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Abstract. We compute the archimedean doubling zeta integrals which appear in the interpolation
formulas for the p-adic L-functions of Siegel modular forms constructed in [Liu16].
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The doubling method, discovered by Garrett [Gar84], Böcherer [B8̈5] and Piatetski-Shapiro–
Rallis [PSR87], provides an integral representation of automorphic L-functions for classical groups in
terms of Siegel Eisenstein series. It has been vastly applied to study the properties of automorphic L-
functions, inculding defining local L-factors [LR05,Yam14], showing the meromorphic continuation
of the global L-functions and locating the possible poles [PSR87, KR90], proving the algebraicity
of the critical L-values normalized by a Petersson inner product period when the representation
is algebraic [Shi00, Har81, Har08], and constructing the p-adic interpolation of those normalized
critical values [BS00,Liu16,EW16,EHLS16].

For many applications, a key technical ingredient is about proving the desired properties of the
doubling zeta integrals

(0.0.1) Zv (fv(s), v1, v2) =

∫
G(Fv)

fv(s) (ι�(g, 1)) 〈πv(g)v1, v2〉 dg,

at an archimedean place v | ∞, where 〈πv(g)v1, v2〉 is a matrix coefficient of the local representation
at v of the cuspidal automorphic representation on a classical group G we are interested in, ι� is
the doubling embedding of G × G into a group that doubles the size of G, and fv(s) is a section
inside the degenerate principal series on the double sized group. In [KR90], it has been shown that
for all s ∈ C there always exists an fv(s) such that (0.0.1) is nonzero; thus the possible poles of the
L-functions are determined by those of the Siegel Eisenstein series. For arithimetic applications,
the fv(s) used in [KR90] is not good enough. One further requires that with the choice of the
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archimedean sections, the Siegel Eisenstein series are algebraic at the points corresponding to the
critical points of the L-function. To this end, a rich theory of algebraic differential operators has
been developed [Shi84,Shi90,Har86,Böc85,Ibu99] when G is symplectic or unitary with a Shimura
variety. The argument in [Har86] shows that the algebraic differential operators, which give rise
to sections with potentially nonvanishing archimedean zeta integrals, constructed through different
approaches agree up to scalar. In [Har08,Liu16], the nonvanishing of the archimedean zeta integrals
for those sections has been verified for the unitary and symplectic cases. When the holomorphic
discrete series is of scalar weight, the holomorphic differential operators have been written down
explicitly and the corresponding archimedean zeta integrals have been computed in [Shi00, BS00].
For vector weights, a special case is considered in [Gar08] for the unitary group U(a, b) with the
requirement on the weight τ1 � τ2 that one of τ1 and τ2 is scalar.

In this paper, we compute the archimedean zeta integrals for general vector weights at s = s0
in the case when G = Sp(2n)/Q, s0 corresponds to a critical point and the section f∞(s) is chosen
as in the construction of the p-adic L-functions in [Liu16]. Let us briefly recall the setting and
notation loc. cit. Let H = Sp(4n)/Q (the doubling group on which the Siegel Eisenstein series live)
and QH ⊂ H be the standard Siegel parabolic subgroup. Given an (n+ 1)-tuple of integers

(t, k) = (t1, . . . , tn, k), t1 ≥ . . . tn ≥ k ≥ n+ 1,

and supposing that the archimedean component of the irreducible cuspidal automorphic represen-
tation of G(A) is isomorphic to Dt, the holomorphic discrete series of weight t, then in order to
study the critical value at s0 = k − n or s0 = n + 1 − k of the standard L-function, we picked an
archimedean section (denoted as fκ,τ,∞ in [Liu16])

fk,t ∈ Ind
H(R)
QH(R) sgnk| · |k−

2n+1
2

(see §1.1 for the precise definition). Let vt ∈ Dt be the highest weight vector inside the lowest
KG-type and v∨t be its dual vector in the contragredient representation.

Theorem 0.0.1 (Theorem 2.4.1).

Z∞
(
fk,t, v

∨
t , vt

)
=
i−

∑n
j=1 tj+nk2−2

∑n
j=1 tj−nk+2n2+2nπ−

∑n
j=1 tj+nk+

3n2+n
2

Γ2n(k) dim (GL(n), t)

n∏
j=1

Γ(tj − j + k − n).

Plugging this result into the interpolation formulas of our previously constructed p-adic L-
functions, we verify that the archimedean factors in the interpolation formulas agree with the
conjecture of Coates–Perrin-Riou [CPR89,Coa91].

Unfolding the definitions in [Coa91, §5] for our case, the modified archimedean Euler factor for
p-adic interpolation of the critical values to the right (resp. left) of the center is defined as

E+
∞(s,Dt × sgnk) = γ∞(s, sgnk)−1

n∏
j=1

e−(s+tj−j)
πi
2 ΓC(s+ tj − j)

(resp. E−∞(s,Dt × sgnk) =

n∏
j=1

e−(s+tj−j)
πi
2 ΓC(s+ tj − j)).

(See also [Liu16, §1] [LR18, §2.3] for the formulas of the modified Euler factor at p for p-adic
interpolation in our case.)

Let C (resp. CP ) be a geometrically irreducible component of the spectrum of the Hecke alge-
bra acting on ordinary (resp. P -ordinary) families of Siegel modular forms of genus n and tame
principal level N as in [Liu16] (resp. [LR18]). Here P ⊂ GL(n) is a standard parabolic subgroup
corresponding to a partition n = n1 + · · · + nd. Let φ : Q×\A× → C× be Dirichlet character
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with conductor dividing N ≥ 3. In [Liu16, Theorem 1.0.1] (resp. [LR18, Theorem 2.6.2]), we con-
structed an (n+ 1)-variable p-adic L-function µC ,φ,β1,β2 (resp. a (d+ 1)-variable p-adic L function
µCP ,φ,β1,β2) associated to C and φ (resp. CP and φ) for a given pair of positive definite symmetric
n× n matrices (β1, β2) with entries in Q.

Corollary 0.0.2. If the weight projection is étale at the classical point x ∈ C (Qp) (resp. x ∈
CP (Qp)) with image τx ∈ Homcont

(
Tn(Zp),Q

×
p

)
(resp. τPx ∈ Homcont

(
TP (Zp),Q

×
p

)
), and if the

algebraic part k of κ and the algebraic part tx of τx (resp. tPx of τPx ) satisfy tx,1 ≥ · · · ≥ tx,n ≥ k ≥
n+ 1 (resp. tPx,1 ≥ · · · ≥ tPx,d ≥ k ≥ n+ 1), then(∫

Z×p
κ dµC ,φ,β1,β2

)
(x)

= i−
3n2+n

2 2
n2−3n

2 φ(−1)n vol
(

Γ̂(N)
) pn

2
(p− 1)n∏n

j=1(p
2j − 1)

· 2−
∑n
j=1 tx,j

dim (GL(n), tx)

∑
ϕ∈sx

c(β1, ϕ)c(β2, eW (ϕ))

〈ϕ,ϕ〉

× E+
p (k − n, πx × φ−1χ−1)E+

∞(k − n, πx × φ−1χ−1)LNp∞(k − n, πx × φ−1χ−1),

and resp.(∫
Z×p
κ dµCP ,φ,β1,β2

)
(x)

= i
n2−n

2 2
n2−n

2 φ(−1)nvol
(

Γ̂(N)
) ∏d

l=1

∏nl
j=1(1− p−j)∏n

j=1(1− p−2j)
· 2−

∑n
j=1 tx,j

dim (GL(n), tx)

∑
ϕ∈sx

c(β1, ϕ)c(β2, ePW (ϕ))

〈ϕ,ϕ〉

× E−p (n+ 1− k, πx × φχ)E−∞(n+ 1− k, πx × φχ)LNp∞(n+ 1− k, πx × φχ).

Here the finite set sx consists of an orthogonal basis of ordinary (resp. P -ordinary) holomorphic

Siegel modular forms of genus n, weight tx (resp. (tPx,1, . . . , t
P
x,1︸ ︷︷ ︸

n1

, tPx,2, . . . , t
P
x,2︸ ︷︷ ︸

n2

, . . . , tPx,d, . . . , t
P
x,d︸ ︷︷ ︸

nd

)) and

tame principal level N on which the Hecke algebra acts via the Hecke eigensystem parameterized
by x. For βi, i = 1, 2, c(·, βi) denotes the βi-th coefficient of the q-expansion. See [Liu16, Theorem
1.0.1] (resp. [LR18, Theorem 2.6.2]) for the definition of the Siegel modular form eW (ϕ) (resp.
ePW (ϕ)).

Note that in the above interpolation formulas, the second line aligns with the conjecture of
Coates–Perrin-Riou and the first line is independent of the cyclotomic variable κ. The interpolation
formula for µC ,φ,β1,β2 follows directly from Theorem 2.4.1 and [Liu16, Theorem 1.0.1], and the one
for µC ,φ,β1,β2 follows from Theorem 2.4.1, [LR18, Theorem 2.6.2] plus the functional equation for
the archimedean doubling zeta integrals [LR05] [LR18, (2.7.1)(2.7.2)].

We end the introduction by sketching the idea of our computation of Z∞
(
fk,t, v

∨
t , vt

)
. The section

fk,t is constructed by applying differential operators to the canonical holomorphic section of scalar
weight k (defined as in (1.1.1)). The restriction of fk,t to G(R)×G(R) can be expressed as a matrix
coefficient of the Weil representation (of Sp(2n,R)×O(2k,R)). We work with the Schrödinger model
of the Weil representation. Denote by Ma,b the space of a× b matrices. There exists a polynomial

P 0
k,t ∈ C[M2n,2k] such that fk,t

(
S−1H ι(g, 1)

)
equals the matrix coefficient attached to the Schwartz

function φP 0
k,t

(X) = P 0
k,t(X)e−πTrX

tX on M2n,2k(R) = Mn,2k(R)×Mn,2k(R) (Proposition 1.3.2). Let

Hn,2k ⊂ C[Mn,2k] be the space of pluri-harmonic polynomials as defined in [KV78]. It is acted on
by GL(n) through the left transpose translation and by O(2k) acts through the right translation.
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Inside Hn,2k ⊗ Hn,2k, there is a unique irreducible component (as an algebraic GL(n) × O(2k)-
representation) on which the action of GL(n) has highest weight t. The polynomial P 0

k,t has a

projection P hol,inv
k,t into VH,k,t ⊗ VH,k,t (which corresponds to the holomorphic projection on the

restriction to G ×G of nearly holomorphic Siegel Eisenstein series on H). The Schwartz function

φ
Phol,inv
k,t

(X) = P hol,inv
k,t (X)e−πTrX

tX belongs to the unique direct summand of the G(R) × G(R)-

representation S (Mn,2k(R)×Mn,2k(R))O(2k,R) which is isomorphic to Dt�Dt. Taking into account
Harish-Chandra’s formulas on formal degrees of discrete series, we reduce to compute the inner
product associated to φ

Phol,inv
k,t

via (1.3.3).

In general, it is very difficult to write down explicitly the polynomial P hol,inv
k,t , but it can be char-

acterized uniquely (up to scalar) inside VH,k,t ⊗ VH,k,t by its invariance under the diagonal action
of O(2k) and being of highest weight for the GL(n) × GL(n)-action. We introduce another two

polynomials Qk,t⊗Q̃k,t and Ik,t in VH,k,t⊗VH,k,t. They are characterized (up to scalar) by that Qk,t
is of highest weight for the action of both GL(n) and O(2k), Q̃k,t is of highest weight for the action

of GL(2n) and lowest weight for that of O(2k), and Ik,t is invariant under (a, ta−1), a ∈ GL(n), and
is of highest-lowest weight for the action of O(2k)×O(2k). The way we compute the inner product

of φ
Phol,inv
k,t

is to link it first to that of φQk,t ⊗ φQ̃k,t , and then to that of φIk,t . Both Qk,t ⊗ Q̃k,t
and Ik,t are very easy to be written down explicitly and the inner product associated to φIk,t is
particularly easy to compute.

Notation. For a positive integer m, define the algebraic groups Sp(2m) and O(2m) as

Sp(2m) =

{
g ∈ GL(2m) : tg

(
0 1m
−1m 0

)
g =

(
0 1m
−1m 0

)}
,

O(2m) =
{
γ ∈ GL(2m) : tγγ = 12m

}
.

For a pair of positive integers m1,m2, we denote by Mm1,m2 the space of m1 ×m2 matrices.
Let G = Sp(2n)/Q and H = Sp(4n)/Q, and we fix the embedding

ι : G×G ↪−→ H

(
a1 b1
c1 d1

)
×
(
a2 b2
c2 d2

)
7−→


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 .

The standard Siegel parabolic subgroup QH ⊂ H consists of elements whose lower left 2n × 2n-
blocks are 0, and the doubling Siegel parabolic subgroup Q�H ⊂ H is defined as

Q�H = SHQHS
−1
H , SH =


1n 0 0 0
0 1n 0 0
0 1n 1n 0
1n 0 0 1n

 .

Denote by KG the maximal compact subgroup of G(R) which we identify with U(n,R) = {g ∈

GL(n,C) : tgg = 1n} via

(
a b
−b a

)
7→ ai + b. We fix the Haar measure on G(R) as the product

measure where the one on KG has total volume 1 and the one on G(R)/KG
∼= Hn = {z = x+ iy ∈

Mn,n(C), tz = z, y > 0} is det(y)−n−1
∏

1≤i≤j≤n
dxij dyij
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1. Reducing to a simpler integral

1.1. The archimedean section in the doubling zeta integral. We first recall the choice
in [Liu16] of the section fk,t inside the degenerate principal series

I(k) = Ind
H(R)
QH(R) sgnk| · |k−

2n+1
2 =

{
f : H(R)→ C smooth : f

((
A B
0 tA−1

)
h

)
= (detA)kf(h)

}
.

Inside I(k), there is the canonical holomorphic section fk,k defined as

(1.1.1) fk,k

((
A B
C D

))
= det(Ci+D)−k.

The torus C× acts on H(R) by

z · h =

(
u12n v12n

−v12n u12n

)
h

(
u12n v12n

−v12n u12n

)−1
, z = u+ iv ∈ C×.

The induced action on (LieH)C decomposes it as

(LieH)C = (LieH)−1,1C ⊕ (LieH)0,0C ⊕ (LieH)1,−1C ,

where (LieH)a,bC , a, b = 0,±1, is the subspace on which z ∈ C× acts by the scalar z−az−b. Let

q+H = (LieH)−1,1C and we fix the following basis of it

µ̂+H,ij = µ̂+H,ji = c

(
0 Eij + Eji
0 0

)
c−1, 1 ≤ i, j ≤ 2n,

where c = 1√
2

(
12n i12n

i12n 12n

)
and Eij is the 2n×2n matrix with 1 in the (i, j) entry and 0 elsewhere.

Define the following matrices with entries in q+H ,

µ̂+H =

n n( )
µ̂+H,1 µ̂+H,0 n
tµ̂+H,0 µ̂+H,2 n

=
(
µ̂+ij

)
1≤i,j≤2n

.

Explicit formulas on the equivalence between the action of q+H and the Maass–Shimura differential
operators are given in [Liu16, §2.4].

For (k, t) with t1 ≥ . . . tn ≥ k, define the following polynomial on entries of n× n matrices,

Qk,t =
n−1∏
j=1

det
tj−tj+1

j detk−tn ,

where detj stands for the determinant of the upper left j × j block. The section fk,t ∈ I(k) is
defined as

(1.1.2) fk,t = Qk,t

(
µ̂+H,0
4πi

)
· fk.

Our goal is to compute the following archimedean zeta integral which appears in the interpolation
formulas of the p-adic L-functions for Siegel modular forms [Liu16, Theorem 1.0.1],

(1.1.3) Z∞
(
fk,t, v

∨
t , vt

)
=

∫
G(R)

fk,t
(
S−1H ι(g, 1)

) 〈
g · v∨t , vt

〉
dg,
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where vt is the highest weight vector inside the lowest KG-type of the weight t holomorphic discrete
series Dt of G(R), and v∨t is the dual vector of vt inside the contragredient representation of Dt.
The pairing 〈 , 〉 appearing in the above identity is the natural pairing between Dt and D∨t under

which
〈
v∨t , vt

〉
= 1. The convergence and nonvanishing of the integral (1.1.3) have been proved

in [Liu16, Proposition 4.3.1] using ideas from [JV79,Har86,Li90].

1.2. Basics on Weil representation. We recall some formulas on the Schrödinger model of Weil
representation which will be used in our computation of (1.1.3). Let m be a positive integer and

O(2k,R) be the definite orthogonal group attached to the symmetric form (x, y) =
∑2k

j=1 xjyj on

R2k. Denote by ω2k the Weil representation of Sp(2m,R)×O(2k,R) on S(Mm,2k(R)), the space of
C-valued Schwartz functions on Mm,2k(R).

For φ ∈ S(Mm,2k(R)) and γ ∈ O(2k,R),

(
a b
0 ta−1

)
,

(
0 1m
−1m 0

)
∈ Sp(2m,R), we have

ω2k(1, γ)φ(x) = φ(xγ),

ω2k

((
a b
0 ta−1

)
, 1

)
φ(x) = (det a)k eπiTrb

ta xtxφ(tax),

ω2k

((
0 1m
−1m 0

)
, 1

)
φ(x) = i−mk

∫
Mm,2k(R)

φ(y) e2πiTrx
ty dy.

More generally, for g =

(
a b
c d

)
∈ Sp(2m,R),

(1.2.1)

ω2k

((
a b
c d

)
, 1

)
φ(x) = ε(g)ki−k rank c

∫
(Rm/ ker c)⊗R2k

φ(tcy+tax) e2πi (
1
2
Trctd yty+Tr ctb xty+ 1

2
Tratb xtx) dy,

where ε(g) = sgn(det a1a2) for

g =

(
a1 b1
0 ta−11

)
1m−j 0 0 0

0 0 0 1j
0 0 1m−j 0
0 −1j 0 0

(a2 b2
0 ta−21

)
, j = rank c.

1.3. Siegel–Weil sections and matrix coefficients. The Siegel–Weil sections inside I(k) are
images of the map

fSW : S(M2n,2k(R)) −→ I(k)

φ 7−→ fSW(h) = ω2k(h, 1)φ(0).

The canonical holomorphic section (1.1.1) is the image of the Gaussian function, i.e.

fk,k = fSW

(
X 7→ e−πTrXtX

)
.

Multiplying with the Gaussian function defines an embedding from the space of polynomial
functions into the space of Schwartz functions. For a positive integer m, we define

(1.3.1)
C[Mm,2k] ↪−→ S(Mm,2k(R))

P (x) 7−→ φP (x) = P (x) e−πTrxtx.

Later we will mainly focus on the image of (1.3.1) for m = n, 2n which is dense inside S(Mm,2k(R))
and stable under the action of (Lie Sp(2m))C × O(2k,R). In particular, our chosen section fk,t in
(1.1.2) belongs to the image of the composition of fSW and (1.3.1) with m = 2n.
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Given σ ∈ Sym(2n,R), set

µ̂+H,σ = c

(
0 σ
0 0

)
c−1.

If P (X) is a homogeneous polynomial on M2n,2k of degree d, an easy computation using the formulas
in §1.2 gives
(1.3.2)

ω2k

(
µ̂+H,σ, 1

)
(φP (X)) = 2πi

(
TrσXtX

) (
P (X) + polymonial in X of degree < d

)
e−πTrXtX ,

from which it follows:

Proposition 1.3.1. There exists a polynomial function P 0
k,t on M2n,2k(R) of the form

P 0
k,t

(
X =

(
x1
x2

))
= Qk,t(x1

tx2) + polynomial in X of degree < 2
∑

tj − 2nk

such that

fk,t = 2−
∑
tj+nk fSW

(
φP 0

k,t

)
.

Let S(Mn,2k(R))ϑ be the G(R)×O(2k,R)-representation which equals S(Mn,2k(R)) as a C-vector

space and on which (g, γ) ∈ G(R)×O(2k,R) acts through ω2k(g
ϑ, γ). Here the superscript ϑ denotes

the conjugation by

(
0 1n
1n 0

)
(which is also called the MVW involution on G and is introduced

in [MVW87]).
As G(R)×O(2k,R)-representations, S(Mn,2k(R))ϑ is isomorphic to the contragredient represen-

tation of S(Mn,2k(R)), and we have the following G(R)×O(2k,R)-invariant C-linear pairing
(1.3.3)

〈 , 〉 : S(Mn,2k(R))× S(Mn,2k(R))ϑ −→ C

(φ1, φ2) 7−→ 〈φ1, φ2〉 =

∫
Mn,2k(R)

φ1(x)ω2k

((
0 −1n
1n 0

)
, 1

)
φ2(x) dx.

Suppose that φ ∈ S(M2n,2k(R)) has the form φ

(
x1
x2

)
= φ1(x1)φ2(x2) with φ1, φ2 ∈ S(Mn,2k(R)).

Direct computation using (1.2.1) shows that

(1.3.4) fSW(φ)
(
S−1H ι(g, 1)

)
= ink 〈ω2k(g, 1)φ1, φ2〉 .

(The G(R)-invariance of the pairing 〈 , 〉 is also reflected by the invariance property

fSW
(
S−1H ι(g1, g2)

)
= fSW

(
S−1H ι(gg1, g

ϑg2)
)

of Siegel–Weil sections.)
For each g ∈ G(R), we can define a linear functional MCω,2k(g, ·) on S(M2n,2k(R)) by taking the

matrix coefficients of the Weil representation on S(Mn,2k(R))× S(Mn,2k(R))ϑ. More precisely, we
define it as

MCω,2k(g, ·) : S(M2n,2k(R)) −→ C

φ 7−→ MCω,2k(g, φ) =

∫
Mn,2k(R)

ω2k

(
ι
(
1,
(

0 −1n
1n 0

))
, 1
)
φ

(
x
x

)
dx.

Combining Proposition 1.3.1 and (1.3.4) we immediately get

Proposition 1.3.2.

fk,t
(
S−1H ι(g, 1)

)
= ink 2−

∑
tj+nk MCω,2k

(
g, φP 0

k,t

)
.
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1.4. Pluri-harmonic polynomials. In [KV78], pluri-harmonic polynomials are introduced to
study the theta correspondence between Sp(2m,R) and O(2k,R). The image of pluri-harmonic
polynomials by the map (1.3.1) corresponds to lowest K-types in the holomorphic discrete series
appearing in the decomposition of the Weil representation.

Definition 1.4.1. A polynomial P (x) in C[Mn,2k] is called pluri-harmonic if

∆ijP (x) =

2k∑
r=1

∂2

∂xir∂xjr
P (x) = 0.

for all 1 ≤ i, j ≤ n. We denote the space of pluri-harmonic polynomials on Mn,2k as Hn,2k.

For

x =
k k

( )u v n ∈Mn,2k(R),

define

z(x) = u+ iv ∈Mn,k(C), z(x) = u− iv ∈Mn,k(C).

Given t1 ≥ · · · ≥ tn ≥ k, define Qk,t, Q̃k,t ∈ C[Mn,2k] as

Qk,t(x) = Qk,t ((z(x)ij)1≤i,j≤n) , Q̃k,t(x) = Qk,t ((z(x)ij)1≤i,j≤n) ,

which are easily seen both pluri-harmonic.
The group GL(n,C) (resp. O(2k,C)) acts on C[Mn,2k] by left transpose translation (resp. right

translation). The pluri-harmonic polynomial Qk,t generates an irreducible algebraic GL(n,C) ×
O(2k,C)-representation VH,k,t inside Hn,2k, and we have

VH,k,t ∼= (t− k) � λ(t, k),

where t − k stands for the irreducible algebraic representation of GL(n) of highest weight (t1 −
k, t2−k, . . . , tn−k). The restriction to SO(2k,C) of the irreducible algebraic O(2k,C)-representation
λ(t, k) is still irreducible, and its highest weight is

(t1 − k, t2 − k, . . . , tn − k, 0, . . . , 0).

The pluri-harmonic polynomial Q̃k,t also generates VH,k,t. Both Qk,t and Q̃k,t are of the highest

weight for the action of GL(n,C), and Qk,t (resp. Q̃k,t) is of the highest (resp. lowest) weight for
the action of O(2k,C).

For pluri-harmonic polynomials on Mn,2k, the GL(n,C)-action is closely related to the action of
KG
∼= U(n,R) via the Weil representation on their images under the map (1.3.1).

Proposition 1.4.2. For P ∈ Hn,2k and

(
a b
c d

)
∈ G(R),

ω2k

((
a b
c d

)
, 1

)
φP (x) = det(ci+ d)−kP

(
(ci+ d)−1x

)
eiπTr(ai+b)(ci+d)−1xtx.

In particular, for

(
a b
−b a

)
∈ KG (ai+ b ∈ U(n,R)) we have

ω2k

((
a b
−b a

)
, 1

)
φP = det(ai+ b)kφ(ai+b)·P .

Proof. It follows from combining the formula (1.2.1) and [KV78, Lemma 4.5]. �
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By studying the space of pluri-harmonic polynomials, the following theorem on theta correspon-
dence between G and O(2k,R) is deduced in [KV78].

Theorem 1.4.3 ( [KV78, Proposition 6.11, Corollary 6.12, Theorem 6.13]). Assume that k ≥ n+1.

• (Theta correspondence) As a representation of (LieG)C ×O(2k,R),

(1.4.1) Im (1.3.1)m=n
∼=

⊕
tdominant
tn≥k

Dt � λ(t, k).

• Under the isomorphism (1.4.1), the lowest KG-types of the holomorphic discrete series
correspond to pluri-harmonic polynomials. In particular,

φQk,t ∈
(
lowest KG-type in Dt

)
� λ(t, k),

and is the highest weight vector for the action of KG ×O(2k,R).

We record here another fact about pluri-harmonic polynomials which will be used in the next
section. Denote by C[xtx] the subspace of C[Mn,2k] spanned by polynomials in entries of xtx.
By [KV78, Remark under Lemma 5.3], if k ≥ n then

C[Mn,2k] = Hn,2k ⊗C C[xtx].

Hence for t1 ≥ . . . tn ≥ k ≥ n+ 1, we have

(1.4.2) embedding (1.3.1)m=n

(
VH,k,t ⊗C C[xtx]

)
∼= Dt � λ(t, k).

Next we consider the space Hn,2k ⊗C Hn,2k ⊂ C[M2n,2k]. First we define

P hol
k,t ∈ VH,k,t ⊗C VH,k,t, P hol

k,t

(
X =

(
x1
x2

))
= Qk,t(x1) Q̃k,t(x2).

(Note that P hol
k,t does not belong to H2n,2k.) The group O(2k,C) acts on Hn,2k⊗CHn,2k diagonally by

right translation. Since dimC (λ(t, k)⊗ λ(t, k))O(2k,C) = 1, there exists a unique a pluri-harmonic
polynomial

P hol,inv
k,t ∈

(
VH,k,t ⊗C VH,k,t

)O(2k,C)

such that it is the the highest weight vector for the action of GL(n,C)×GL(n,C) and its evaluation
at

(1.4.3)

n k − n n k − n( )
1n 0 0 0 n
0 0 1n 0 n

(
1k 1k
i1k −i1k

)−1

equals 1.

Remark 1.4.4. The invariant pluri-harmonic polynomial P hol,inv
k,t has been used in [Ibu99] to con-

struct holomorphic differential operators. From P hol,inv
k,t one can define a polynomial Rk,t on

Sym(2n) such that P hol,inv
k,t (X) = Rk,t(X

tX). Suppose that Z = (Zij)1≤i,j≤2n is the coordinate

of the Siegel upper half space for Sp(4n). Then Rk,t

(
∂

∂Zij

)
composed with the restriction from H

to G × G sends holomorphic Siegel modular forms of scalar weight k on H to holomorphic Siegel
modular forms of weight t� t on G×G.
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1.5. Rewriting the zeta integral in terms of Qk,t.

Proposition 1.5.1.

Z∞
(
fk,t, v

∨
t , vt

)
= ink2−

∑
tj+nk dimλ(t, k)

∫
G(R)

〈
ω2k(g, 1)φQk,t , φQ̃k,t

〉 〈
g · v∨t , vt

〉
dg.

Proof. The proof goes in two steps.
Step 1: Verify for all g ∈ G(R) that

(1.5.1) MCω,2k

(
g, φ

Phol,inv
k,t

)
= dimλ(t, k) MCω,2k

(
g, φPhol

k,t

)
= dimλ(t, k)

〈
ω2k(g, 1)φQk,t , φQ̃k,t

〉
.

Let Nn ⊂ GL(n) be the unipotent radical of the standard Borel subgroup of upper triangular
matrices. Then

P hol
k,t , P

hol,inv
k,t ∈

(
VH,k,t ⊗C VH,k,t

)Nn(C)×Nn(C) .
We fix a basis of v1, . . . , vd of λ(t, k) (d = dimλ(t, k)) such that each vj is an eigenvector of the
standard maximal torus consisting of

(
1k 1k
i1k −i1k

)


a1
. . .

ak
a−1
1

. . .
a−1
k


(

1k 1k
i1k −i1k

)−1
∈ O(2k,C), a1, . . . , ak ∈ C×,

and v1 is the highest weight vector. Denote by v∨1 , . . . , v
∨
d the dual basis for λ(t, k)∨. We can fix

an isomorphism

(1.5.2)
(
VH,k,t ⊗C VH,k,t

)Nn(C)×Nn(C) ∼−→ λ(t, k)⊗ λ(t, k)∨

such that P hol
k,t is mapped to v1 ⊗ v∨1 . Then this isomorphism maps P hol,inv

k,t to C
∑d

j=1 vj ⊗ v∨j for

a constant C. We have the commutative diagram(
VH,k,t ⊗C VH,k,t

)Nn(C)×Nn(C) ∼ //

evaluated at (1.4.3)
**

λ(t, k)⊗ λ(t, k)∨

v1 ⊗ v∨1 7→ 1
vi ⊗ vj 7→ 0 if i 6= 1 or j 6= 1
��

C

.

The composition of the horizontal and vertical maps sends P hol,inv
k,t to C, and the diagonal map

sends it to 1. Therefore, C = 1 and (1.5.2) maps P hol,inv
k,t to

∑d
j=1 vj ⊗ v∨j . For each g ∈ G(R),

P1 ⊗ P2 7−→ MCω,2k (g, φP1 ⊗ φP2)

defines an O(2k,R)-invariant pairing on
(
VH,k,t ⊗C VH,k,t

)Nn(C)×Nn(C) and it must agree up to scalar
with the composition of (1.5.2) and the natural pairing on λ(t, k) ⊗ λ(t, k)∨, which maps v1 ⊗ v∨1
to 1 and

∑d
j=1 vj ⊗ v∨j to dimλ(t, k). Thus,

MCω,2k

(
g, φ

Phol,inv
k,t

)
= dimλ(t, k) MCω,2k

(
g, φPhol

k,t

)
and Step 1 is done.

Step 2: Verify that∫
G(R)

MCω,2k

(
g, φP 0

k,t

) 〈
g · v∨t , vt

〉
dg =

∫
G(R)

MCω,2k

(
g, φ

Phol,inv
k,t

) 〈
g · v∨t , vt

〉
dg.

10



By (1.4.1), viewing S(M2n,2k)
O(2k,R) as a representation of G(R)×G(R), it decomposes as a direct

sum of Dt �Dt for t dominant and tn ≥ k. We claim that

(1.5.3) φP 0
k,t
− φ

Phol,inv
k,t

∈
⊕

t′ dominant
t′n≥k,

∑
t′j<

∑
tj

Dt′ �Dt′ .

The claim implies that the matrix coefficient MCω,2k

(
·, φP 0

k,t
− φ

Phol,inv
k,t

)
pairs trivially with the

matrix coefficient
〈
g · v∨t , vt

〉
. We are left to prove the claim. For r ≥ 0, by considering the

decomposition of C[Mn,2k]
≤r via the action of O(2k,C), we know that

(1.5.4) C[Mn,2k]
≤r ⊂ Hrn,2k ⊕ H≤r−1n,2k ⊗ C[xtx].

Here we use the superscript ≤r (resp. r) to indicate degree ≤ r (resp. homogeneous of degree r).
The polynomial

P ′k,t

(
X =

(
x1
x2

))
= Qk,t(x1

tx2)

belongs to C[M2n,2k]
O(2k,C), and for the action of GL(n,C)×GL(n,C) it is fixed by Nn(C)×Nn(C)

and of weight (t, t). Hence its projection to the first factor on the right hand side of (1.5.4) with

r =
∑
tj − nk must be a multiple of P hol,inv

k,t . We have

(1.5.5) P ′k,t = C · P hol,inv
k,t +R, C ∈ C, R ∈ C[M2n,2k]

2
∑
tj−2nk ∩ (x1

tx1, x2
tx2)C[M2n,2k]

where (x1
tx1, x2

tx2)C[M2n,2k] denotes the ideal generated by entries of x1
tx1 and x2

tx2. Evaluating
(1.5.5) at (1.4.3), we get C = 1. Taking into account Proposition 1.3.1, we deduce that

P 0
k,t − P

hol,inv
k,t ∈ (Hn,2k ⊗ Hn,2k)

≤2
∑
tj−2nk−1 ⊗ C[x1

tx1, x2
tx2]

which implies the claim (1.5.3).
Combining Step 1, Step 2 and Proposition 1.3.2 proves the proposition. �

2. Computing the simpler integral

In this section we compute the right hand side on the identity in Proposition 1.3.2.

2.1. The formal degrees of Dt. Let V O-HW
H,k,t (resp. V O-LW

H,k,t ) be the subspace of VH,k,t which is

of the highest (resp. lowest) weight for the action of O(2k,C). Thanks to (1.4.2), there exist
isomorphisms

ι : embedding (1.3.1)m=n

(
V O-HW
H,k,t ⊗C C[xtx]

)
∼−→ Dt,

ι∨ : embedding (1.3.1)m=n

(
V O-LW
H,k,t ⊗C C[xtx]

)ϑ ∼−→ D∨t ,

and Qk,t ∈ V O-HW
H,k,t (resp. Q̃k,t ∈ V O-LW

H,k,t ) is mapped to a multiple of vt (resp. v∨t ). Since the pairing

(1.3.3) is G(R)-invariant, we know that for all g ∈ G(R),

(2.1.1)

〈
ω2k(g, 1)φQk,t , φQ̃k,t

〉
〈
φQk,t , φQ̃k,t

〉 =

〈
g · vt, v∨t

〉〈
vt, v∨t

〉 .
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Therefore,

(2.1.2)

∫
G(R)

〈
ω2k(g, 1)φQk,t , φQ̃k,t

〉 〈
g · v∨t , vt

〉
dg =

〈
φQk,t , φQ̃k,t

〉∫
G(R)

〈
g · vt, v∨t

〉 〈
g · v∨t , vt

〉
dg

= d(Dt, dg)−1
〈
φQk,t , φQ̃k,t

〉
,

where d(Dt, dg) is the formal degree of the holomorphic discrete series Dt with respect to our chosen
Haar measure dg on G(R).

Remark 2.1.1. Thanks to the compactness of the orthogonal group we consider here, the Weil
representation decomposes as a direct sum of irreducible representations and we easily deduce the
identity (2.1.1). If the orthogonal group is not compact, then the ratio of the two sides will be a
constant depending on k, t. Such a ratio has been computed in [Liu15, LL16] for the unitary case
when one of the unitary groups has signature (n, 1).

Now it remains to compute the pairing
〈
φQk,t , φQ̃k,t

〉
.

2.2. The pairing of φQk,t with φ
Q̃k,t

. First we define another element Ik,t inside the space

V O-HW
H,k,t ⊗ V O-LW

H,k,t as

Ik,t(x1, x2) = Qk,t

((
tz(x1) z(x2)

)
upper left n× n-block

)
, (x1, x2) ∈Mn,2k(R)×Mn,2k(R).

In order to see that Ik,t ∈ V O-HW
H,k,t ⊗V O-LW

H,k,t , we notice that the right translation on z(x1) and z(x2)

by 
a1 ∗ · · · ∗

a2 · · · ∗
. . .

...
ak

 ∈ GL(k,C)

is by
∏n
j=1 a

tj−k
j like Qk,t, Q̃k,t. It is also easy to see that for all a ∈ GL(n,C),

(2.2.1) Ik,t(ax1, ta−1x2) = Ik,t(x1, x2).

Proposition 2.2.1.〈
φQk,t , φQ̃k,t

〉
= (−i)

∑n
j=1 tj dim (GL(n), t)−1

∫
Mn,2k(R)

Ik,t(x, x) e−2πTrxtx dx,

where dim (GL(n), t) is the dimension of the irreducible algebraic GL(n)-representation of highest
weight t.

Proof. The proof goes similarly as the first step in the proof of Proposition 1.5.1. Consider the
C-linear pairing

(2.2.2)
( , ) : V O-HW

H,k,t × V O-LW
H,k,t −→ C

(Q1, Q2) 7−→ 〈φQ1 , φQ2〉 .
For a ∈ GL(n,C), denote by L(a) the left translation by a on C[Mn,2k]. Due to the G(R)-invariance
of the pairing (1.3.3) and Proposition 1.4.2, the pairing ( , ) has the equivariance property that(

L(a+ ib)Q1, L(ai− b)Q2

)
=

〈
ω2k

((
a b
−b a

)
, 1

)
φQ1 , ω2k

((
a b
−b a

)ϑ
, 1

)
φQ2

〉
= (Q1, Q2)

for all a+ ib ∈ U(n,R). On the other hand, for the GL(n,C)-action by left transpose translation,
V O-HW
H,k,t and V O-LW

H,k,t are both isomorphic to the irreducible algebraic GL(n)-representation of highest
12



weight t. Thus, there exists a basis v1, . . . , vd (resp. w1, . . . , wd) of V O-HW
H,k,t (resp. V O-LW

H,k,t ) (d =

dim (GL(n), t)) consisting of weight vectors such that

v1 = Qk,t, w1 = Q̃k,t, (vi, wj) = 0, i 6= j, L(a)× L(ta−1)

( d∑
j=1

vj ⊗ wj
)

=

d∑
j=1

vj ⊗ wj , a ∈ GL(C).

Then (2.2.1) implies that Ik,t equals a multiple of
∑d

j=1 vj×wj . The linear functional of evaluating

at x =
(
1n 0

)
annihilates all the weight vectors in V O-HW

H,k,t , V O-LW
H,k,t except v1, w1. Its evaluation

at Ik,t shows that

(2.2.3) dim (GL(n), t)−1 · the value of Ik,t under the pairing (2.2.2) =
〈
φQk,t , φQ̃k,t

〉
.

Since ω2k

((
0 −1n
1n 0

)
, 1

)
acts by (−i)

∑n
j=1 tj on φQ for all Q ∈ V O-LW

H,k,t due to Proposition 1.4.2,

the left hand side of (2.2.3) equals the right hand side of the identity in the statement of the
proposition and we finish the proof. �

2.3. Computing the integral involving Ik,t. The integral on the right hand side of the identity
in Proposition 2.2.1 is particularly convenient to compute.

Proposition 2.3.1.∫
Mn,2k(R)

Ik,t(x, x) e−2πTrxtx dx = 2−
∑n
j=1 tjπ−

∑n
j=1 tj+nk

∏n
j=1 Γ(tj − j − k + n+ 1)∏n

j=1 Γ(n− j + 1)
.

Proof. We use z as the coordinate of Mn,k(C) and identify Mn,2k(R) with Mn,k(C) via z = z(x) =
u+ iv for x =

(
u v

)
. Then

(2.3.1)∫
Mn,2k(R)

Ik,t(x, x) e−2πTrxtx dx = 2−nk
∫
Mn,k(C)

Qk,t

(
(tzz)upper left n× n-block

)
e−2πTrztz |dzdz|.

Every z ∈Mn,k(C) can be uniquely written as

z = ς


r1 w12 · · · w1n w1,n+1 · · · w1k

0 r2 · · · w2n w2,n+1 · · · w2k
...

...
. . .

...
...

. . .
...

0 0 · · · rn wn,n+1 · · · wnk

 ,
ς ∈ U(n,R), r1, . . . , rn ∈ R>0,
wij ∈ C, 1 ≤ i ≤ n, i < j ≤ k .

Let ωU be the Haar measure on U(n,R) such that the total volume is 1. Then there exists a
constant Cn,k ∈ R≥0 such that

|dzdz| = Cn,k r
2n−1
1 r2n−32 . . . rn |dr1 dr2 . . . drn dw dw ∧ ωU|, dw =

∧
1≤i≤2
i<j≤k

dwij .

By evaluating the integral of the Gaussian function e−Trz
tz, we get

Cn,k = 2n (2π)
n(n+1)

2

n∏
j=1

Γ(n− j + 1)−1.

By definition

Qk,t

(
(tzz)upper left n× n-block

)
= r2t1−2k1 r2t2−2k2 . . . r2tn−2kn .
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Hence,

(2.3.1) = 2−nk Cn,k

∫
Rn>0

r2t1−2k+2n−1
1 r2t2−2k+2n−3

2 . . . r2tn−2k+1
n e−2π

∑n
j=1 r

2
j dr1 . . . drn

×
∏

1≤i≤2
2≤j≤k, i<j

∫
C
e−2π |wij |

2
dwij dwij

= 2−nk Cn,k
∏

2−n(2π)−
∑n
j=1 tj+nk−

n(n+1)
2

n∏
j=1

Γ(tj − k + n+ 1− j)

�

2.4. The archimedean zeta integral. We sum up results in previous sections towards computing
Z∞

(
fk,t, v

∨
t , vt

)
. Combining Proposition 1.5.1, (2.1.2) and Propositions 2.2.1, 2.3.1, we get

Z∞
(
fk,t, v

∨
t , vt

)
=
i−

∑n
j=1 tj+nk2−2

∑n
j=1 tj+nkπ−

∑n
j=1 tj+nk

dim (GL(n), t)

dim λ(t, k)

d(Dt, dg)

∏n
j=1 Γ(tj − j − k + n+ 1)∏n

j=1 Γ(n− j + 1)
.

The dimension of the O(2k)-representation λ(t, k) equals the dimension of the irreducible algebraic
SO(2k)-representation of highest weight (t1 − k, . . . , tn − k, 0, . . . , 0). The Weyl dimension formula
tells that

dim (SO(2k), (a1, . . . ak)) =
∏

1≤i<j≤k

(ai − aj − i+ j)(ai + aj + 2k − i− j)
(−i+ j)(2k − i− j)

,

so

dim λ(t, k) =

∏
1≤i<j≤n

(ti − tj − i+ j)(ti + tj − i− j)∏
1≤i<j≤k
i≤n

(−i+ j)(2k − i− j)
∏

1≤j≤n
(tj − 1)

Γ(tj − j + k − n)

Γ(tj − j − k + n+ 1)

=

∏
1≤i<j≤n

(ti − tj − i+ j)(ti + tj − i− j)

22nk−n(n+2)π−n2 Γ2n(k)

∏
1≤j≤n

(tj − j)
Γ(tj − j + k − n)

Γ(tj − j − k + n+ 1)
.

According to the formulas on the formal degree in [HC76, Corollary of Lemma 23.1](see also
[HII08, Lemma 2.3]), we have

d(Dt, dg) =
2
−n
2
−dimG(R)/K+rkG(R)/K(2π)# positive roots of G

vol(T, dT ) vol(K, dK)−1

∣∣∣∣∣∏
α�0
〈Hα, (t1 − 1, . . . , tn − n)〉

∣∣∣∣∣
=

2−n
2
π−

n2+n
2∏n

j=1 Γ(j)

∏
1≤i<j≤n

(ti − tj − i+ j)(ti + tj − i− j)
n∏
j=1

(tj − j).

Combining all the formulas proves our formula for the archimedean zeta integral.

Theorem 2.4.1. For integers t1 ≥ t2 ≥ · · · ≥ tn ≥ k ≥ n + 1, let fk,t be the section inside the
degenerate principal series I(k) on Sp(4n,R) as defined in (1.1.2). Let vt be the highest weight
vector in the lowest KG-type of the holomorphic discrete series Dt, and v∨t ∈ D∨t be its dual vector.
Then we have the following formula for the doubling archimedean zeta integral associated with fk,t
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and the matrix coefficient
〈
g · v∨t , vt

〉
,

Z∞
(
fk,t, v

∨
t , vt

)
=
i−

∑n
j=1 tj+nk2−2

∑n
j=1 tj−nk+2n2+2nπ−

∑n
j=1 tj+nk+

3n2+n
2

Γ2n(k) dim (GL(n), t)

n∏
j=1

Γ(tj − j + k − n).
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