We set

fκ,τP ,v = fvol
v (s, φχ)

∣∣∣
s= 2n+1

2
−k
, fτP ,v = fvol

v (s, φεPd )
∣∣∣
s= 2n+1

2
−tPd

.

The Fourier coefficients associated to the volume sections are easily computed by computing the
Fourier transform of the characteristic function of (2.4.4). The computation of local zeta integrals
is also easy (the same as [Liu16b, Proposition 4.2.1]). See the tables for the formulae.

2.4.7. The place p. It remains to pick Schwartz functions ακ,τP and ατP on Sym(2n,Qp), and our
choices for fκ,τP ,p (resp. fτP ,p) will the “big cell” section attached to ακ,τP (resp. ατP ). The
criterion for picking them is to make the (p-adic) q-expansions of the resulting Siegel Eisenstein
series p-adically interpolable. In fact we will first pick α̂κ,τP and α̂τP , and then apply inverse Fourier
transform to get ακ,τP and ατP for computing the local zeta integrals.

The theory of nearly holomorphic forms and Maass–Shimura differential operators formulated in
terms of automorphic sheaves and their interpretations as p-adic Siegel modular forms are needed
in our construction. We will freely use the formulation and notation in [Liu16a, §2] and [Liu16b,
§2].

Recall some notation loc. cit.; denote by Vrt the automorphic bundle of degree r and weight t

nearly holomorphic forms over the Siegel variety defined as in [Liu16b, §2.2], and by Nr
t

(
Hn,Γ ∩ ΓSP (pl)

)
the space of vector-valued nearly holomorphic Siegel modular forms on the Siegel upper half space
Hn of degree r, weight t and level Γ ∩ ΓSP (pl) in the sense of Shimura. There is the embedding
(2.4.5)

H0
(
XΣ
G,Γ∩ΓSP (pl) ×X

Σ
G,Γ∩ΓSP (pl),V

r
t � Vrt

)
↪−→ Nr

t

(
Hn,Γ ∩ ΓSP (pl)

)
⊗Nr

t

(
Hn,Γ ∩ ΓSP (pl)

)
ϕ(·,ecan)
↪−→ A(G(Q)×G(Q)\G(A)×G(A)).

Generalizing the embedding (1.2.1), as explained in [Liu16a, Proposition 3.2.1], the space of
nearly holomorphic Siegel modular forms of level Γ ∩ ΓSP (pl) also embeds into the space of p-adic
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Siegel modular forms,

(2.4.6) H0
(
XΣ
G,Γ∩ΓSP (pl) ×X

Σ
G,Γ∩ΓSP (pl),V

r
ı(tP ) � V

r
ı(tP )

)
↪−→

(
lim←−
m

lim−→
l

V SP
m,l ⊗OF V

SP
m,l

)
[1/p].

When choosing ακ,τP and ατP , we want to ensure that the restrictions to G×G of the resulting
adelic Siegel Eisenstein series lie inside the image of the embedding (2.4.5), so that we can study
them as p-adic Siegel modular forms via (2.4.6). Hence we require:

(1) α̂κ,τP and α̂τP take values in a finite extension of Q.
(2) α̂κ,τP and α̂τP are supported on Sym(2n,Zp)∗, and for x ∈ Sym(2n,Qp)

∗, a1, a2 ∈ SP (Zp),

α̂κ,τP (x) = α̂κ,τP
((

ta1 0
0 ta2

)
x
(
a1 0
0 a2

))
, α̂τP (x) = α̂τP

((
ta1 0
0 ta2

)
x
(
a1 0
0 a2

))
.

With α̂κ,τP and α̂τP satisfying these conditions, we can define

Eκ,τP , EτP ∈ lim−→
r

lim−→
l

H0
(
XΣ
G,Γ∩ΓSP (pl) ×X

Σ
G,Γ∩ΓSP (pl),V

r
ı(tP ) � V

r
ı(tP )

)
,

as the preimage of the adelic forms

(2.4.7) (−1)nk2−n+2n2−2nkπ−n−2n2
Γ2n

(
2n+ 1

2

)
· E∗

(
·, fκ,τP

)∣∣
G×G ,

(2.4.8) (−1)nt
P
d 2−n+2n2−2ntPd π−n−2n2

Γ2n

(
2n+ 1

2

)
· E∗

(
·, fτP

)∣∣
G×G .

Here for a positive integer m,

Γm(s) := π
m(m−1)

4

m−1∏
j=0

Γ

(
s− j

2

)
.

In the following we will not distinguish Eκ,τP , EτP from their images under the embedding (2.4.6).
Set

εq-exp = (lim←−
m

lim−→
l

ε1,1
q-exp,m,l, lim←−

m

lim−→
l

ε1,1
q-exp,m,l) : lim←−

m

lim−→
l

V SP
m,l ⊗OF V

SP
m,l −→ OF JN−1 Sym(n,Z)∗⊕2

≥0 K

with

lim←−
m

lim−→
l

ε1,1
q-exp,m,l : lim←−

m

lim−→
l

Vm,l −→ OF JN−1S2(Xn)≥0K = OF JN−1 Sym(n,Z)∗≥0K.

being the p-adic q-expansion map at infinity.
Regarding the q-expansion of Eκ,τP and EτP , we have the following proposition.

Proposition 2.4.1. Let (β1, β2) be a pair of elements in N−1 Sym(n,Z)∗≥0. For admissible (κ, τP ) ∈
Homcont

(
Z×p × TP (Zp),Q

×
p

)
with φχ(−1) = (−1)k, we have

εq-exp

(
β1, β2, Eκ,τP

)
=

∑
β=

(
β1 β0
tβ0 β2

)
∈N−1 Sym(2n,Z)∗≥0

cκ,τP (β),
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where for β > 0, the coefficient cκ,τP (β) is given as

cκ,τP (β) =N−n(2n+1)
∏
v|N

ev(2Trβ0) · LNp∞(n+ 1− k, φχλβ) ·
∏

v|det(2β)
v-Np∞

gβ,v

(
φχ(qv)q

k−2n−1
v

)

× α̂κ,τP (β)
d−1∏
i=1

det((2β0)Ni)
tPi −tPi+1det(2β0)t

P
d −k.

For admissible τ ∈ Homcont(TP (Zp),Q
×
p ) with φεPd (−1) = (−1)t

P
d , we have

εq-exp

(
β1, β2, EτP

)
=

∑
β=

(
β1 β0
tβ0 β2

)
∈N−1 Sym(2n,Z)∗≥0

cτP (β),

where for β ≥ 0, the coefficient cτP (β) is given as

cτP (β) =N−n(2n+1)
∏
v|N

ev(2Trβ0) · LNp∞(n+ 1− tPd −
r

2
, φχλβ) ·

corank(β)
2∏
j=1

LNP∞(2n+ 3− 2tPd − 2j, (φεPd )2)

×
∏

v|det∗(2β)
v-Np∞

gβ,v

(
φχ(qv)q

tPd −2n−1
v

)
· α̂τP (β)

d−1∏
i=1

det((2β0)Ni)
tPi −tPi+1 , if rank(β) is even,

cτP (β) =N−n(2n+1)
∏
v|N

ev(2Trβ0) ·

corank(β)+1
2∏
j=1

LNP∞(2n+ 3− 2tPd − 2j, (φεPd )2)

×
∏

v|det∗(2β)
v-Np∞

gβ,v

(
φχ(qv)q

tPd −2n−1
v

)
· α̂τP (β)

d−1∏
i=1

det((2β0)Ni)
tPi −tPi+1 , if rank(β) is odd,

Here for β ∈ Sym(2n,Q)∩Sym(2n,Zv)∗, det∗(2β) denotes the product of all the nonzero eigenvalues

of 2β. If rank(β) is even, the quadratic character λβ is defined as λβ(qv) =
(

(−1)rank(β)/2 det∗(β)
qv

)
.

The gβ,v(·) appearing in above formulae is a polynomial with coefficients in Z. For an integer m,
(2β0)m denotes the upper left m×m-minor of 2β0.

Proof. The proof is similar as [Liu16b, Proposition 4.4.1]. It relies on the formulae for local Fourier
coefficients as listed in the two tables in §2.4.8, and uses formulae of differential operators on p-adic
q-expansions. �

It is not difficult to observe that all the terms in the above formulae for cκ,τP (β), cτP (β) are

ready for p-adic interpolation with respect to (κ, τP ), τP , except the last terms

α̂κ,τP (β)

d−1∏
i=1

det((2β0)Ni)
tPi −tPi+1det(2β0)t

P
d −k,(2.4.9)

α̂τP (β)
d−1∏
i=1

det((2β0)Ni)
tPi −tPi+1 .(2.4.10)

(The p-adic interpolation of the Dirichlet L-values in the formulae follows from the existence of the
Kubota–Leopoldt p-adic L-function [Hid93, Theorem 4.4.1].)
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In order to make (2.4.9) and (2.4.10) p-adically interpolable, one needs to require that if β
belongs to the support of the Schwartz function α̂κ,τP (resp. α̂τP ), then det ((2β0)Ni) is a p-adic
unit for 1 ≤ i ≤ d (resp. 1 ≤ i ≤ d− 1). The very natural choices of α̂κ,τP and α̂τP are

α̂κ,τP (β) =1p2 Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)

d∏
i=1

1GL(Ni,Zp) ((2β0)Ni)(2.4.11)

×
d−1∏
i=1

εPi ε
P−1
i+1 (det((2β0)Ni)) · εPd χ−1(det(2β0)),

and

α̂τP (β) =1p2 Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)1Mn(Zp)(β0)
d−1∏
i=1

1GL(Ni,Zp) ((2β0)Ni)(2.4.12)

×
d−1∏
i=1

εPi ε
P−1
i+1 (det((2β0)Ni)).

Here Mn denotes the space of n× n matrices.
Since Wβ,p(1p, fκ,τP ,p) = α̂κ,τP (β), our choice (2.4.11) makes cκ,τP (β) vanish unless β is invert-

ible. The semi-positivity of β implies that both β1 and β2 are positive definite. Thus εq-exp

(
β1, β2, Eκ,τP

)
is nonzero only if β1, β2 > 0. Similarly, εq-exp

(
β1, β2, EτP

)
is nonzero only if β1, β2 ≥ 0 and their

ranks are at least n− nd.
With α̂κ,τP , α̂τP being set as in (2.4.11), (2.4.12), we have

εq-exp

(
Eκ,τP

)
=

∑
β1,β2∈N−1 Sym(n,Z)∗>0

∑
β=

(
β1 β0
tβ0 β2

)
∈N−1 Sym(2n,Z)∗>0

cκ,τP (β) qβ1qβ2 ,

εq-exp

(
EτP
)

=
∑

β1,β2∈Sym(n,Z)∗≥0

rk(β1),rk(β2)≥n−nd

∑
β=

(
β1 β0
tβ0 β2

)
∈N−1 Sym(2n,Z)∗≥0

cτP (β) qβ1qβ2 ,

and each cκ,τP (β) (resp. cτP (β)) appearing here admits p-adic interpolation with respect to (κ, τP )

(resp. τP ).
If we look at the q-expansions of Eκ,τP and EτP at other cusps in the ordinary locus (which is

equivalent to look at Wβ

(
ι(g1, g2), fκ,τP

)
, Wβ

(
ι(g1, g2), fτP

)
for gi ∈ G(A) with gi,p = 1, gi,∞ = gzi ,

i = 1, 2), the support of α̂κ,τP (resp. α̂τP ) again makes the term indexed by degenerate (β1, β2)
(resp. β1 or β2 of rank < n− nd) vanish. Hence

Eκ,τP ∈ lim←−
m

lim−→
l

V SP,0
m,l ⊗OF V

SP,0
m,l , EτP ∈ lim←−

m

lim−→
l

V SP,nd
m,l ⊗OF V

SP,nd
m,l .(2.4.13)

Remark 2.4.2. Compared to α̂κ,τP , the support of α̂τP is enlarged. As the cyclotomic variable κ is

fixed to be equal to τPd , the term det(2β0) does not appear in (2.4.10), and one does not need to
require 2β0 ∈ GL(n,Zp) for the support of α̂τP (β). Later, we will see that it is this relaxation on

the support that saves us the factor AP (π, φεPd ) in the local zeta integral for f
α
τP

p (2n+1
2 − tPd , φεPd )

compared to that for f
α
κ,τP

p (2n+1
2 − k, φχ)

∣∣∣
κ=τPd

. This relaxation also means that the resulting EτP

is not necessarily cuspidal as p-adic forms. Thus, the Hida theory for non-cuspidal Siegel modular
forms developed in §1 is needed to construct the improved p-adic L-function from the EτP ’s.
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2.4.8. The two tables. In the tables on the next two pages, we summarize our choices of sections for
Siegel Eisenstein series, the formulae of the corresponding local Fourier coefficients, and the local
zeta integrals.

We explain some notation. In the tables, ϕ ∈ π is a P -ordinary cuspidal holomorphic Siegel

modular form of weight ı(tP ) fixed by Γ̂ ∩ SPG(Zp) with p-nebentypus εP .
The operator W is defined as

(2.4.14) W (ϕ)(g) =

∫
SPG(Zp)

ϕϑ(gu) du.

As explained in §2.2, the form W (ϕ) belongs to π. If ϕ is holomorphic of weight tP , then so is
W (ϕ). The operator W should be viewed as an analogue of the operator sending a modular form

f of level Γ0(N) to f c
∣∣∣∣( 0 −1
N 0

)
. In the same way as [Liu16b, Proposition 5.7.2], one can show

that the P -ordinary projection ePW (ϕ) is nonzero if ePϕ is nonzero.
We denote by vı(tP ) ∈ Dı(tP ) the highest weight vector inside the lowest KG,∞-type, and v∨

ı(tP )
∈

D̃ı(tP ) is the dual vector to vı(tP ).
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fκ,τP ,v Wβ,v

(
hz,v, fκ,τP ,v

)
with β =

(
β1 β0
β0 β2

) (
Tf
κ,τP ,v

ϕ
)ϑ

v -
Np∞

the standard unramified sec-
tion

fur
v (s, φχ)|

s= 2n+1
2
−k

1Sym(2n,Zv)∗(β)

× dv(n+ 1− k, φχ)−1Lv(n+ 1− k, φχλβ)

× gβ,v
(
φχ(qv)qk−2n−1

v

)
for det(β) 6= 0, where gβ,v(T ) ∈ Z[T ]
with gβ,v(0) = 1 and degree at most
4n · valv(det(2β))

dv(n+ 1− k, φχ)−1

·Lv(n+ 1− k, π × φχ) ·W (ϕ)

v|N

the “big cell” section

fvol
v (s, φχ)

∣∣∣
s= 2n+1

2
−k

associated to the characteris-
tic function of

−
(

0 In
In 0

)
+NSym(2n,Zv)

|N |n(2n+1)
v ev(2Trβ0) · 1N−1Sym(2n,Zv)∗(β) φvχv((−1)n)vol(Γ(N)v) ·W (ϕ)

v =
p

the “big cell” section

f
α
κ,τP

p (s, φχ)
∣∣∣
s= 2n+1

2
−k
,

where ακ,τP is the inverse
Fourier transform of the
Schwartz function in the
next column

α̂κ,τP (β)

=1p2Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)

×
d∏
i=1

1GL(Ni,Zp)((2β0)Ni)

×
d−1∏
i=1

εPi ε
P−1
i+1 (det((2β0)Ni))

× εPd χ−1(det(2β0))

χ(−1)n
∏d
i=1

∏ni
j=1(1− p−j)∏n

j=1(1− p−2j)

· Ep(n+ 1− k, π × φχ) · ePW (ϕ)

(after fκ,τP ,p being modified

by appropriate UPp -operators
in accordance with ordi-
nary projection applied to
E∗(·, fκ,τP )

∣∣
G×G)

v =
∞

(
d−1∏
i=1

det

(
(µ̂+

0 )Ni
4π
√
−1

)tPi −tPi+1

· det

(
µ̂+

0

4π
√
−1

)tPd −k
· fk∞(s, sgnk)

)∣∣∣∣∣
s= 2n+1

2
−k

vanishing unless β ≥ 0 and equals

(−1)nk
2n−2n2+2nk

Γ2n

(
2n+1

2

) πn+2n2

×
d−1∏
i=1

det((2β0)Ni)
tPi −t

P
i+1det(2β0)t

P
d −k

×
d−1∏
i=1

det((y0)Ni)
tPi −t

P
i+1det(y0)t

P
d −k

×det(y)
k
2 e∞(Trβz)

+ terms irrelevant to εq-exp(Eκ,τP )

where y = Im(z) =
( y1 y0

ty0 y2

)

Z∞(fτP ,∞, v
∨
tP , vtP )〈

v∨
tP
, vtP

〉 ·W (ϕ) 6= 0

Table 1. data for (d+ 1)-variable p-adic L-function
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fτP ,v Wβ,v

(
hz, fτP ,v

)
with β =

(
β1 β0
β0 β2

) (
Tf

τP ,v
ϕ
)ϑ

v -
Np∞

the standard unramified sec-
tion

fur
v (s, φεPd )

∣∣∣
s= 2n+1

2
−tP
d

1Sym(2n,Zv)∗(β) · dv(n+ 1− k, φεPd )−1

×



Lv(n+ 1− tPd − r
2
, φεPd λβ) r even,

×
r/2∏
j=1

Lv(2n+ 3− 2tPd − 2j, (φεPd )2)

r+1
2∏
j=1

Lv(2n+ 3− 2tPd − 2j, (φεPd )2) r odd,

× gβ,v
(
φχ(qv)qk−2n−1

v

)
for β ≥ 0 with rank 2n − r, where gβ,v(T ) ∈
Z[T ] with gβ,v(0) = 1 and degree at most 4n ·
valv(det∗(2β))

dv(n+ 1− k, φεPd )−1

·Lv(n+ 1− tPd , π × φεPd ) ·W (ϕ)

v|N

the “big cell” section

fvol
v (s, φεPd )

∣∣∣
s= 2n+1

2
−tP
d

associated to the characteris-
tic function of

−
(

0 In
In 0

)
+NSym(2n,Zv)

|N |n(2n+1)
v ev(2Trβ0) · 1N−1Sym(2n,Zv)∗(β) φv(−1)nvol(Γ(N)v) ·W (ϕ)

v =
p

the “big cell” section

f
α
τP

p (s, φεPd )
∣∣∣
s= 2n+1

2
−tP
d

,

where ατP is the inverse
Fourier transform of the
Schwartz function in the next
column

α̂τP (β) =1p2Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)

× 1Mn(Zp)(β0)

d−1∏
i=1

1GL(Ni,Zp)((2β0)Ni)

×
d−1∏
i=1

εPi ε
P−1
i+1 (det((2β0)Ni))

The major difference from the previous α̂κ,τP is
that here the support of α̂τP has been enlarged
and is no longer contained in GL(2n,Zp).

εPd (−1)n
∏d
i=1

∏ni
j=1(1− p−j)∏n

j=1(1− p−2j)

· EP -imp
p (n+ 1− tPd , π × φεPd )

· ePW (ϕ)

(after fτP ,p being modi-

fied by appropriate UPp -
operators in accordance
with ordinary projection
applied to E∗(·, fτP )

∣∣
G×G)

v =
∞

(
d−1∏
i=1

det

(
(µ̂+

0 )Ni
4π
√
−1

)tPi −tPi+1

· f t
P
d
∞ (s, sgnt

P
d )

)∣∣∣∣∣
s= 2n+1

2
−tP
d

vanishing unless β ≥ 0 and equals

(−1)nt
P
d

2n−2n2+2ntPd

Γ2n

(
2n+1

2

) πn+2n2

×
d−1∏
i=1

det((2β0)Ni)
tPi −t

P
i+1

×
d−1∏
i=1

det((y0)Ni)
tPi −t

P
i+1det(y)

tPd
2 e∞(Trβz)

+ terms irrelevant to εq-exp(Eκ,τP )

where y = Im(z) =
( y1 y0

ty0 y2

)

Z∞(fτP ,∞, v
∨
tP , vtP )〈

v∨
tP
, vtP

〉 ·W (ϕ)

6= 0

Table 2. data for d-variable improved p-adic L-function
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2.5. The construction of µE,P -ord and E imp
P -ord. Assume φ2 6= triv. Then it follows from our

choices of the sections fκ,τP ∈ IQH (2n+1
2 − k, φχ) and fτP ∈ IQH (2n+1

2 − tPd , φεPd ) that there exist
p-adic measures

µE,q-exp ∈ M eas
(
Z×p × TP (Zp),OF JN−1 Sym(n,Z)∗⊕2

>0 K
)
,

µE imp,q-exp ∈ M eas
(
TP (Zp),OF JN−1 Sym(n,Z)∗⊕2

≥0 K
)

satisfying the interpolation properties∫
Z×p ×TP (Zp)

(κ, τP ) dµE,q-exp =

{
εq-exp

(
Eκ,τP

)
if (κ, τP ) is admissible with φχ(−1) = (−1)k,

0 if φ(−1) 6= κ(−1),∫
TP (Zp)

τP dµE imp,q-exp =

{
εq-exp

(
EτP
)

if τP is admissible with φεPd (−1) = (−1)t
P
d ,

0 if φ(−1) 6= τPd (−1),

(see [Liu16b, §5.1, 5.2] for more details on how to obtain these p-adic measures from the formulae
for εq-exp

(
Eκ,τP

)
, εq-exp

(
EτP
)

in §2.4.7).

Remark 2.5.1. The assumption φ2 6= triv is not essential. Without it, due to the pole of the
Kubota–Leopoldt p-adic L-function, we need to make some modification accordingly to allow a
possible pole in the constructed measures.

Let V SP,r,∆ be the subspace of lim←−
m

lim−→
l

V SP,r
m,l ⊗OF /pm V

SP,r
m,l consisting of elements annihilated by

γ ⊗ 1 − 1 ⊗ γ for all γ ∈ P (Zp). By definition and (2.4.13), we know that Eκ,τP ∈ V SP,0,∆ and

EτP ∈ V SP,nd,∆. Then due to the Zariski density of the admissible points (κ, τP ) (resp. τP ) inside

Z×p × TP (Zp) (resp. TP (Zp)), the measure µE,q-exp (resp. µE imp,q-exp) lies inside the image of the
following embedding induced by p-adic q-expansion

M eas
(
Z×p × TP (Zp), V SP,0,∆

)
↪−→ M eas

(
Z×p × TP (Zp),OF JN−1 Sym(n,Z)∗⊕2

>0 K
)

(resp. M eas
(
TP (Zp), V SP,nd,∆

)
↪−→ M eas

(
TP (Zp),OF JN−1 Sym(n,Z)∗⊕2

≥0 K
)

).

Viewing µE,q-exp (resp. µE imp,q-exp) as a p-adic measure valued in V SP,0,∆ (resp. V SP,nd,∆) , Propo-
sitions 1.9.4 and 1.10.1 show that one can apply eP × eP to it and get

µE,P -ord ∈ M eas
(
Z×p × TP (Zp), ePV SP,0,∆

)
(resp. µE imp,P -ord ∈ M eas

(
TP (Zp), ePV SP,nd,∆

)
).

For ν ∈ Homcont (TP (Z/p), µp−1) and an OF JTP (Zp)K-module, we use a subscript ν to denote its

ν-isotypic part for the action of TP (Z/p). Then like [Liu16b, (6.1.8)], for all 0 ≤ r ≤ nd and τP

such that τP |TP (Z/p) = ν, we have the commutative diagram

M eas
(
TP (Zp), ePV SP,r,∆

)\
ν

Φ∆
ν //

µ7→
∫
TP (Zp) τ

P dµ ++

Mr
P -ord,ν ⊗ΛP Mr

P -ord,ν

mod P
τP

��

lim←−
m

lim−→
l

ePV
SP,r
m,l [τP ]⊗OF ePV

SP,r
m,l [τP ],

where M eas
(
TP (Zp), ePV SP,r,∆

)\
is the subspace of M eas

(
TP (Zp), ePV SP,r,∆

)
consisting of mea-

sures µ satisfying ∫
TP (Zp)

τP dµ ∈ ePV SP,r,∆[τP ].
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Set

Φ∆ :=
⊕
ν

Φ∆
ν :M eas

(
TP (Zp), ePV SP,r,∆

)\
=
⊕
ν

M eas
(
TP (Zp), ePV SP,r,∆

)\
ν

−→Mr
P -ord ⊗OF JTP (Zp)KMr

P -ord =
⊕
ν

Mr
P -ord,ν ⊗ΛP M

r
P -ord,ν ,

where ν runs over Homcont(TP (Z/p), µp−1). This ΛP -module morphism Φ∆ also induces

Φ∆ : M eas
(
Z×p × TP (Zp), ePV SP,r,∆

)\ −→ M eas
(
Z×p ,Mr

P -ord ⊗OF JTP (Zp)KMr
P -ord

)
.

We define

µE,P -ord = Φ∆(µE,P -ord) ∈ M eas
(
Z×p ,M0

P -ord ⊗OF JTP (Zp)KM0
P -ord

)
,

E imp
P -ord = Φ∆(µE imp,P -ord) ∈Mnd

P -ord ⊗OF JTP (Zp)KMnd
P -ord.

2.6. The p-adic L-functions and their interpolation properties. Let T0,N
P -ord (resp. Tnd,NP -ord)

be the OF JTP (Zp)K-algebra as defined at the end of §1.10. Let CP be a geometrically irreducible

component of Spec
(
T0,N
P -ord

)
. Because of the natural quotient map Tnd,NP -ord → T0,N

P -ord, CP can also

be viewed as a geometrically irreducible component of Spec
(
Tnd,NP -ord

)
. Denote by FCP the function

field of CP and by ICP the integral closure of ΛP inside FCP . Let λCP : Tnd,NP -ord → ICP be the
homomorphism of ΛP -algebra associated to CP .

As FCP -algebras, we have the decomposition

Tnd,NP -ord ⊗ΛP FCP = FCP ⊕RCP

such that the projection onto FCP is given by λCP . Define 1CP as the element in Tnd,NP -ord ⊗ΛP FCP
which corresponds to (id, 0) in FCP ⊕RCP .

Proposition 2.6.1.

1CP

(
Mnd

P -ord

)
⊂M0

P -ord ⊗OF JTP (Zp)K FCP .

Proof. The cuspidality condition is about the vanishing of the restriction to the boundary, there-
fore an element in Mnd

P -ord is cuspidal as long as its specializations at a Zariski dense subset in

Homcont

(
TP (Zp),Q

×
p

)
are cuspidal. We know that for all tP1 � tP2 � · · · � tPd � 0, the specializa-

tion ofMnd
P -ord at the algebraic point tP ∈ Homcont

(
TP (Zp),Q

×
p

)
consists of classical holomorphic

Siegel modular forms of weight ı(tP ) and level Γ(N) ∩ ΓP (p). We reduce to show that for all
tP1 ≥ tP2 ≥ · · · ≥ tPd � 0, if a Hecke eigenform ϕ (for all unramified Hecke operators away from
Np∞) in Mnd

ı(tP )
(Γ(N) ∩ ΓP (p);C) shares the same eigenvalues as a cuspidal Hecke eigenform in

M0
ı(tP )

(Γ(N) ∩ ΓP (p);C), then ϕ is cuspidal. When tPd > 2n + 1 this is true according to [Har84,

Theorem 2.5.6]. �

As explained in [Liu16b, §6.1.5], for each pair (β1, β2) ∈ N−1 Sym(n,Z)∗⊕2
>0 there is a ΛP -linear

map

εq-exp,β1,β2 :M0
P -ord ⊗OF JTP (Zp)KM0

P -ord −→ ΛP ,

which, when specialized at primes PτP , gives the map of taking the coefficients indexed by β1, β2

in the p-adic q-expansion εq-exp.
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Define

µCP ,φ,β1,β2 = εq-exp,β1,β2 ◦ 1CP (µE,P -ord) ∈ M eas
(
Z×p ,M0

P -ord

)
⊗ΛP FCP ,

Limp
CP ,φ,β1,β2

= εq-exp,β1,β2 ◦ 1CP

(
E imp
P -ord

)
∈ FCP .

Theorem 2.6.2. For a Dirichlet character φ with conductor dividing N and φ2 6= 1, a geometrically

irreducible component CP ⊂ Spec
(
T0,N
P -ord

)
, and (β1, β2) ∈ N−1 Sym(n,Z)∗⊕2

>0 , the above constructed

µCP ,φ,β1,β2 and LP -imp
CP ,φ,β1,β2

satisfy the following interpolation properties. Let x : ICP → F ′ be an

F ′-point of CP with F ′ being a finite extension of F . Suppose that the weight projection map

ΛP → Tnd,NP -ord is étale at x mapping x to an arithmetic point τP ∈ Homcont (TP (Zp), F ′×).
If (κ, τ) is admissible, then(∫

Z×p
κ dµCP ,φ,β1,β2

)
(x) =Ck,tP ·

∑
ϕ∈sx

c(β1, ϕ)c(β2, ePW (ϕ))

〈ϕ,ϕ〉

× Ep(n+ 1− k, πx × φχ) · LNp∞(n+ 1− k, πx × φχ),

if κ(−1) = φ(−1), and otherwise vanishes.
Assume that the parity of CP is compatible with φ. If τP is admissible, then

Limp
CP ,φ,β1,β2

(x) =CtP ·
∑
ϕ∈sx

c(β1, ϕ)c(β2, ePW (ϕ))

〈ϕ,ϕ〉

× EP -imp
p (n+ 1− tPd , πx × φεPd ) · LNp∞(n+ 1− tPd , πx × φεPd ).

The following are some explanations of the interpolation formulae.

• The constant Ck,tP (resp. CtP ) only depends on k, tP , φ,N (resp. tP , φ,N) and is defined
as

Ck,tP = φ(−1)nvol
(

Γ̂(N)
) ∏d

l=1

∏nl
j=1(1− p−j)∏n

j=1(1− p−2j)
·

Γ2n

(
2n+1

2

)
2−2n2+n+2nkπ2n2+n

·
Z∞

(
fκ,τP ,∞, vı(tP ), v

∨
ı(tP )

)
〈
vı(tP ), v

∨
ı(tP )

〉 ,

CtP = CtPd ,tP
.

The nonvanishing of Ck,tP is shown in §2.7.
• sx is a finite set consisting of an orthonormal basis of the eigenspace for the Hecke eigensys-

tem parametrized by x inside ePM0
ı(tP )

(Γ(N) ∩ ΓSP (p∞), ε;C). The set sx is empty and the

evaluation is 0 if x is not classical, i.e. if there exists no cuspidal irreducible automorphic
representation πx ⊂ A0(G(Q)\G(A)) with πx,∞ ∼= Dı(tP ) such that the Hecke eigensystem
parametrized by x appears in πx.
• c(βi, ·), i = 1, 2, denotes the coefficient indexed by βi in the q-expansion.
• The operator W is defined as in (2.4.14), and by the reasoning as in [Liu16b, Proposition

5.7.2] we know that ePW (ϕ) 6= 0 for ϕ ∈ sx.

Proof. By our construction, for a classical x as in the theorem, the evaluations of 1CP

(∫
Z×p κ dµE,P -ord

)
and 1CP

(
E imp
P -ord

)
at x are classical cuspidal Siegel modular forms obtained by projecting the forms

in (2.4.7) and (2.4.8) to the eigenspace associated to the Hecke eigensystem parametrized by x.
Thus the interpolation formulae follow from the formulae for

Lϕ

(
(eP × eP ) E∗(·, fκ,τP )

∣∣
G×G

)
and Lϕ

(
(eP × eP ) E∗(·, fτP )

∣∣
G×G

)
,(2.6.1)
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for ϕ ∈ sx, which are proved later in Proposition 2.8.1. The nonvanishing of the archimedean zeta
is proved in the next section. �

Remark 2.6.3. For each j ∈ (Z/(p − 1) such that φωj(−1) = 1, applying the p-adic Mellin trans-
form with respect to ωj to the measure µCP ,φ,β1,β2 , one gets the p-adic L-function LCP ,φωj ,β1,β2

∈
ICP [[S]]⊗ICP FCP as described in the theorem in the introduction.

2.7. The nonvanishing of the archimedean zeta integral. Since fτP ,∞ = fτPd ,τP ,∞
, it suffices

to show the nonvanishing of Z∞

(
fκ,τP ,∞, vτP , v

∨
τP

)
for all (κ, τP ) such that tP1 ≥ · · · ≥ tPd ≥ k ≥

n+ 1. This nonvanishing will follow from the proposition below.

Proposition 2.7.1. With fκ,τP ,∞ ∈ IQH ,∞(2n+1
2 − k, sgnk) as in (2.4.4), the map

Z∞(fκ,τP ,∞, ·, ·) : Dı(tP ) × D̃ı(tP ) −→ C

is nonzero.

Proof. Let M(s, sgnk) : IQH ,∞(s, sgnk)→ IQH ,∞(−s, sgnk) be the intertwining operator defined as

(
M(s, sgnk)f∞(s, sgnk)

)
(h) =

∫
UQH (R)

f∞(s, sgnk)

((
0 −I2n

I2n 0

)
uh

)
du.

Set

f∞(s, sgnk) =

d−1∏
i=1

det

(
(µ̂+

0 )Ni
4π
√
−1

)tPi −tPi+1

· det

(
µ̂+

0

4π
√
−1

)tPd −k
· fk∞(s, sgnk).

According to [LR05], the local zeta integral for π∞ and f∞(s, sgnk) ∈ IQH,∞(s, sgnk) satisfies the
functional equation

(2.7.1) Z∞

(
M(s, sgnk)f∞(s, sgnk), ·, ·

)
= Γ∞(s, π∞, sgnk) · Z∞

(
f∞(s, sgnk), ·, ·

)
,

with
(2.7.2)

Γ∞(s, π∞, sgnk) = π∞(−1)·γ∞
(
s+

1

2
, π∞ × sgnk

)
·

γ∞(s− 2n− 1

2
, sgnk

) n∏
j=1

γ∞ (2s− 2n+ 2j, triv)

−1

.

On the other hand, it follows from [Shi82, (1.31)(4.34K)] that

M(s, sgnk)f∞(s, sgnk)(2.7.3)

= (−1)nk · 22n−2ns · πn(2n+1) · Γ2n(s)

Γ2n

(
1
2(s+ 2n+1

2 ) + k
2

)
Γ2n

(
1
2(s+ 2n+1

2 )− k
2

) · f∞(−s, sgnk).
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Combining (2.7.3), (2.7.1), and (2.7.2), we get for π∞ = Dı(tP ),

Z∞
(
fκ,τP ,∞, ·, ·

)
= Z∞

(
f∞(s, sgnk), ·, ·

)∣∣∣
s= 2n+1

2
−k

= (−1)nk · 22n−2ns · πn(2n+1) · Γ2n(s)

Γ2n

(
1
2(s+ 2n+1

2 ) + k
2

)
Γ2n

(
1
2(s+ 2n+1

2 )− k
2

)
)

× π∞(−1) ·
γ∞
(
s− 2n−1

2 , sgnk
) n∏
j=1

γ∞ (2s− 2n+ 2j, triv)

γ∞
(
s+ 1

2 , π∞ × sgnk
) · Z∞

(
f∞(−s, sgnk), ·, ·

)∣∣∣
s= 2n+1

2
−k

= (−1)nk · 22nk−2n2+n · πn(2n+1) · π∞(−1) ·
γ∞
(
1− k, sgnk

) n∏
j=1

γ∞ (1 + 2j − 2k, triv)

Γ2n

(
2n+1

2

)
· γ∞ (n+ 1− k, π∞ × sgnk)

× Z∞
(
f∞(k − 2n+ 1

2
, sgnk), ·, ·

)
.

The nonvanishing of Z∞
(
f∞(k − 2n+1

2 , sgnk), ·, ·
)

for Dı(tP ) is shown in [Liu16b, Proposition 4.3.1]

using results in [Li90, JV79]. The γ∞-factors appearing here has neither poles nor zeros at the
relevant points because the condition n+ 1 ≤ k ≤ tPd guarantees that those points are critical. �

2.8. Computing the zeta integrals at p. The goal of this section is to prove the following
proposition, which will give the interpolation properties for our p-adic L-functions.

Proposition 2.8.1. Let π ⊂ A0(G(Q)\G(A)) be an irreduicble cuspidal automorphic representa-
tion with π∞ ∼= Dı(tP ). Also, assume that π contains a P -ordinary Siegel modular form ϕ of weight

ı(tP ) and p-nebentypus εP , invariant under the translation of (Γ(N) ∩ ΓSP (p∞))∧ ⊂ G(Af). Then

(2.8.1)

Lϕ

(
(eP × eP ) E∗(·, fκ,τP )

∣∣
G×G

)
=φχ(−1)nvol

(
Γ̂(N)

) ∏d
l=1

∏nl
j=1(1− p−j)∏n

j=1(1− p−2j)
·
Z∞

(
fκ,τP ,∞, vı(tP ), v

∨
ı(tP )

)
〈
vı(tP ), v

∨
ı(tP )

〉
× Ep(n+ 1− k, π × φχ) · LNp∞(n+ 1− k, π × φχ) · ePW (ϕ),

and

(2.8.2)

Lϕ

(
(eP × eP ) E∗(·, fτP )

∣∣
G×G

)
=φεPd (−1)nvol

(
Γ̂(N)

) ∏d
l=1

∏nl
j=1(1− p−j)∏n

j=1(1− p−2j)
·
Z∞

(
fτP ,∞, vı(tP ), v

∨
ı(tP )

)
〈
vı(tP ), v

∨
ı(tP )

〉
× EP -imp

p (n+ 1− tPd , π × φεPd ) · LNp∞(n+ 1− tPd , π × φεPd ) · ePW (ϕ).

The proof of the proposition is mainly about computing the zeta integrals at p. There is a little
bit of subtlety here. One needs to first apply the ordinary projection eP × eP to E∗(·, fκ,τP )

∣∣
G×G

and E∗(·, fτP )
∣∣
G×G before pairing it with ϕ. Thus, what we need to compute at p for proving the

proposition is not Tf
κ,τP

ϕ, Tf
τP
ϕ, but the zeta integrals with fκ,τP and fτP replaced by R(UPp ) ×

R(UPp )fκ,τP and R(UPp ) × R(UPp )fτP , where R is a polynomial depending on πp and a sufficiently

small open compact subgroup Kp ⊂ G(Zp) satisfying eP = R(UPp ) on πKp . Recall that with a fixed

tP , we make UPp -operators act on smooth G(Qp)-representations by (2.3.4).
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Our computation will essentially use Proposition 2.3.2 and is similar as the computation in
[Liu16b, p.39-42].

Proof. Since the projections to πp of P -ordinary forms inside π span a one-dimensional subspace, we

know that Lϕ

(
(eP × eP ) E∗(·, fκ,τP )

∣∣
G×G

)
(resp. Lϕ

(
(eP × eP ) E∗(·, fτP )

∣∣
G×G

)
) equals ePW (ϕ)

up to a scalar, given by〈
Lϕ

(
(eP × eP ) E∗(·, fκ,τP )

∣∣
G×G

)
, ϕ′ϑ

〉
〈ePW (ϕ), ϕ′ϑ〉

, (resp.

〈
Lϕ

(
(eP × eP ) E∗(·, fτP )

∣∣
G×G

)
, ϕ′ϑ

〉
〈ePW (ϕ), ϕ′ϑ〉

)

for an arbitrary ϕ′ ∈ π such that the denominator is nonzero. We will always assume that ϕ′ is
fixed by both Kp and ϑSPG(Zp)ϑ and ePϕ

′ 6= 0. Then〈
ePW (ϕ), ϕ′ϑ

〉
=
〈
ϕ, ePϕ

′〉 6= 0.

Let b = (b1, . . . , b1︸ ︷︷ ︸
n1

, . . . , bd, . . . , bd︸ ︷︷ ︸
nd

) for b1 > b2 > · · · > bd > 0 and denote diag(pb1 , . . . , pb1 , . . . , pbd , . . . , pbd)

by pb. A direct computation shows that〈
Lϕ

(
(eP × UPp,b) E∗(·, fκ,τP )

∣∣
G×G

)
, ϕ′ϑ

〉
=φ(−1)nvol

(
Γ̂(N)

)
·
Z∞

(
fκ,τP ,∞, vı(tP ), v

∨
ı(tP )

)
〈
vı(tP ), v

∨
ı(tP )

〉 · LNp∞(n+ 1− k, π × φχ)

×p〈t+2ρG,c, b〉
〈
ϕ,R(UPp )

∫
G(Qp)

f
α
κ,τP

p (s, φχ)
(
S−1ι(g−1, 1)

)
πp(gp

b)ϕ′ dg

〉∣∣∣∣∣
s= 2n+1

2
−k

.

The ratio

(2.8.3)

〈
ϕ,R(UPp )

∫
G(Qp) f

α
κ,τP

p (s, φχ)
(
S−1ι(g−1, 1)

)
πp(gp

b)ϕ′ dg
〉

〈ϕ, ePϕ′〉

is independent of the choice of ϕ. Let θ1, . . . , θn, α1, . . . , αn be as in Proposition 2.3.2, and σ1, . . . , σd
be as in the definition (2.3.11). We know that the P -ordinary space (with respect to tP ) inside

Ind
G(Qp)
BG(Qp)θ is one dimensional. Therefore, if we take from Ind

G(Qp)
BG(Qp)θ a function G : G(Qp) → C

invariant under the right translation by Kp and ϑSPG(Zp)ϑ, then

(2.8.3) =

(
R(UPp )

∫
G(Qp) f

α
κ,τP

p (s, φχ)
(
S−1ι(g−1, 1)

)
πp(gp

b)G dg
)

(1)(
R(UPp )G

)
(1)

,

as long as the denominator is nonzero. Now we further assume that G(1) = 1. Then by our
description of the UPp -eigenvalues for the P -ordinary vector in terms of the αi’s in Proposition

2.3.2, we have
(
R(UPp )G

)
(1) = 1.

Now let G ∈ Ind
G(Qp)
BG(Qp)θ be the smooth function on G(Qp) supported on BG(Qp)ϑSPG(Zp)ϑ

and taking the value 1 on ϑSPG(Zp)ϑ. We also put w(a) = |det a|−
n+1

2
p G

((
a 0
0 ta−1

))
. Then

w ∈ Ind
GL(n,Qp)
B(Qp) θ and is invariant under the right translation of u for tu ∈ SP (Zp) and takes the
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value 1 at identity. Let Φχ,εP be the Schwartz function on Mn(Qp) whose Fourier transform is

Φ̂χ,εP (β0) =
d∏
i=1

1GL(Ni,Zp) ((β0)Ni)×
d−1∏
i=1

εPi ε
P−1
i+1 (det(−(β0)Ni)) · εPd χ−1(det(−β0)), β0 ∈Mn(Qp).

An easy computation shows that

f
α
κ,τP

p (s, φpχp)
(
S−1ι

((
a b
c d

)
, 1
))

=|det a|−(s+ 2n+1
2

)
p φχ(det(−a))−1p−n(n+1)

× 1GL(n,Qp)(a) · 1p−2 Sym(n,Zp)(a
−1b)1Sym(n,Zp)(ca

−1) · Φχ,εP (a−1),

and (
UPp,c

∫
G(Qp)

f
α
κ,τP

p (s, φpχp)
(
S−1ι(g−1, 1)

)
πp(gp

b)G dg

)
(1)

=

∏n
j=1(1− p−j)∏n
j=1(1− p−2j)

p−〈ρG,n, b〉
d∏
i=1

aciNi

∫
GL(n,Qp)

| det a|s+
n
2

p φχ(det(−a))Φχ,εP (a)w
(
apb
)
da,

for c = (c1, . . . , c1︸ ︷︷ ︸
n1

, . . . , cd, . . . , cd︸ ︷︷ ︸
nd

), c1 > c2 > · · · > cd > 0.

Therefore, in order to show (2.8.1), it suffices to show that with our chosen w ∈ Ind
GL(n,Qp)
B(Qp) θ,

(2.8.4)

∫
GL(n,Qp)

|det a|s+
n
2

p φpχp(det a)Φχ,εP (a)w
(
apb
)
da

=

∏d
i=1

∏ni
j=1(1− p−j)∏n

j=1(1− p−j)

d∏
i=1

Ni∏
j=Ni−1+1

αbij · Ep(s, π × φχ).

By the same reasoning, in order to show (2.8.2), it suffices to show

(2.8.5)

∫
GL(n,Qp)

| det a|s+
n
2

p φpε
P
d,p(det a)ΦεP (a)w

(
apb
)
da

=

∏d
i=1

∏nl
j=1(1− p−j)∏n

j=1(1− p−j)

d∏
i=1

Ni∏
j=Ni−1+1

αbij · E
P -imp
p (s, π × φεPd ),

where ΦτP is the Schwartz function on Mn(Qp) whose Fourier transform is

Φ̂εP (β0) = 1Mn(Zp)(β0)

d−1∏
i=1

1GL(Ni,Zp) ((2β0)Ni)×
d−1∏
i=1

εPi ε
P−1
i+1 (det(−(2β0)Ni)), β0 ∈Mn(Qp).
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We will show (2.8.4) and (2.8.5) by induction. Write n′ = Nd−1, a =

n′ nd( )
n′ a′ η
nd 0 λ

·
(

In′ 0
λ−1tµ Ind

)
.

Define w′ ∈ Ind
GL(n′,Qp)
Bn′ (Qp) (θ1, . . . , θn′) by w′(a′) = | det a′|−

nd
2

p w

((
a′ 0
0 Ind

))
, and the SL(nd,Zp)-

fixed wd ∈ Ind
GL(nd,Qp)
Bnd (Qp) (θn′+1, . . . , θn) by wd(λ) = |det a|

n′
2
p w

((
In′ 0
0 λ

))
. Also, let

Φ̂′χ,εP (β′0) =

d−1∏
i=1

1GL(Ni,Zp)

(
(β′0)Ni

)
×

d−2∏
i=1

εPi ε
P−1
i+1 (det(−(β′0)Ni)) · εPd−1χ

−1(det(−β′0)), β′0 ∈Mn′(Qp),

Φ̂′εP (β′0) =
d−1∏
i=1

1GL(Ni,Zp)

(
(β′0)Ni

)
×

d−2∏
i=1

εPi ε
P−1
i+1 (det(−(β′0)Ni)) · εPd−1ε

P−1
d (det(−β′0)), β′0 ∈Mn′(Qp),

and let Φ′
χ,εP

, Φ′
εP

be the inverse Fourier transform of Φ̂′
χ,εP

, Φ̂′
εP

. Denote by FεPd χ−1 the inverse

Fourier transform of the Schwartz function λ 7→ 1GL(nd,Zp)(λ) · εPd χ−1(det(−λ)) on Mnd(Qp). Then
by a routine computation we get

LHS of (2.7.3) =

∏n′

j=1(1− p−j)
∏nd
j=1(1− p−j)∏n

j=1(1− p−j)

∫
GL(n′,Qp)

|det a′|s+
n′
2

p φpχp(det a′)w′
(
a′pb

′
)

Φ′χ,εP (a′) da′

(2.8.6)

×
n∏

i=Nd−1+1

αbdi

∫
GL(nd,Qp)

| detλ|s+
nd
2

p φpχp(detλ)wd(λ)FεPd χ−1(λ) dλ,

LHS of (2.7.1) =

∏n′

j=1(1− p−j)
∏nd
j=1(1− p−j)∏n

j=1(1− p−j)

∫
GL(n′,Qp)

|det a′|s+
n′
2

p φpχp(det a′)w′
(
a′pb

′
)

Φ′εP (a′) da′

(2.8.7)

×
n∏

i=Nd−1+1

αbdi

∫
GL(nd,Qp)

| detλ|s+
nd
2

p φpχp(detλ)wd(λ)1Mnd
(Zp)(λ) dλ.

For FεPd χ−1 , we have the following formula [BS00, Proposition 6.1, Appendix of §6]. If cond(εPd χ
−1) =

pc > 1,

FεPd χ−1(λ) = p−
nd(nd+1)c

2 G(εPd χ
−1)nd · 1GL(nd,Zp) (pcλ) εP−1

d χ(det(pcλ)),(2.8.8)

and if εPd = χ,

Ftriv(λ) =

nd∑
j=0

(−1)jp
j(j−1−nd)

2

∫
GL(nd,Zp)

(
pIj 0
0 Ind−j

)
GL(nd,Zp)

1Mnd
(Zp)(λg) dg.(2.8.9)

We first look at the easier case (2.8.7), where for the integral in the second line of it, since wd is

fixed by SL(nd,Zp) and GL(nd,Zp) acts on it by εP−1
d,p ◦ det, we have

(2.8.10)

∫
GL(nd,Qp)

|detλ|s+
nd
2

p φpε
P
d,p(detλ)wd(λ)1Mnd

(Zp)(λ) dλ = Lp

(
s+

1

2
, σd ⊗ φp

)
.
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Next we treat the integral in the second line of (2.8.6) with εPχ−1 6= triv. Plugging in (2.8.8), we
get
(2.8.11)∫

GL(nd,Qp)
| detλ|s+

nd
2

p χp(detλ)wd(λ)FεPd χ−1(λ) dλ =

n∏
j=n′+1

G(εPd χ
−1)

(
φ(p)−1α−1

j ps−
1
2

)c
=

n∏
j=n′+1

γp

(
1

2
− s, φ−1

p χ−1
p θ−1

j

)
= γp

(
1

2
− s, σ̃d ⊗ φ−1

p χ−1
p εPd,p

)
.

Lastly, we consider the integral in the second line of (2.8.6) with εPχ−1 = triv. The formula for
the Hecke action on spherical representations of GL(Qp) gives∫

GL(nd,Zp)

(
p−1Ij 0

0 Ind−j

)
GL(nd,Zp)

md(λg) dg = p
j(nd−j)

2

∑
ι:{1,...,j}↪→{1,...,nd}

ι(1)<···<ι(j)

α−1
n′+ι(1) . . . α

−1
n′+ι(j)md(λ).

Combining this with (2.8.9), we get

(2.8.12)

∫
GL(nd,Qp)

|detλ|s+
nd
2

p χp(detλ)wd(λ)Ftriv(λ) dλ

=
n∏

j=n′+1

(1− φp(p)−1α−1
j ps−

1
2 )

∫
GL(nd,Qp)

|detλ|s+
nd
2

p φpε
P
d,p(detλ)wd(λ)1Mnd

(Zp)(λ) dλ

=
n∏

j=n′+1

(1− φp(p)−1α−1
j ps−

1
2 ) · Lp

(
s+

1

2
, σ ⊗ φp

)
= γp

(
1

2
− s, σ̃d ⊗ φ−1

p

)
.

The identities (2.8.10), (2.8.11), and (2.8.12) allows us to compute (2.8.4) and (2.8.5) by induction,
and this finishes the proof. �

3. The derivative of the p-adic standard L-function

In this section we explicit the trivial zeros of the p-adic L-function
muCP , φ, β1, β2 of Theorem 2.6.2 and interpret them from the point of view of the (conjectural)
associated p-adic Galois representation. This will allow us to interpret a factor appearing in the
derivative of the p-adic L-function as Greenberg’s `-invariant in the case when the trivial zero is
semi-stable (or of type M as called in [Gre94]). At the end, we shall prove the main theorem of the
paper which relates the derivative of LCP ,φωn+1,β1,β2

at the semi-stable trivial zero to the `-invariant
and the complex special value.

3.1. Greenberg–Benois conjecture and `-invariants. That idea at the base of the conjecture
by Greenberg and Benois is that when a p-adic L-function has trivial zeros one should be able to
recover the value of the complex L-function from a suitable derivative of the p-adic L-function. The
first studied case is the one of an elliptic curve with split multiplicative reduction at p [MTT86].
They conjectured that the order of the p-adic L-function is 1 plus the order of the complex L-
function and that the leading coefficient of the p-adic L-function is the same as the one of the
complex L-function, up to an error term equal to logp(qE)/ordp(qE) (for qE the Tate uniformizer
of E) that they call the `-invariant.

Later Greenberg interpreted this number in Galois theoretical terms and proposed a similar
conjecture for a great number of ordinary motives [Gre94]; succesively Benois generalised this
conjecture to most semistable representations [Ben11]. Let us be more precise. Let V the p-adic
Galois representation associated with the motive, and suppose that it is absolutely irreducible and
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satisfies Pantchishkine condition, i.e. that there is a sub space V ′ of V stable under the action of
GQp and containing all positive Hodge–Tate weights. Assume moreover that the Frobenius acts
semisimply on the semi-stable module (in the sense of Fontaine) associated with V .

Greenberg defines two subspaces V 11 ⊂ V + ⊂ V 00 such that V +/V 11 contains all the eigenvalues
p and V 00/V + contains all the eigenvalues 1. Then we can decompose V 00/V 11 as Qt0

p ⊕M⊕Qp(1)t1 ,

where M is a non split extension of Qt
p by Qp(1)t. According to Greenberg’s conjecture, the number

of trivial zeros of the p-adic L-function is e = t0 + t+ t1. Assume furthermore that t1 = 0 (certain
motivic conjectures imply t1t0 = 0, so this hypothesis is not really restrictive). Then by picking a

subspace T̃ ⊂ H1(GQ, V ) of dimension e, Greenberg defines an e-dimensional subspace T̃p inside
H1(GQp , V )/H1

f (GQp , V ) which injects into

H1(GQp , V
1/V ′) ∼=

t+e0⊕
i=1

Qp · ordp ⊕Qp · logp .

If we denote by pu (resp. pc) the projection of T̃p to
⊕t+e0

i=1 Qp · ordp (resp.
⊕t+e0

i=1 Qp · logp), then

Greenberg shows that pc is an invertible map and defines `(V ) := det(pu◦p−1
c ). Note that in general

T̃p depends on V as GQ-representation, but if e0 = 0 too then it depends only on the restriction
to GQp [Gre94, p. 169][Ros15, p. 1239]. We can finally state:

Conjecture 3.1.1. [Greenberg–Benois conjecture] Let r be the order of the complex L-function
L(s, V ) at s = 0, and suppose that Lp(S, V ) has e0 + t trivial zeros, then Se0+t+r divides Lp(S, V )
exactly and

Lp(S, V )/Se0+t+r ≡ `(V ∗(1))(Ep(0, V )Lp(0, V )−1)
∗ Lalg,(r)(0, V )

logp(1 + p)e0+t+r(e0 + t+ r)!
mod S,

where Ep(s, V ) is defined as in [Coa91, §6], V ∗(1) is the dual representation twisted by 1, Lp(s, V )

is the Euler factor of the motivic L-function for V and (Ep(s, V )Lp(s, V )−1)
∗

is obtained from

Ep(s, V )Lp(s, V )−1 by eliminating all the Euler factors vanishing at s = 0. The function Lalg(s, V )
is the L-function for V divided by the period.

Note that the conjecture implies the non-vanishing of the `-invariant `(V ).
This conjecture has been first shown in the case of an elliptic curve with bad multiplicative

reduction by Greenberg–Stevens [GS93]. Their method has been generalised many times to different
contexts [Mok09, Ros16b, Ros16a, Rosss] and is at the base of our current approach. It is worth
to point out that many new strategies have recently arisen [DDP11, Das16, Spi14, Dep16].

3.2. The trivial zero of the p-adic standard L-function. Let LCP ,φωj ,β1,β2
= LCP ,φ,β1,β2(S, x) ∈

ICP [[S]]⊗ICP FCP to be the Mellin transform of the component corresponding to the character ωj

on (Z/p)× of the measure µCP ,φ,β1,β2 constructed in Theorem 2.6.2.
Suppose that x0 : ICP → F is a point as in Theorem 2.6.2 and it is classical. Denote by πx0

a cuspidal irreducible automorphic representation of Sp(2n,A) generated by a P -ordinary Siegel

modular T0,N
P -ord-eigenform of weight ι(tP ) whose eigenvalues are parametrized by x. The isomor-

phism class of π0,v is determined by x0 for v - N (the isomorphism class of πx0,p can be read off
from the eigenvalues for all UPp -operators by the discussion in §2.3.1. We are interested in possible

trivial zeros of LCP ,φωn+1,β1,β2
at S = (1 + p)n+1 − 1, where the corresponding critical L-value is

the near-central value L(0, πx × φ). There are two types of trivial zeroes that can show up there.

3.2.1. Crystalline trivial zero. We say that LCP ,φωn+1,β1,β2
has a crystalline trivial zero at ((1 +

p)n+1 − 1, x0) if φ(p) = 1 and the local L-factor Lp(s, πx0 × φ) contains the factor (1− φp(p)p−s).
In particular, if πx0,p is unramified, then a crystalline trivial zero shows up at S = (1 + p)n+1 − 1.
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One can also think of types of trivial zeroes in terms of the corresponding Galois representation
restricted to GQp (if admitting the local-global comptibility for ρx0 attached to πx0). Let ρx0 : GQ →
GL(2n + 1,Qp) be the Galois representation attached to πx0 [Art13, CH13]. Then conjecturally

ρx0 |GQp admits the following description. The Hodge–Tate weights are 0,±(tP1 − 1), . . . ,±(tP1 −
N1),±(tP2 −N1−1), . . . ,±(t2−N2), . . . ,±(tPd −Nd−1−1), . . . ,±(tPd −n), and the eigenvalues of the

Frobenius are 1, α±1
1 , . . . , α±1

n . Hence the Hodge polygon and the Newton polygon meet at the points
with horizontal coordinates 0, N1, N2, . . . , Nd, 2n + 1 − Nd, . . . , 2n + 1 − N2, 2n + 1 − N1, 2n + 1.
Therefore, ρx0 : GQ admits a decreaing filtration Filj , −d ≤ j ≤ d, such that Filj/Filj+1 has
Hodge–Tate weights tPd−j+1−Nd−j − 1, . . . , tPd−j+1−Nd−j+1 (resp. tP−j −N−j+1− 1, . . . , tP−j −N−j)
if 1 ≤ j ≤ d (resp. −d ≤ j ≤ −1), and Fil0/Fil1 is one dimensional with trivial GQp-action. If

Fil0/Fil2 is a trivial extension of Qp by Fil1/Fil2, then LCP ,φωn+1,β1,β2
has a crystalline trivial zero

at ((1 + p)n+1 − 1, x0) if φ(p) = 1.

3.2.2. Semi-stable trivial zero. The other case is when the local L-factor Lp(s, πx0 × φ) does not
contain the factor (1−φp(p)p−s), but the factor (1−φp(p)−1α−1

n ps−1) in Ep(s, πx0 ×φ) contributes
a trivial zero at ((1 + p)n+1 − 1, x0) when φ(p) = 1 and αn = p−1. We call this type of trivial zero
semi-stable. Since Newton polygon lies above the Hodge polygon and for ρx0 |GQp they coincide

along the slope 0 segment, we have vp(αn) ≤ −tPd + n ≤ −1. If αn = p−1, then tPd = n + 1 and
the Newton and Hodge polygons coincide along the the segments of slope −1, 0, 1. Therefore, if
LCP ,φωn+1,β1,β2

(S, x0) ∈ OF [[S]] ⊗OF F has a semi-stable trivial zero at S = (1 + p)n+1 − 1, then
there exists a partition n = n1 + · · ·+ nd with nd = 1 such that πx0 is P -ordinary for P ⊂ GL(n)
the standard parabolic subgroup attached to the partition.

The above discussion shows that in order to use p-adic deformation of πx0 to study the trivial
zero at S = (1 + p)n+1 − 1 of the p-adic L-function attached to πx0 , one can always choose P such
that nd = 1 and consider the P -ordinary families passing through x0. In the following, we assume
that nd = 1.

In terms of the local Galois representation, a semi-stable appears if Fil0/Fil2 is a non-trivial
extension of Qp by Qp(1).

3.3. A formula for the derivative. In this section we prove the main theorem of the paper
applying the strategy of Greenberg–Stevens. Recall that ai, 1 ≤ ai ≤ n, denotes the eigenvalue
of the operator UPp,i (see Proposition 2.3.2). They are invertible elements inside ICP . In order

to state [Ben10, Theorem 2] in our setting, we need to fix a coordinate for a rigid analytic open
neighborhood of x0 in CP . Since we have assumed that the weight projection map is étale at x0,
we can take the coordinate to be the natural coordinate TP1 , . . . , T

P
d of the weight space. Then it

follows from [Ben10, Theorem 2] and [Ben11, Proposition 2.2.24] that

Theorem 3.3.1. Let x0 ∈ CP (F ) be a classical point where the weight projection map is étale and
has image τPx0

∈ Homcont(T
P (Zp), F×). Suppose that S = (1 + p)n+1 − 1 is a semi-stable trivial

zero for LCP ,φωn+1,β1,β2
(S, x0) and the local-global compatibility is satisfied by the p-adic Galois

representation ρx0. Then

`(ρx0) = `(ρ∗x0
(1)) = −

∂ logp
(
an(TP1 , . . . T

P
d )/an−1(TP1 , . . . , T

P
d )
)

∂TPd

∣∣∣∣∣
(TP1 ,...,T

P
d )=τPx0

(1+p)

.

(For the proof see [Ros15, Theorem 1.3], where the theorem is stated for parallel weight, but the
proof is the same.)

Remark 3.3.2. When n = 2 one can calculate the `-invariant also for crystalline trivial zero using
the method of [Hid06].
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Remark 3.3.3. In our case, there is a trival zero for the whole p-adic L-function LCP ,φωn+1,β1,β2
at

S = (1 + p)n+1 − 1. It is possible to define an algebraic `-invariant `(CP ), which is a meromorphic
function on CP , using the definition of [Ben11] in the context of [Pot13].

Define j(CP ) ∈ Z/(p− 1) by ωj(CP ) = τPd |(Z/p)× for a τP inside the image of the projection of CP

to the weight space. The relation of the improved p-adic L-function LP -imp
CP ,φ,β1,β2

and the restriction

of LCP ,φω
j(CP ),β1,β2

to κ = τPd,x is given as:

Proposition 3.3.4. Suppose that nd = 1. As elements in FCP ,

LCP ,φω
j(CP ),β1,β2

(τPd,x, x) =
(
1− φp(p)−1an−1(x)/an(x)

)
LP -imp

CP ,φ,β1,β2
(x).

Proof. This follows straightforwardly from the two interpolation formulae of Theorem 2.6.2 by

noticing that when nd = 1, AP (π × ξ) = (1− φp(p)−1α−1
n pn−t

P
d ), so

Ep(n+ 1− tPd,x, πx × φεPd ) =
(
1− φp(p)−1an−1(x)/an(x)

)
EP -imp
p (n+ 1− tPd,x, πx × φεPd )

(cf. (2.3.13)). �

Now we are ready to prove the main theorem.

Theorem 3.3.5. Let x0 be an F -point of CP where the weight projection map ΛP → T1,N
P -ord is étale

and maps x0 to τP0 . Suppose that the p-adic L-function LCP ,φωn+1,β1,β2
∈ ICP [[S]] ⊗ICP FCP has a

semi-stable trivial zero at ((1 + p)n+1 − 1, x0) (so j(CP ) = n+ 1) and the local-global compatibility
is satisfied by the p-adic Galois representation ρx0. Then we have

dLCP ,φωn+1,β1,β2
(S, x0)

dS

∣∣∣∣
S=(1+p)n+1−1

= − `(ρx0) · CtP0 ·
∑
ϕ∈sx0

c(ϕ, β1)c(ePW (ϕ), β2)

〈ϕ,ϕ〉

× EP -imp
p (0, πx0 × φ) · LNp∞(0, πx0 × φ),

Proof. Again, we use the natural coordinate TP1 , . . . , T
P
d of the weight space to parametrize a rigid

analytic open neighborhood of x0 in CP . Note that by Remark 3.3.3, we know that LCP ,φωn+1,β1,β2
((1+

p)n+1 − 1, x) is identically vanishing, so

∂LCP ,φωn+1,β1,β2
(S, TP1 , . . . , T

P
d )

∂TPd

∣∣∣∣∣
S=(1+p)n+1−1

= 0.

It follows that

dLCP ,φ,β1,β2(S, x0)

dS

∣∣∣∣
S=(1+p)n+1−1

=

(
∂LCP ,φωn+1,β1,β2

(S, TP1 , . . . , T
P
d )

∂S
+
∂LCP ,φωn+1,β1,β2

(S, TP1 , . . . , T
P
d )

∂TPd

)∣∣∣∣∣
S=(1+p)n+1−1,(TP1 ,...,T

P
d )=τP0 (1+p)

=
∂

∂TPd

((
1− φp(p)−1an−1(TP1 , . . . , T

P
d )/an(TP1 , . . . , T

P
d )
)
Limp

CP ,φ,β1,β2
(TP1 , . . . , T

P
d )
)∣∣∣∣

(TP1 ,...,T
P
d )=τP0 (1+p)

=
∂
(
an(TP1 , . . . T

P
d )/an−1(TP1 , . . . , T

P
d )
)

∂TPd

∣∣∣∣∣
(TP1 ,...,T

P
d )=τPx0

(1+p)

· Limp
CP ,φ,β1,β2

(x0).

Then the theorem follows from Theorem 3.3.1 and the interpolation property of Limp
CP ,φ,β1,β2

in

Theorem 2.6.2. �
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