Chapter 4 Kolyvagin's method

4.1 Eichler-Shimura construction

Let N a positive integer. We have seen that $\dim_{\mathbb{C}}(S_2(N)) = g$, where g is the genus of the compact Riemann surface $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*$. Let T be the algebra generated by all Hecke operator T_n over Z. In the proof of the rank of T over Z is g, we know $S_2(N)$ has a basis f_1, \ldots, f_g whose coefficients of their q-expansions are integers.

From Jacobi-Abel's theorem (Ref. Forster O. Lecture Notes on Riemann Surface (GTM 81) §21), one knows that $H_1(X_0(N)(\mathbb{C}),\mathbb{Z})$ has dimension 2g over \mathbb{Z} , and when fixing any any basis $\omega_1, \ldots, \omega_g$ of $\Omega(X_0(N)(\mathbb{C}))$ (typically, fix a basis f_1, \ldots, f_g of $S_2(N)$, then choose say) $\omega_j = 2\pi i f_j(z) dz$, $j = 1, \ldots, g$), we have

$$\Lambda_N := \left\{ \left(\int_{\alpha} \omega_1, \int_{\alpha} \omega_2, \dots, \int_{\alpha} \omega_g \right) \middle| \alpha \in H_1(X_0(N)(\mathbb{C}), \mathbb{Z}) \right\}$$

is a lattice in \mathbb{C}^{g} .

Eichler-Shimura construction shows that for any normalized newform $f \in S_2(N)$ whose coefficients in its q-expansion are all integers, then f corresponds to an elliptic curve E_f such that $L(E_f, s) \doteq L(f, s)$, \doteq means their Euler product coincide except finitely many primes (i.e. those primes $p \mid N$). E_f is quotient of the Jacobian $J_0(N)$ of $X_0(N)(\mathbb{C})$ with a subabelian variety A_f . Some preparation is needed before we can show such construction.

• Universal property of the quotient of abelian varieties. Let A be an abelian variety and C be an abelian subvariety of C. Then A/C is defined as an abelian variety in the following sense: There exists an abelian variety A' and a surjective homomorphism $f : A \to A'$ whose kernel is C. Moreover, any homomorphism $g : A \to A''$ of abelian varieties such that $C \subseteq \ker g, \exists h : A' \to A''$ such that the following diagram commutes:

(A', f) is unique up to isomorphism and if A and C are defined over \mathbb{Q} , then A' and F are also defined over \mathbb{Q} .

• Universal property of $X \to J(X)$. Let X be a compact Riemann surface of genus g with its Jacobian J(X). Fix a base point x_0 in X to obtain a canonical map $\overline{\Phi} : X \to J(X)$ with the following universal property: for any homomorphic map $F : X \to T$ for any complex torus (i.e. \mathbb{C}^n/Λ), we have the following diagram:

where f is a holomorphic homomorphism satisfying

$$F = f \circ \overline{\Phi} + F(x_0).$$

• Since $J_0(N) = \mathbb{C}^g / \Lambda_N$ is an abelian variety, the set of left invariant vector spaces of $J_0(N)$ can be identified with the tangent space \mathfrak{J} at origin O of $J_0(N)$, which is isomorphic to \mathbb{C}^g . Distinct element in $\operatorname{End}(J_0(N))$ gives a distinct linear homomorphism on $\mathfrak{J} \cong \mathbb{C}^g$. Hence one has

$$\operatorname{End}(J_0(N)) \hookrightarrow M_g(\mathbb{C}).$$

• We know canonically $\mathfrak{J} \cong \operatorname{Hom}_{\mathbb{C}}(\Omega(J_0(N)), \mathbb{C}) = \Omega(J_0(N))^*$. Use z_1, \ldots, z_g as coordinates on $J_0(N)$, then

$$\Omega(J_0(N)) = \bigoplus_{j=1}^g \mathbb{C}dz_j.$$

One has a pairing:

$$\langle dz_i, e_j \rangle = \delta_{ij},$$

where δ_{ij} is the Kronecker's δ and e_1, \ldots, e_g are the standard basis of \mathbb{C}^g . or more generally, define $\langle u, v \rangle = v(u)$ for any $u \in \Omega(J_0(N))$ and $v \in \mathfrak{J}$, regarding \mathfrak{J} as dual of $\Omega(J_0(N))$ over \mathbb{C} .

• For any $\alpha \in \text{End}(J_0(N))$, define α^* to be an endomorphism of $\Omega(J_0(N))$ by

$$< \alpha^*(u), v > = < u, (d\alpha)v >, \forall u \in \Omega(J_0(N)), v \in \mathfrak{J}.$$

This makes sense as follows: for any endomorphism $\alpha : J_0(N) \to J_0(N)$, it induces map $\mathcal{O}_{J_0(N),\alpha(0)} \to \mathcal{O}_{J_0(N),0}$, which in turns induces map

$$\alpha^*: \mathcal{M}^2_{J_0(N),\alpha(0)}/\mathcal{M}_{J_0(N),\alpha(0)} = \Omega(J_0(N)) \to \mathcal{M}^2_{J_0(N),0}/\mathcal{M}_{J_0(N),0} = \Omega(J_0(N)).$$

 α^* also induces the map $d\alpha$:

$$d\alpha: \operatorname{Hom}_{\mathbb{C}}(\mathcal{M}^{2}_{J_{0}(N),0}/\mathcal{M}_{J_{0}(N),0},\mathbb{C}) = \mathfrak{J} \to \operatorname{Hom}_{\mathbb{C}}(\mathcal{M}^{2}_{J_{0}(N),\alpha(0)}/\mathcal{M}_{J_{0}(N),\alpha(0)},\mathbb{C}) = \mathfrak{J},$$

by for any $v \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{M}^{2}_{J_{0}(N),0}/\mathcal{M}_{J_{0}(N),0},\mathbb{C}),$

$$d\alpha(v)(u) = v(\alpha^* u), \, \forall u \in \mathcal{M}^2_{J_0(N),\alpha(0)} / \mathcal{M}_{J_0(N),\alpha(0)},$$

i.e.

$$< \alpha^* u, v > = < u, (d\alpha)v > .$$

• Define Φ as follows:

$$\Phi: \mathcal{H}^* \xrightarrow{\pi} \Gamma_0(N) \backslash \mathcal{H}^* \xrightarrow{\overline{\Phi}} J_0(N).$$

Put $\pi^*(\omega_j) = f_j(z)dz$, then f_1, \ldots, f_g is a basis for $S_2(N)$.

One can easily verify $\Phi^*(dz_j) = f_j(z)dz$.

$$<\Phi^*(dz_j), \frac{d}{dz}> = < dz_j, d\Phi(\frac{d}{dz}) = < dz_j, \begin{pmatrix} f_1(z) \\ \vdots \\ f_g(z) \end{pmatrix} > = f_j(z)$$

Hence Φ^* maps basis to basis.

• Therefore it makes sense to define $\mu: S_2(N) \to \Omega(J_0(N))$ by

$$\Phi^*(\mu(f)) = f(z)dz, \ f \in S_2(N).$$

In particular, $\mu(f_j) = dz_j$.

• For any $n \in \mathbb{N}$, one has the Hecke operator $T_n : X_0(N) \to \text{Div}(X_0(N))$. For any $\tau \in X_0(N)(\mathbb{C})$,

$$T_n(\tau) = \sum \alpha_i \tau,$$

where α_i runs through the elements in the set $\left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid ad = n, d > 0, (a, N) = 1 \right\}$. $\overline{\Phi}$ can also extend linearly to $\operatorname{Div}(X_0(N)) \to J_0(N)$. Hence one obtain $\overline{T}_n = \overline{\Phi} \circ T_n$: $X_0(N) \to J_0(N)$. From the universal property, one can define t_n in the following diagram:

where t_n satisfies

$$\overline{T}_n = t_n \circ \Phi + \overline{T}_n(\tau_0). \tag{4.1}$$

(4.1) has the explicit expression:

$$t_n \begin{pmatrix} \int_{\tau_0}^{\tau} f_1(z) dz \\ \vdots \\ \int_{\tau_0}^{\tau} f_g(z) dz \end{pmatrix} = \begin{pmatrix} \sum_i \int_{\alpha_i \tau_0}^{\alpha_i \tau} f_1(z) dz \\ \vdots \\ \sum_i \int_{\alpha_i \tau_0}^{\alpha_i \tau} f_g(z) dz \end{pmatrix}$$

Hence

$$dt_n \begin{pmatrix} f_1(\tau) \\ \vdots \\ f_g(\tau) \end{pmatrix} = \begin{pmatrix} \sum_i f_1(\alpha_i(\tau)) \frac{\alpha_i \tau}{d\tau} \\ \vdots \\ \sum_i f_g(\alpha_i(\tau)) \frac{\alpha_i \tau}{d\tau} \end{pmatrix}$$
$$= \begin{pmatrix} \sum_i f_1 \circ [\alpha_i]_2(\tau) \\ \vdots \\ \sum_i f_g \circ [\alpha_i]_2(\tau) \end{pmatrix}$$
$$= \begin{pmatrix} T_n f_1 \\ \vdots \\ T_n f_g \end{pmatrix}$$
$$= A_n \begin{pmatrix} f_1 \\ \vdots \\ f_g \end{pmatrix}.$$

Here A_n becomes A_n^t when dt_n acts on the dual of $\Omega(J_0(N))$, which is $\mathfrak{J} \cong \mathbb{C}^g$.

• Shimura-Taniyama. For any $f \in S_2(N)$,

$$t_n^*(\mu(f)) = \mu(T_n f).$$

For any f_j ,

$$< t_n^*(\mu(f_j)), e_l > = < \mu(f), dt_n e_l >$$
$$= < dz_j, dt_n e_l >$$
$$= (A_n^t)_{lj} = (A_n)_{jl},$$

and

$$<\mu(T_n(f_j)), e_l > = \sum_{i=1}^g < \mu((A_n)_{ji}f_i), e_l >$$

 $= \sum_{i=1}^g (A_n)_{ji} < dz_i, e_l >$
 $= (A_n)_{jl}.$

• Eichler-Shimura construction Let $f \in S_2(N)$ be a normalized newform with integer coefficients in its q-expansion $f(z) = \sum_{n>0} c_n q^n$, where $q = e^{2\pi i z}$. Then there exists an elliptic curve E_f defined over \mathbb{Q} , which is the quotient of $J_0(N)$, i.e. there is a homomorphism: $\nu : J_0(N) \to E_f$. Also

- $t_n(\ker\nu) = \ker\nu$.
- $t_n E_f = c_n E_f$.
- $\mu(f)$ is a nonzero multiple of $\nu^*(\omega)$, where ω is the invariant differential of E_f .
- $E_f \cong \mathbb{C}/\Lambda_f$, where

$$\Lambda_f := \Big\{ \int_{\tau_0}^{\gamma \tau_0} f(z) dz \, \big| \, \gamma \in \Gamma_0(N) \Big\}$$

• $L(E_f, s)$ equals to L(f, s) except at finitely many primes dividing N.

Proof. Let \mathcal{T} be the commutative \mathbb{Q} -subalgebra of $\operatorname{End}_{\mathbb{Q}}(J_0(N)) := \operatorname{End}(J_0(N)) \otimes \mathbb{Q}$ generated by all t_n . Clearly \mathcal{T} can be embedded into $M_g(\mathbb{Q})$, hence $\dim_{\mathbb{Q}}\mathcal{T}$ is finite.

Let \mathcal{N} be the nilradical ideal of \mathcal{T} , then by Wedderburn's theorem,

$$\mathcal{T}\cong(k_1\oplus\cdots\oplus k_r)\oplus\mathcal{N},$$

for some number fields k_1, \ldots, k_r . One has

$$t_n^*(\mu(f)) = \mu(T_n(f)) = c_n \mu(f).$$

Hence the following map:

$$\rho: \mathcal{T} \to \mathbb{Q}, t_n \mapsto c_n$$

is a homomorphism as \mathbb{Q} algebras. Clearly $\rho(\mathcal{N}) = 0$, hence WLOG, assume $\rho(k_1) = \mathbb{Q}$, which implies $k_1 \cong \mathbb{Q}$ and ρ is an isomorphism. One obtains an ideal $I := (k_2 \oplus \cdots \oplus k_r) \oplus \mathcal{R}.$

Now define A_f be the abelian subvariety which is the sum of all $\alpha(J_0(N))$ for all $\alpha \in I \cap \operatorname{End}(J_0(N))$. It can be proved t_n is defined over \mathbb{Q} (Ref. Knapp, Elliptic curves §11, Ch.XI), hence A_f is defined over \mathbb{Q} . Hence one can form the quotient (E_f, ν) of $J_0(N)$ by A (i.e. $\nu : J_0(N) \to E_f$ with ker $\nu = A_f$) and everything is defined over \mathbb{Q} . Since I is an ideal, it is easy to see $\beta A_f \subseteq A_f$ for any $\beta \in \mathcal{T} \cap \operatorname{End}(J_0(N))$. In particular $t_n(A_f) \subseteq A_f$. Hence ker $(\nu \circ t_n) \supseteq$ ker ν , so by universal mapping property, one has the following commutative diagram:

$$J_0(N) \xrightarrow{\nu} E_f \tag{4.2}$$

$$\downarrow_{\nu \circ t_n} \qquad \downarrow_{\exists \overline{t}_n}$$

$$E_f$$

Hence t_n acts on E_f as \overline{t}_n . From the definition of ρ , one has $t_n - \rho^{-1}(c_n) \in I$ and $\rho^{-1}(c_n) - [c_n] \in I$, hence $t_n - [c_n] \in I \cap \operatorname{End}(J_0(N))$. So $t_n - [c_n]$ acts as 0 on E_f . I.e. $t_n(E_f) = [c_n]E_f$.

Let *m* be the largest integer for which $k_1 \mathcal{N}^m \neq 0$. Let $0 \neq \beta \in k_1 \mathcal{N}^m$. WLOG, assume $\beta \in \text{End}(J_0(N))$ (after multiplying some $m \in \mathbb{N}$ since $\beta(J_0(N)) = m\beta(J_0(N))$). For any $\alpha \in I$, $\beta \alpha = 0$ since $k_1 k_j = 0$ for any $j \neq 1$ and $\mathcal{R}^m \mathcal{R} = 0$. Therefore $\beta(A_f) = 0$. Since $\beta(J_0(N)) \neq 0$ because $\beta \neq 0$, hence $A_f \neq J_0(N)$, i.e. dim $E_f > 0$.

Since dim $E_f \neq 0$, $\exists \omega' \in \Omega(E_f)$ which is non-zero. $\nu : J_0(N) \to E_f$ induces $\nu^* : \Omega(E_f) \to \Omega(J_0(N))$. ν^* is injective. From (4.2), one has

$$\nu^* \circ \overline{t}_n^* = t_n^* \circ \nu^*.$$

Since $\overline{t}_n = [c_n], \ \overline{t}_n^* = c_n$, i.e.

$$t_n^*(\nu^*(\omega')) = c_n \nu^*(\omega').$$

Put $f' = \mu^{-1}(\nu^*(\omega'))$, then

$$\mu(T_n f') = t_n^*(\mu(f')) = t_n^*(\nu^*(\omega')) = c_n \nu^*(\omega') = c_n \mu(f').$$

 So

$$T_n f' = c_n f'.$$

Suppose dim $E_f > 1$, then one has linearly independent ω' and ω'' . Let $f'' = \mu^{-1}(\nu^*(\omega''))$, we have f'' and f' are linearly independent and

$$T_n f'' = c_n f''.$$

This is a contradiction. Hence dim E = 1.

Uniqueness. Suppose A' and (E', ν') are also satisfies the theorem with invariant differential ω' . Then $\nu'^*(\omega')$ and $\nu^*(\omega)$ are multiples of each other. Hence they annihilate the same subset of \mathfrak{J} — the tangent space of A' and A. Since A_f and A' are the connected Lie subgroup of $J_0(N)$ with same Lie subalgebra, $A_f = A'$.

 $J_0(N) \cong \mathbb{C}^g / \Lambda$, where Λ has basis

$$l_k = \begin{pmatrix} \int_{c_k} f_1 dz \\ \vdots \\ \int_{c_k} f_g dz \end{pmatrix}, \ k = 1, \dots, 2g,$$

where c_1, \ldots, c_{2g} are a basis of $H_1(X_0(N)(\mathbb{C}), \mathbb{Z})$ over \mathbb{Z} . Write $f = \sum_j r_j f_j$, and consequently

$$\begin{split} \mu(f)(l_k) = &< \mu(f), l_k > = <\sum_j r_j \mu(f_j), l_k > =\sum_j r_j < dz_j, l_k > \\ &= \sum_j r_j \int_{c_k} f_j dz = \int_{c_k} f dz. \end{split}$$

Hence

$$\mu(f)(\Lambda) = \Lambda_f$$

Let $\mathfrak{a} \subset \mathfrak{J}$ be the tangent space of A.

$$\begin{aligned} \ker \mu(f) &= \left\{ u \in \mathfrak{J} \mid < \nu^*(\omega), u >= 0 \right\} \\ &= \left\{ u \in \mathfrak{J} \mid < \omega, (d\nu)(u) >= 0 \right\} \\ &= \left\{ u \in \mathfrak{J} \mid d\nu(u) = 0 \right\} \\ &= \ker(d\nu) \\ &= \mathfrak{a}. \end{aligned}$$

From Lie theory, one has exponential map $\mathfrak{J} \to J_0(N)$ with kernel Λ , whose restriction to \mathfrak{a} is the exponential map $\mathfrak{a} \to A$. Since A is compact, $\mathfrak{a} \cap \Lambda$ is a lattice in \mathfrak{a} of rank 2g - 2. Let x_1, \ldots, x_{2g-2} be a \mathbb{Z} -basis for it and adding x_{2g-1} and x_{2g} to make $\Lambda' = \sum_{j=1}^{2g} \mathbb{Z}x_j$ has rank 2g. Hence Λ' has finite index m in Λ . So $\Lambda \subset \frac{1}{m}\Lambda'$. So one has

$$\mathbb{C} = \mu(f)(\mathfrak{J}) = \mu(f)(\sum \mathbb{R}x_j) = \mu(f)(\mathbb{R}x_{2g-1} + \mathbb{R}x_{2g}).$$

Hence $\mu(f)(x_{2g-1})$ and $\mu(f)(x_{2g})$ are linearly independent over \mathbb{R} . On the other hand

$$\mu(f)(\mathbb{Z}x_{2g-1} + \mathbb{Z}x_{2g}) = \mu(f)(\sum_{j} \mathbb{Z}x_{j})$$
$$= \mu(f)(\Lambda')$$
$$\subseteq \mu(f)(\Lambda)$$
$$\subseteq \mu(f)(\frac{1}{m}\Lambda') = \mu(f)(m^{-1}\mathbb{Z}x_{2g-1} + m^{-1}\mathbb{Z}x_{2g}).$$

Hence one concludes Λ_f is a free abelian subgroup of \mathbb{C} of rank 2 over \mathbb{Z} that spans \mathbb{C} over \mathbb{R} , i.e. Λ_f is a lattice in \mathbb{C} .

Hence $E = \mathbb{C}/\Lambda_f$ is an elliptic over \mathbb{C} . One has the map

$$\delta: \mathfrak{J} \xrightarrow{\mu(f)} \mathfrak{J}/\mathfrak{a} \cong \mathbb{C} \to \mathbb{C}/\Lambda_f = E$$

 $\ker(\delta) = \mu(f)^{-1}(\Lambda_f) = \mathfrak{a} + \Lambda$. Hence δ factors through the exponential map exp : $\mathfrak{J} \to J_0(N)$:

$$\delta = \epsilon \circ \exp,$$

for some holomorphic homomorphism $\epsilon : J_0(N) \to E$ with kernel $\exp(\mathfrak{a} + \Lambda) = A$. Hence ϵ is a morphism over \mathbb{C} . The universal property says the following diagram commutes:

Since $\ker e = \ker \nu = A$, $\ker \theta$ is trivial, hence $E_f \cong E$.

For the equality of $L(E_f, s)$ and L(f, s), this is a consequence of Eichler-Shimura congruence. (Ref. Diamond & Shurman A first course in modular forms Chapter 8). One has the following result: Let E be an elliptic curve defined over \mathbb{Q} and E has good reduction over prime p, then

$$a_p(E) = \sigma_{p,*} + \sigma_p^*$$

as endomorphisms on $\operatorname{Pic}^{0}(\widetilde{E})$. From Eichler-Shimura congruence:

$$\begin{array}{ccc} \operatorname{Pic}^{0}(X_{0}(N)) & \stackrel{T_{p}}{\longrightarrow} & \operatorname{Pic}^{0}(X_{0}(N)) \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{Pic}^{0}(\widetilde{X}_{0}(N)) & \stackrel{}{\xrightarrow{\sigma_{p,*}+\sigma_{p}^{*}}} & \operatorname{Pic}^{0}(\widetilde{X}_{0}(N)) \end{array}$$

As we proved T_p acts on \widetilde{E}_f as $[c_p]$, hence $[c_p] = [a_p(E_f)]$. Since $\operatorname{End}(E_f)$ has no zero divisors, $a_p(E_f) = c_p$. $\left[\text{ for } T_p \text{ acts in Pic}^0(X_1(N)) \text{ as follows:} \right]$

$$T_p[E,Q] = \sum_C [E/C,Q+C]$$

where C runs through all subgroup of E of order p such that $C \cap \langle Q \rangle$ is trivial. In particular if $p \nmid N$, then the sum runs through all such subgroups. Let C_0 be the kernel of the reduction map $E[p] \to \overline{E}[p]$, where E is defined over $\overline{\mathbb{Q}}$ (with ordinary reduction at $\mathfrak{p} \mid p$, which is not necessary). Then

Lemma 4.1.1.
$$[\overline{E/C}, \overline{Q+C}] = \begin{cases} [\overline{E}^{\sigma_p}, \overline{Q}^{\sigma_p}] & C = C_0 \\ [\overline{E}^{\sigma_p^{-1}}, [p]\overline{Q}^{\sigma_p^{-1}}] & C \neq C_0 \end{cases}$$

Let MS(N) be the moduli space of $X_1(N)$, one has the following diagram:

and

Under $X_0(N)$, is trivial, hence one obtains $\sigma_{p,*} + \sigma_p^*$.

One has the modular parametrization:

$$\phi: X_0(N) \to E_f.$$

 $\sigma_{p,*} + \sigma_p^*$ commutes with ϕ_* , hence $\sigma_{p,*} + \sigma_p^*$ on $\operatorname{Pic}^0(\widetilde{X}_0(N))$ becomes $\sigma_{p,*} + \sigma_p^*$ on $\operatorname{Pic}^0(\widetilde{E}_f)$

4.2 CM points

The converse of Eichler-Schimura theorem is also true. The converse is a deep result due to Wiles, Taylor etc. From their results, for any elliptic curve E/\mathbb{Q} of conductor N, $\exists f \in S_2(N)$ which is a new form such that E is isogenous to E_f over \mathbb{Q} , where E_f is constructed from f via Eichler-Shimura construction and consequently $L(E_f, s) = L(E, s) = L(f, s)$. Hence it is often enough to study E_f for some newform $f \in S_2(N)$. In such case and when N is square free, one has an explicit modular parametrisation:

$$\Phi_N: X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^* \xrightarrow{\Phi_1} \mathbb{C} / \Lambda_f \xrightarrow{\Phi_W} E_f(\mathbb{C}),$$

where Φ_1 is given by

$$\tau\mapsto \int_{i\infty}^\tau 2\pi i f dz,$$

and Φ_W is the Weierstrass uniformisation. Φ_N can be used to construct algebraic points on E defined over some abelian extension of \mathbb{Q} . Class field theory tells us where these points, which are called Heegnar points, lie exactly. To construct such points, one starts with a quadratic imaginary field $K = \mathbb{Q}(\sqrt{D})$ for some square free negative integer D. It is a well-known fact that its ring of integers \mathcal{O}_K is

$$\mathcal{O}_K = \mathbb{Z}[\omega_D]$$
, where $\omega_D = \begin{cases} \sqrt{D} & D \not\equiv 1 \pmod{4} \\ \frac{1+\sqrt{D}}{2} & D \equiv 1 \pmod{4}. \end{cases}$

 \mathcal{O}_K is the maximal order of K (i.e. its conductor is 1) and any order \mathcal{O} of K can be written as

$$\mathcal{O} = \mathbb{Z} \oplus c\mathbb{Z}\omega_D,$$

for some integer c > 0 and vice versa. One as a bijection

$$\operatorname{Ell}(\mathcal{O}) := \left\{ \text{ isomorphism classes of } E/\mathbb{C} \text{ with CM of } \mathcal{O} \right\} \xleftarrow{\cong} \operatorname{Pic}(\mathcal{O}),$$

where $\operatorname{Pic}(\mathcal{O})$ is the Picard group, which has several equivalent definitions, here it is defined as the group generated by all invertible fractional \mathcal{O} -ideals prime to c (hence invertible) modulo the subset of principal \mathcal{O} -ideals. It can be proved that $\operatorname{Pic}(\mathcal{O})$ is finite and its order is

$$h(\mathcal{O}) = \frac{h(\mathcal{O}_K)f}{[\mathcal{O}_K^* : \mathcal{O}^*]} \prod_{p|c} \left(1 - \left(\frac{d_K}{p}\right)\frac{1}{p}\right)$$

It can be proved that

$$\operatorname{Pic}(\mathcal{O}) \cong I_K(c)/P_{K,\mathbb{Z}}(c),$$

where $P_{K,\mathbb{Z}}(f)$ is the subgroup of $I_K(c)$ (the group of all \mathcal{O}_K -ideals prime to c) generated by principal ideals of the form $\alpha \mathcal{O}_K$ for some $\alpha \in \mathcal{O}_K$ such that $\alpha \equiv a \mod (c\mathcal{O}_K)$ for some integer a prime to $c(\text{Cox}, \text{ Primes of forms } X^2 + nY^2, \S7)$. Class field theory gives the following result:

Theorem 4.2.1. For any proper fractional \mathcal{O} -ideal $\mathfrak{a}, K(j(\mathfrak{a}))$ is the ring class field of the order \mathcal{O} , where $j(\mathfrak{a})$ is the *j*-invariant (\mathfrak{a} can be naturally

identified with a lattice in $\mathbb C$). The Artin map:

$$\varphi: \mathcal{O} \xrightarrow{\cong} \mathbf{Gal}(K(j(\mathfrak{a}))/K)$$

is defined as

 $\mathfrak{a} \mapsto \sigma_{\mathfrak{a}},$

where

 $\sigma_{\mathfrak{a}}(j(\mathfrak{b})) = j(\overline{\mathfrak{a}}\mathfrak{b}),$

for any fractional O-ideal \mathfrak{a} and \mathfrak{b} prime to c.

The class field theory is as follows:

Let L/K be an abelian extension and zfrakm be a modulus divisible by all primes of K (including infinite primes) ramified in L, then the Artin map $\varphi : I_K(\mathfrak{m}) \to \operatorname{Gal}(L/K)$ is surjective and if the exponents of finite primes in \mathfrak{m} are sufficiently large, $\operatorname{ker}(\varphi)$ is a congruence subgroup for \mathfrak{m} , i.e. $P_{K,1}(\mathfrak{m}) \subset \operatorname{ker}(\varphi) \subset I_K(\mathfrak{m})$, and one has the isomorphism:

$$I_K(\mathfrak{m})/\operatorname{ker}(\varphi) \xrightarrow{\cong} \operatorname{Gal}(L/K).$$

Conversely, for any modulus \mathfrak{m} of K and for any congruence subgroup H for \mathfrak{m} (i.e. $P_{K,1}(\mathfrak{m}) \subset H \subset I_K(\mathfrak{m})$), there exists a unique abelian extension L/K whose ramified primes (including infinite primes) divide \mathfrak{m} and the Artin map induces an isomorphism:

$$I_K(\mathfrak{m})/H \xrightarrow{\cong} \operatorname{Gal}(L/K).$$

In particular, let $\mathfrak{m} = f \mathcal{O}_K$ for some positive integer f, clearly

$$P_{K,1}(f) \subset P_{K,\mathbb{Z}}(f) \subset I_K(f),$$

hence class field theory guarantees the unique existence of the abelian extension H_f/K such that

$$I_K(f)/P_{K,\mathbb{Z}} \cong \operatorname{Gal}(H_f/K).$$

Furthermore, if K is a quadratic imaginary field, then this is equivalent saying each order corresponds uniquely an abelian extension of K which is called the ring class field.

This can also be interpreted in the following way via CM: $\operatorname{Pic}(\mathcal{O})$ acts on $\operatorname{Ell}(\mathcal{O})$ as follows: for any \mathfrak{a} whose norm $(\#\mathcal{O}/\mathfrak{a})$ is prime to the conductor c of \mathcal{O} ,

$$[\mathfrak{a}] \cdot [\mathbb{C}/\Lambda] := [\mathbb{C}/\mathfrak{a}^{-1}\Lambda].$$

This is well-defined: $\operatorname{End}(\mathbb{C}/\Lambda) = \{ \alpha \in \mathbb{C} \mid \alpha \Lambda \subseteq \Lambda \} = \{ \alpha \mathfrak{a}^{-1}\Lambda \subseteq \mathfrak{a}^{-1}\Lambda \} =$ $\operatorname{End}(\mathbb{C}/\mathfrak{a}^{-1}\Lambda),$ which implies $[\mathfrak{a}] \cdot [\mathbb{C}/\Lambda] \in \operatorname{Ell}(\mathcal{O}).$ Further, $\mathbb{C}/\mathfrak{a}^{-1}\Lambda \cong \mathbb{C}/\mathfrak{a}'^{-1}\Lambda \iff$ $\exists a \in \mathbb{C},$ such that $\mathfrak{a}^{-1}\Lambda = a(\mathfrak{a}')^{-1}\Lambda \iff \Lambda = a\mathfrak{a}(\mathfrak{a}')^{-1}\Lambda = a^{-1}\mathfrak{a}^{-1}\mathfrak{a}'\Lambda \iff$ $a\mathfrak{a}(\mathfrak{a}')^{-1}, a^{-1}\mathfrak{a}^{-1}\mathfrak{a}' \subseteq \mathcal{O}$ (by the definition of proper ideals) $\iff a\mathfrak{a} \subseteq \mathfrak{a}',$ and $\mathfrak{a}' \subseteq$ $a\mathfrak{a} \iff a\mathfrak{a} = \mathfrak{a}' \iff \mathfrak{a} \cong \mathfrak{a}'$ as \mathcal{O} -modules.

The action is transitive since for any \mathbb{C}/Λ with CM \mathcal{O} , Λ is homothetic to a lattice contained in K and $\mathbb{C}/\Lambda' \cong \mathbb{C}/\Lambda(\Lambda'\Lambda^{-1})$. Since one can always assume Λ and \mathfrak{a} are in K, the action of $\operatorname{Pic}(\mathcal{O})$ and that of $G_K := \operatorname{Gal}(\overline{K}/K)$ on $\operatorname{Ell}(\mathcal{O})$ commute with each other. One can define a group homomorphism:

$$\eta: G_K \to \operatorname{Pic}(\mathcal{O}), \ (\mathbb{C}/\Lambda)^{\sigma} = \eta(\sigma) \cdot (\mathbb{C}/\Lambda), \ \forall \sigma \in G_K.$$

For some other lattice Λ such that $\mathbb{C}/\Lambda \in \text{Ell}(\mathcal{O})$ which defines η' , since $\text{Pic}(\mathcal{O})$ acts on $\text{Ell}(\mathcal{O})$ transitively, $[\mathfrak{b}] \cdot [\mathbb{C}/\Lambda] = [\mathbb{C}/\Lambda']$ for some $\mathfrak{b} \in \text{Pic}(\mathcal{O})$ prime to \mathcal{O} . Hence

$$([\mathfrak{b}] \cdot [\mathbb{C}/\Lambda])^{\sigma} = [\mathfrak{b}]([\mathbb{C}/\Lambda])^{\sigma} = [\mathfrak{b}] \cdot \eta(\sigma) \cdot (\mathbb{C}/\Lambda) = [\mathfrak{b}\eta(\sigma)] \cdot (\mathbb{C}/\Lambda).$$

On the other hand

$$(\mathbb{C}/\Lambda')^{\sigma} = \eta'(\sigma)(\mathbb{C}/\Lambda') = \eta'(\sigma) \cdot ([\mathfrak{b}] \cdot (\mathbb{C}/\Lambda)) = [\eta'(\sigma)\mathfrak{b}] \cdot (\mathbb{C}/\Lambda).$$

So from the commutivity of $\operatorname{Pic}(\mathcal{O})$,

$$[\mathfrak{b}\eta(\sigma)](\mathbb{C}/\Lambda) = [\mathfrak{b}\eta'(\sigma)](\mathbb{C}/\Lambda)$$

The result proved earlier shows that $\mathfrak{b}\eta'(\sigma) \cong \mathfrak{b}\eta(\sigma)$ as \mathcal{O} -module, i.e. $\eta'(\sigma) = \eta(\sigma)$ in $\operatorname{Pic}(\mathcal{O})$. It is easy to verify η is a group homomorphism.

The class field theory tells us there is an abelian extension H_c/K which is unramified for all prime $\mathfrak{p} \nmid c$ whose Galois group $\operatorname{Gal}(H_c/K) \cong \operatorname{Pic}(\mathcal{O})$. One has the reciprocity map:

$$\varphi_c : \operatorname{Pic}(\mathcal{O}) \to G_c := \operatorname{Gal}(H_c/K), \, \mathfrak{p} \mapsto \sigma_{\mathfrak{p}}, \, \forall \mathfrak{p} \nmid c.$$

Let $H := (\overline{K})^{\ker \eta}$, Galois theory tells us H/K is an abelian (hence Galois) extension.

Lemma 4.2.2. $H = H_c$.

Proof. Clearly $j(E) \in H$ by the definition of H for any $E \in \text{Ell}(\mathcal{O})$. Hence each such E is defined over some abelian extension L/K. Fix such an E. From class field theory (using uniqueness) and Galois theory, it is enough to show η is onto. Let \mathfrak{p} be a prime in K unramified in H/K such that E has good reduction at all the primes of *H* above \mathfrak{p} and \mathfrak{p} splits in K/\mathbb{Q} and $\mathfrak{p} \nmid j(A') - j(A'')$ for all distinct A, A'' in Ell(\mathcal{O}). For the set of such primes (has Dirichlet density 1 (Only finitely many primes are excluded) and hence), the corresponding Frobenius elements generate Gal(H/K).

Let \mathfrak{P} be a prime of L over \mathfrak{p} such that E/L has the good reduction $\overline{E}_{\mathfrak{P}}$. The inclusion $\mathfrak{p} \to \mathcal{O}$ induces θ : $E \cong \mathbb{C}/\Lambda = \mathbb{C}/\Lambda \mathcal{O} = \mathbb{C}/\Lambda \mathcal{O}^{-1} \to \mathbb{C}/\Lambda \mathfrak{p}^{-1}$, whose degree is $N\mathfrak{p} = p = \mathcal{O}_K/\mathfrak{p} = \mathcal{O}/\mathcal{O} \cap \mathfrak{p}$ since \mathfrak{p} is not inert in K/\mathbb{Q} . Their reduction at $\mathfrak{P}, \overline{\theta} : \overline{E} \to \overline{\mathfrak{p} \cdot E}$ has degree p, whose duality is purely inseparable, hence the only possibility is the Frobenius map: $\widehat{\overline{\theta}} : \overline{E/E[\mathfrak{p}]} \to \overline{E/E[\mathfrak{p}]}^{(p)} = \overline{E}$. Hence

$$E \equiv (\mathfrak{p} \cdot E)^{(p)} = \sigma_{\mathfrak{p}}(\mathfrak{p} \cdot E) = \mathfrak{p} \cdot (\sigma_{\mathfrak{p}}(E)) \pmod{\mathfrak{P}}.$$

Hence $\eta(\sigma_{\mathbf{p}}^{-1}) = [\mathbf{p}]$. To prove $\widehat{\overline{\theta}}$ is purely inseparable, $\mathfrak{M} / \mathfrak{M} /$

For $\tau \in \mathcal{H}$, define

$$\mathcal{O}_{\tau} := \{ \gamma \in M_2(\mathbb{Z}) \cap \mathrm{GL}_2(\mathbb{Q}), \, \gamma \tau = \tau \} \cup \{ 0_{2 \times 2} \}.$$

It is easy to see

$$\mathcal{O}_{\tau} = \{ \gamma \in M_2(\mathbb{Z}) \mid \gamma \text{ has eigenvectors } \begin{pmatrix} \tau \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} \overline{\tau} \\ 1 \end{pmatrix} \}.$$
(4.3)

For each $\gamma \in \mathcal{O}_{\tau}$, define z_{γ} to be the eigenvalue associated with the eigenvector $\begin{pmatrix} \tau \\ 1 \end{pmatrix}$, consequently the map $\gamma \mapsto z_{\gamma}$ gives $\mathcal{O}_{\tau} \hookrightarrow \mathbb{C}$. Under this identification, one has **Lemma 4.2.3.** $\mathcal{O}_{\tau} \cong \operatorname{End}(E_{\tau})$, where $E_{\tau} = \mathbb{C}/\langle 1, \tau \rangle, \tau \in \mathcal{H}$.

Proof. From (4.3), $z_{\gamma}(<1,\tau>) \subseteq <1,\tau>$, hence induces an endomorphism σ_{γ} of E_{τ} . The map $\gamma \mapsto \sigma_{\gamma}$ is clearly injective and surjective.

Define $CM(\mathcal{O}) = \{\tau \in \mathrm{SL}_2(\mathbb{Z}) \setminus \mathcal{H} \mid \mathcal{O}_\tau = \mathcal{O}\}$. The class group $\operatorname{Pic}(\mathcal{O})$ acts on $CM(\mathcal{O})$ as follows: for any class $\mathfrak{b} \in \operatorname{Pic}(\mathcal{O})$, it can be represented by an integral ideal $B \subset \mathcal{O}$ such that \mathcal{O}/B is cyclic (Cox, P. 236). For any $\tau \in CM(\mathcal{O}), < 1, \tau > B^{-1}$ is a lattice, hence is homothetic to $< 1, \tau' >$ for some $\tau' \in \operatorname{SL}_2(\mathbb{Z}) \setminus \mathcal{H}$, define $\mathfrak{b} * \tau = \tau'$. It is easy to see * is an action and compatible with the action on $\operatorname{Ell}(\mathcal{O})$. From the class field theory, one has for any prime $[\mathfrak{p}] \in \operatorname{Pic}(\mathcal{O})$,

$$j(\mathfrak{b} * \tau) = j(\mathfrak{p} \cdot \mathbb{C}/\langle 1, \tau \rangle) = j((\mathbb{C}/\langle 1, \tau \rangle)^{\sigma_{\mathfrak{p}}}) = j(\mathbb{C}/\langle 1, \tau \rangle)^{\sigma_{\mathfrak{p}}} = j(\tau)^{\sigma_{\mathfrak{p}}} = \varphi(\mathfrak{p})j(\tau)$$

The main theorem of CM asserts for any $\tau \in \mathcal{H} \cap K$ where K is a quadratic imaginary field, $j(\tau) \in H$, where H/K is the ring class field associated with the order \mathcal{O}_{τ} . Define $\mathcal{O}_{\tau,N} := \mathcal{O}_{\tau} \cap \mathcal{O}_{N\tau}$ and let Φ_N and E_f be as before, one has

Theorem 4.2.4. For any $\tau \in \mathcal{H} \cap K$, $\Phi_N(\tau) \in E_f(H)$, where H is the ring class field with respect to $\mathcal{O}_{\tau,N}$.

Proof. $j(\tau)$ and $j(N\tau)$ are in H. Hence $\Phi_N(\tau)$ is the image of a point in $X_0(N)(H)$ and Φ_N is defined over \mathbb{Q} .

Remark One can easily prove $\mathcal{O}_{\tau,N} = \{\gamma \in M_0(N) \mid \gamma\tau = \tau\} \cup \{0_{2\times 2}\}$, where $M_0(N) \subset M_2(\mathbb{Z})$ whose element is upper triangular modulo N.

(The following data are extracted from Darmon's Rational points over modular elliptic curves). Take N = 11, the elliptic curve with this conductor is (the dimension of $S_2(11)$ is 1):

$$y^2 + y = x^3 - x^2 - 10x - 20$$

The order with smallest discriminant embedded in $M_0(11)$ is $\mathcal{O}_K = \mathbb{Z}(\frac{1+\sqrt{-7}}{2}) \subset K := \mathbb{Q}(\sqrt{-7})$ which has class number 1. \mathcal{O}_K in $M_0(11)$ is $\mathbb{Z} + \mathbb{Z}\begin{pmatrix} -4 & -2 \\ 11 & 5 \end{pmatrix}$ whose fixed point is $\tau = \frac{-9+\sqrt{-7}}{22}$, which corresponds to a point $(\frac{1-\sqrt{-7}}{2}, -2 - 2\sqrt{-7})$ in $E(\mathbb{C})$ to 25 decimal digits of accuracy.

4.3 Euler System

Let K be an imaginary quadratic extension of \mathbb{Q} which is not $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{-3})$. For any positive integer λ , denote K_{λ} to be the ring class field of K with conductor λ . Let E/Q be an elliptic curve of conductor N and ℓ be a fixed prime number satisfying some conditions. One has the following field towers:

$$\begin{array}{c} K_{\lambda} \\ \\ K \\ \\ \\ \mathbb{Q} \end{array}$$

Let Σ be the set of positive integers relative prime to N. Define the set T to be

$$T := \{ \tau_{\lambda} \in \varprojlim H^1(K_{\lambda}, E[\ell^n]) \mid \lambda \in \Sigma \}.$$

Here the projective limit is induced by the natural map $H^1(K_{\lambda}, E[\ell^{n_2}]) \to H^1(K_{\lambda}, E[\ell^{n_1}])$ for any $n_2 \ge n_1$, which is induced by $E[\ell^{n_2}] \to E[\ell^{n_1}]$. *T* is called the 0-th Euler system if for any prime number $\delta \ne 2$ relative prime to *N* (so $\delta \lambda \in \Sigma$) and λ such that the prime divisor δ' of δ in K is unramified in K_{λ} , then

$$\operatorname{cor}_{\delta\lambda/\lambda}(\tau_{\delta\lambda}) = y_{\delta}\tau_{\lambda}$$

where $\operatorname{cor}_{\delta\lambda/\lambda}$ is the corestriction map:

$$H^1(K_{\lambda\delta}, E[\ell^n]) \to H^1(K_{\lambda}, E[\ell^n]),$$

and

$$y_{\delta} = \operatorname{Fr}_{\delta'}^{-1}(x_{\delta} - P_{\delta}(\operatorname{Fr}_{\delta'})) \in \mathbb{Z}[G(K_{\lambda}/K)].$$

Here

$$x_{\delta} := [K_{\delta} : K_1],$$

and $\operatorname{Fr}_{\delta'}$ and P_{δ} are defined as follows: From class field theory, one has Artin map:

$$\theta: I_K^{S(\lambda)}/K_{(\lambda),1} \operatorname{Nm}(I_{K_{\lambda}}^{S(\lambda)}) \xrightarrow{\cong} \operatorname{Gal}(K_{\lambda}/K),$$

we define $\operatorname{Fr}_{\delta'} = \theta(\delta')$. Since δ is a prime number which is not a divisor of N, E has good reduction over δ , $P_{\delta}(X) := X^2 - a_{\delta}X + \delta$ is the characteristic polynomial of the Frobenius automorphism on the Tate module T_q for any prime number $q \neq \delta$.

corestriction map: In functorial way, suppose H is a subgroup of G with finite index. Let M be a G-module, then for any $m \in M^H$,

$$\operatorname{Nm}_{G/H}m := \sum_{[s]\in G/H} sm$$

is independent of the choice of S, and is clearly fixed by G. Hence $Nm_{G/H}$ defines a homomorphism:

$$M^H \to M^G$$
,

which can be extended uniquely to $H^r(H, M) \to H^r(G, M)$, which is called the corestriction map. This map can also be constructed explicitly: One has a natural

map:

$$\operatorname{Ind}_{H}^{G}M \to M, \, \varphi \mapsto \sum_{[s] \in G/H} s\varphi(s^{-1}),$$

which in turn gives

$$H^r(G, \operatorname{Ind}_G^H M) \to H^r(G, M).$$

From Shapiro's lemma, one has the composition:

$$H^r(H,M) \xrightarrow{\cong} H^r(G, \operatorname{Ind}_G^H M) \to H^r(G, M),$$

which is the corestriction map. One has the following property:

$$\operatorname{Cor} \circ \operatorname{Res} = [G : H].$$

Lemma 4.3.1. y_{δ} is independent of the choice of δ' .

Proof. If δ is ramified or inert in K, then δ' is unique. Suppose δ splits in K, then $\delta = \delta' \delta^{\sigma}$, where σ is the complex conjugation.

Since δ is a prime,

$$x_{\delta} = [K_{\delta} : K_1] = \#(\mathcal{O}_K/\delta\mathcal{O}_K)^{\times}/(\mathbb{Z}/\delta\mathbb{Z})^{\times}.$$

On the other hand,

$$\mathcal{O}_K/\delta\mathcal{O}_K = \left(\mathbb{Z} \oplus \frac{1+\sqrt{D}}{2}\mathbb{Z}\right) \Big/ \delta\left(\mathbb{Z} \oplus \frac{1+\sqrt{D}}{2}\mathbb{Z}\right) \cong \mathbb{Z}/\delta\mathbb{Z} \oplus \mathbb{Z}/\delta\mathbb{Z}.$$

 $x_{\delta} = \delta - 1.$

Hence

So

$$y_{\delta} = \operatorname{Fr}_{\delta'}^{-1}(\delta - 1 - \operatorname{Fr}_{\delta'}^{2} + a_{\delta}\operatorname{Fr}_{\delta'} - \delta) = a_{\delta} - \operatorname{Fr}_{\delta'} - \operatorname{Fr}_{\delta'}^{-1}$$

Since $\theta(\delta) = 1$ and $\delta = \delta'(\delta')^{\sigma}$, $\operatorname{Fr}_{\delta'}^{-1} = \operatorname{Fr}_{\delta'^{\sigma}}$, i.e.

$$\operatorname{Fr}_{\delta'} + \operatorname{Fr}_{\delta'}^{-1} = \operatorname{Fr}_{\delta'^{\sigma}} + \operatorname{Fr}_{\delta'^{\sigma}}^{-1}.$$

This proves the independence.

4.4 Basic assumption

Let E/\mathbb{Q} be an elliptic curve of conductor N. Let $K = \mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic field in which all prime factors of N are split. Gross and Zagier prove that if $L'(E/K, 1) \neq 0$, then $\hat{h}(y_k) \neq 0$, where \hat{h} is the Néron-Tate canonical height and $y_k = \operatorname{Tr}_{H_K/K}(y_1)$, where y_1 is a Heegnar point defined over H_K , the Hilbert class field of K. This implies the rank of E(K) is at least 1.

Kolyvagin proves in this case E(K) has rank 1. Here I give the Kolyvagin's main idea in his proof, following Gross.

First, we assume E is not CM over \mathbb{C} . In this case, $\mathbb{Q}(E[p])/\mathbb{Q}$ is Galois and Serre proves $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ for all sufficient large primes p.

By assumption, the order of y_K which is defined over K is infinite. Since E(K) is finitely generated, there are only finitely many integers n such that $y_K = nP$ for some $P \in E(K)$. The argument is as follows: Suppose the rank of E(K) is 2 (similar argument for other cases), which is generated by Q_1 and Q_2 . Ignoring the torsion part, we can assume

$$y_k = b_1 Q_1 + b_2 Q_2.$$

Suppose $y_K = nP$ for some $P \in E(K)$ and $P = a_1Q_1 + a_2Q_2$. Then

$$nP = na_1Q_1 + na_2Q_2 = b_1Q_1 + b_2Q_2.$$

The sum is the direct sum as \mathbb{Z} -modules. Hence

$$b_1 = na_1; \ b_2 = na_2.$$

When y_K is fixed, b_1 and b_2 are fixed and there are only finitely many ways to write a given integer into a product of two integers.

From now on, we assume p is a sufficiently large prime (i.e. to ensure $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) \cong$ $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$) and $y_K \neq pP$ for any $P \in E(K)$.

4.5 Definitions of Selmer groups and Shafarevich groups (for my own reference)

Let K be a number field. Let E and E' be elliptic curves defined over K and $\phi: E \to E'$ be an isogeny defined over K. The sequence

$$0 \to E[\phi] \to E \xrightarrow{\phi} E' \to 0$$

is exact as G_K -modules, where $G_K = \operatorname{Gal}(\overline{K}/K)$. This yields the exact sequence:

$$0 \to E(K)[\phi] \to E(K) \xrightarrow{\phi} E'(K) \xrightarrow{\delta} H^1(G_K, E[\phi]) \to H^1(G_K, E) \xrightarrow{\phi} H^1(G_K, E'),$$

which in turn gives the exact sequence:

$$0 \to E'(K)/\phi(E(K)) \xrightarrow{\delta} H^1(G_K, E[\phi]) \to H^1(G_K, E)[\phi] \to 0.$$

For any place \mathfrak{p} of K, the inclusion $G_{\mathfrak{p}} := \operatorname{Gal}(\overline{K}_{\mathfrak{p}}/K_{\mathfrak{p}}) \subset G_K$ and $E(\overline{K}) \subset E(\overline{K}_{\mathfrak{p}})$ gives the restriction map $H^1(G_K, E[\phi]) \to H^1(G_{\mathfrak{p}}, E)$. The ϕ -Selmer group of E/Kis defined by

$$S^{\phi}(E/K) := \ker \Big\{ H^1(G_K, E[\phi]) \to \prod_{\mathfrak{p}} H^1(G_{\mathfrak{p}}, E) \Big\}.$$

The Shafarevich group $\mathfrak{SH}(E/K)$ is defined by

$$\mathfrak{SH}(E/K) := \ker \Big\{ H^1(G_K, E) \to \prod_{\mathfrak{p}} H^1(G_{\mathfrak{p}}, E) \Big\}.$$

Further by these definitions, we have the exact sequence

$$0 \to E'(K)/\phi(E(K)) \to S^{\phi}(E/K) \to \mathfrak{S}\mathfrak{H}(E/K)[\phi] \to 0$$

In particular, let $\phi = [p]$, we have the exact sequence

$$0 \to E(K)/pE(K) \xrightarrow{\delta} S^p(E/K) \to \mathfrak{S}\mathfrak{H}(E/K)[p] \to 0.$$
(4.4)

Here δ is the connection map induced from the exact sequence $0 \to E[p] \to E \xrightarrow{[p]} E \to 0$.

4.6 Kolyvagin's proof

Kolyvagin actually proves the following result: Under the conditions mentioned above, $S^p(E/K)$ is cyclic and generated by δy_K . Then the exact sequence (4.4) asserts E(K) has rank 1 and $\mathfrak{SH}(E/K)[p]$ is trivial.

1. Construct cohomology classes $c(n) \in H^1(G_K, E[p])$ based on Heegnar points of conductor *n* prime to *N*. Assume $\mathcal{O}_K^{\times} = \pm 1$. Take an ideal $\mathcal{N} \subset \mathcal{O}_K$ such that $\mathcal{O}/\mathcal{N} \cong \mathbb{Z}/N\mathbb{Z}$.

Take an order $\mathcal{O}_n := \mathbb{Z} + n\mathcal{O}_K$. Define $\mathcal{N}_n := \mathcal{N} \cap \mathcal{O}_n$, which is an invertible \mathcal{O}_n -ideal. This is because $\operatorname{Nm}(\mathcal{N}) = N$ which is prime to n, i.e. \mathcal{N} is an \mathcal{O}_K -ideal prime to n, and hence \mathcal{N}_n is an \mathcal{O}_n -ideal prime to n with same norm, which also implies \mathcal{N}_n is also invertible. See Cox p144.

The isogeny $\mathbb{C}/\mathcal{O}_n \to \mathbb{C}/\mathcal{N}_n^{-1}$ with kernel $\mathcal{O}_n/\mathcal{N}_n \cong \mathbb{Z}/N\mathbb{Z}$ defines a point x_n on $X_0(N)$ according to the moduli interpretation. x_n is defined over K_n , the ring class field of modulus $n\mathcal{O}_K$. We have the following diagram:

$$\begin{array}{c|c}
K_n \\
(\mathcal{O}_K/n\mathcal{O}_K)^{\times}/(\mathbb{Z}/n\mathbb{Z})^{\times} \\
K_1 \\
\operatorname{Pic}(\mathcal{O}_K) \\
K \\
<1,\tau > \\
\mathbb{Q}
\end{array}$$

The diagram comes from class field theory. $Gal(K_n/K_1)$ comes from the following two exact sequences:

$$0 \to I_K(n) \cap P_K/P_{K,\mathbb{Z}}(n) \to I_K(n)/P_{K,\mathbb{Z}}(n) = \operatorname{Pic}(\mathcal{O}_n) \to I_K/P_K = I_K(1)/P_{K,\mathbb{Z}}(n) = \operatorname{Pic}(\mathcal{O}_K) \to 0$$

and when $\mathcal{O}_K^{\times} = \pm 1$,

$$1 \to (\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathcal{O}_K/n\mathcal{O}_K)^{\times} \to I_K(n) \cap P_K/P_{K,\mathbb{Z}}(n) \to 1,$$

where $P_{K,\mathbb{Z}}(n)$ is the set of principle ideas \mathfrak{p} satisfying $\mathfrak{p} \equiv a \pmod{n}$ for some $a \in \mathbb{Z}$.

Here we add some background on Heegnar points. A Heegnar corresponds

to pairs (E, E') of two N-isogenous elliptic curves with the same \mathcal{O} of complex multiplications. From the moduli interpretation of $X_0(N)$, such pair determines a point y on $X_0(N)$. Such a point can also be identified with $y = (\mathcal{O}, \mathbf{n}, [\mathfrak{a}])$, where \mathbf{n} is a proper (hence invertible) \mathcal{O} -ideal such that \mathcal{O}/\mathbf{n} is cyclic with order N and $[\mathfrak{a}]$ denotes an element in the class group of \mathcal{O} . One has the natural map $E = \mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{an}^{-1} = E'$ with kernel $\mathfrak{an}^{-1}/\mathfrak{a} \cong \mathbb{Z}/N\mathbb{Z}$. To find the real point, choose an oriented basis $< \omega_1, \omega_2 >$ of \mathfrak{a} such that $\mathfrak{an}^{-1} = < \omega_1, \omega_2/N >$, and ycorresponds to ω_1/ω_2 .

The conductor of y is the conductor of \mathcal{O} . For the complex conjugation τ , one has

$$(\mathcal{O},\mathfrak{n},[\mathfrak{a}])^{\tau}=(\mathcal{O},\mathfrak{n}^{\tau},[\mathfrak{a}^{\tau}]),$$

since τ is continuous. Note $[\mathfrak{a}^{\tau}] = [\mathfrak{a}]^{-1}$

Let K_c be the ring of class field corresponding to the conductor of \mathcal{O} . Then one has the Artin map: θ : $\operatorname{Pic}(\mathcal{O}) \to \operatorname{Gal}(K_c/K)$, and

$$(\mathcal{O},\mathfrak{n},[\mathfrak{a}])^{ heta([\mathfrak{b}])} = (\mathcal{O},\mathfrak{n},[\mathfrak{a}\mathfrak{b}^{-1}]) = (\mathcal{O},\mathfrak{n},[\mathfrak{a}\mathfrak{b}^{ au}]).$$

For the Fricket involution w_N ,

$$w_N(\mathcal{O},\mathfrak{n},[\mathfrak{a}]) = (\mathcal{O},\mathfrak{n}^{\tau},[\mathfrak{a}\mathfrak{n}^{-1}] = (\mathcal{O},\mathfrak{n}^{\tau},[\mathfrak{a}\mathfrak{n}^{\tau}])$$

We also have the Hecke operator T_{ℓ} on y with prime number $\ell \nmid N$ and (c, N) = 1,

in this case

$$T_{\ell}(\mathcal{O}, \mathfrak{n}, [\mathfrak{a}]) = \sum_{\mathfrak{a}/\mathfrak{b} = \mathbb{Z}/\ell\mathbb{Z}} (\mathcal{O}_{\mathfrak{b}} := \mathrm{End}(\mathfrak{b}), \mathfrak{n}_{\mathfrak{b}} := \mathfrak{n}\mathcal{O}_{\mathfrak{b}} \cap \mathcal{O}_{\mathfrak{b}}, [\mathfrak{b}]),$$

where the sum is over $\ell + 1$ sub-lattices in \mathfrak{a} .

Back to our original setting. We also assume n is square-free and $n \nmid NDp$. This implies for any prime divisor ℓ of n, ℓ is unramified in the extension K(E[p]). We also assume

$$Frob(\ell) = Frob(\tau) \tag{4.5}$$

as conjugate classes in $\operatorname{Gal}(K(E[p])/\mathbb{Q})$. Hence $\operatorname{Frob}(\ell) = \tau$ in $\operatorname{Gal}(K/\mathbb{Q})$ and so l is inert in K, we use λ to denote (l) in K. We also have

$$a_\ell \equiv \ell + 1 \equiv 0 \pmod{p}.$$

The reason is as follows: from the Galois representation from Tate modules of elliptic curves defined over \mathbb{Q} , for any $\ell \nmid pN$, the characteristic polynomial for $\operatorname{Frob}(\ell)$ acting on E[p] is

$$x^2 - a_\ell x + \ell.$$

The characteristic polynomial for $\operatorname{Frob}(\tau)$ acting on E[p] is $x^2 - 1$. Since $\operatorname{Frob}(\ell) = \operatorname{Frob}(\tau)$ and characteristic polynomial depends only on the conjugacy class, one must have these two characteristic polynomials are equal mod p, i.e.

$$a_{\ell} \equiv 0 \pmod{p}$$
, and $\ell \equiv -1 \pmod{p}$.

 $F_{\lambda} := \mathcal{O}_{K}/\lambda$, the residue field. It has ℓ^{2} elements, since ℓ is inert in K. From the condition (4.5), we know the residue field $\mathcal{O}_{K(E[p])}/\mathfrak{p}$ is a quadratic extension of $\mathbb{Z}/(\ell) = \mathbb{F}_{\ell}$ for any prime \mathfrak{p} in $K(E[p] \text{ over } \ell$, but ℓ is inert in K, which means in K, we already have

$$\left[\mathcal{O}_K/(\lambda):\mathbb{F}_\ell\right]=2.$$

Hence λ in K splits completely in K(E[p]). Let $F_{\lambda} := \mathcal{O}_K/(\lambda)$. The above discussion implies that the reduction \widetilde{E} of E over ℓ have all its p-torsion points over F_{λ} (Note E has good reduction over ℓ), i.e.

$$\widetilde{E}[p] = \widetilde{E}(F_{\lambda})[p] \cong (\mathbb{Z}/p\mathbb{Z})^2$$

One can also obtain the eigen values for τ . Points in $\widetilde{E}(F_{\lambda}) = \widetilde{E}(\mathbb{F}_{\ell^2})$ fixed by τ must be in $\widetilde{E}(\mathbb{F}_{\ell})$ and vise versa. Hence $\#\widetilde{E}(F_{\lambda})^+ = \ell + 1 - a_{\ell}$. One has

$$\widetilde{E}(F_{\lambda}) = \widetilde{E}(F_{\lambda})^{+} \oplus \widetilde{E}(F_{\lambda})^{-},$$

and Weil's conjecture gives

$$#\widetilde{E}(F_{\ell^2}) = (\ell+1)^2 - a_{\ell}^2 = (\ell+1 - a_{\ell})(\ell+1 + a_{\ell}),$$

So

$$#E(F_{\lambda})^{-} = \ell + 1 + a_{\ell}.$$

 $n = \prod \ell$. $G_n := \operatorname{Gal}(K_n/K_1)$. hen $G_n = \prod G_\ell$. $G_\ell \cong F_\lambda^{\times}/F_\ell^{\times}$, which is cyclic of order $\ell + 1$. Fix a generator σ_l and define $\operatorname{Tr}_\ell = \sum_{\sigma \in G_\ell} \sigma$ in $\mathbb{Z}[G_\ell]$. Let D_ℓ be a solution of

$$(\sigma_l - 1)D_l = \ell + 1 - \operatorname{Tr}_{\ell}.$$
(4.6)

Suppose D_{ℓ} and D'_{ℓ} are two resolutions of (4.6), then

$$(\sigma_{\ell} - 1)D_{\ell} - (\sigma_{\ell} - 1)D'_{\ell} = (\sigma_{\ell} - 1)(D_{\ell} - D'_{\ell}) = 0,$$

hence D_{ℓ} is well-defined up to elements in $\mathbb{Z} \cdot \operatorname{Tr}_{\ell}$. $D_n := \prod D_{\ell}$.

 $D_n y_n$ in $E(K_n)$ gives a class in $E(K_n)/pE(K_n)$ and is fixed by G_n .

Proof. $G_n = \prod \ell$. Hence it is enough to prove $(\sigma_\ell - 1)D_n y_n \in pE(K_n)$. $n = \ell m$. Hence

$$(\sigma_{\ell} - 1)D_n = (\sigma_{\ell} - 1)D_{\ell}D_m = (\ell + 1 - \operatorname{Tr}_{\ell})D_m,$$

 \mathbf{SO}

$$(\sigma_{\ell} - 1)D_n y_n = (\ell + 1)D_m y_n - D_m(\operatorname{Tr}_{\ell} y_n).$$

 $p \mid \ell+1$, hence it is enough to show $\operatorname{Tr}_{\ell} y_n \in pE(K_m)$. But $\operatorname{Tr}_{\ell} y_n = a_{\ell} \cdot y_m$ and $p \mid a_{\ell}$. Another property is that each prime factor λ_n of ℓ in K_n divides a unique prime λ_m of K_m , and $y_n \equiv \operatorname{Frob}(\lambda_m)(y_m) \pmod{\lambda_n}$.

The proof of the two properties used in the above proof: By definition, x_m can be identified with $(\mathcal{O}_m, \mathcal{N}_m, [\mathcal{O}_m])$, where $\mathcal{N}_m = \mathcal{N} \cap \mathcal{O}_m$, then

$$T_{\ell}x_m = \sum_{\mathcal{O}_m/\mathfrak{b} = \mathbb{Z}/\ell\mathbb{Z}} (\operatorname{End}(\mathfrak{b}), \mathcal{N}_m \operatorname{End}(\mathfrak{b}) \cap \operatorname{End}(\mathfrak{b}), [\mathfrak{b}]).$$

One has that $\mathcal{O}_m = \mathbb{Z} + m\mathcal{O}_K = \mathbb{Z} + m \cdot \frac{1 + \sqrt{d_K}}{2} = [1, md]$, where d_K is the discriminant of K and $d = \frac{1 + \sqrt{d_K}}{2}$. From Cox p235, the cyclic sublattices of \mathcal{O}_m are:

$$[1, \ell m d], [\ell, m d + j], j = 0, \dots, \ell - 1.$$

For $\mathfrak{b} = [1, \ell m d]$, since $\ell m = n$, $[1, \ell m d] = [1, nd] = \mathcal{O}_n$, and so in this case, End(\mathfrak{b}) = $\mathfrak{b} = \mathcal{O}_n$. For $\mathfrak{b} = [\ell, md + j]$, from Cox p.135 Lemma 7.5 and p.209 Theorem 10.4, we only need to consider the lattice $[1, \frac{md+j}{\ell}]$. $\frac{md+j}{\ell}$ satisfies the quadratic equation in $\mathbb{Z}[x]$:

$$\ell^2 x^2 + (-m - 2j)x + ((\frac{m}{2} + j)^2 + \frac{m^2}{4}|d_K|).$$

Note since $d_K \equiv 1 \pmod{4}$, $(\frac{m}{2} + j)^2 + \frac{m^2}{4} |d_K| \in \mathbb{Z}$. Hence $[1, \frac{md+j}{\ell}]$ is a proper ideal for the order $[1, \ell^2 \cdot \frac{md+j}{\ell}] = [1, \ell m d] = [1, nd] = \mathcal{O}_n$, i.e. $\operatorname{End}(\mathfrak{b}) = \mathcal{O}_n$. Hence

$$T_{\ell}x_m = (\mathcal{O}_n, \mathcal{N}_n, [\mathcal{O}_n]) + \sum_{j=0}^{\ell-1} \left(\mathcal{O}_n, \mathcal{N}_n, [[1, \frac{md+j}{\ell}]] \right).$$

 G_{ℓ} is the subgroup of $G_n = \operatorname{Gal}(K_n/K_1)$ fixing K_m , i.e. $G_{\ell} = \operatorname{Gal}(K_n/K_m)$ which is the subgroup of $\operatorname{Gal}(K_n/K)$ fixing K_m . Since *n* is square free, all sublattices of \mathcal{O}_m of index ℓ , which are orders in \mathcal{O}_n are those whose images of Artin map fix $j(\mathcal{O}_m)$. I.e.

$$T_{\ell}x_m = \operatorname{Tr}_{\ell}(x_n) = \sum_{\sigma \in G_{\ell}} (\mathcal{O}_n, \mathcal{N}_n, [\mathcal{O}_n])^{\sigma}.$$
(4.7)

From Eichler-Shimura construction, one has $\varphi(\operatorname{Tr}_{\ell}(x_n)) = a_{\ell} \cdot \varphi(x_n)$.

For the second property, since $\ell \nmid m$, λ is unramified in K_m/K . Since (λ) is also principal, λ is totally split in K_m since Artin map maps λ to the identity in $\operatorname{Gal}(K_m/K) \cong \operatorname{Pic}(\mathcal{O}_m)$. Since $\operatorname{Gal}(K_n/K_m) \cong G_\ell \cong F_\lambda^{\times}/F_\ell^{\times}$, so all primes above λ in K_n has trivial residue field extension, but factors λ_m of λ in K_m are ramified in K_n , thus must be totally ramified, i.e. $\lambda_m = (\lambda_n)^{\ell+1}$. So the residue field F_{λ_n} has ℓ^2 elements and is canonically isomorphic to F_λ . From (4.7), one sees that any point in the divisor $T_\ell(x_m)$ is the conjugate of x_n over K_n/K_m . Since λ_m is totally ramified in K_n , any point in the divisor $T_\ell(x_m) \equiv x_n \pmod{\lambda_n}$. The properties of $\{y_n\}$ forms an Euler system in the sense of Kolyvagin.

We have the following tower of Galois extension:

$$\begin{array}{c|c}
K_n \\
G_n \\
K_1 \\
K \\
Q
\end{array}$$

Let S be a set of coset rep., define

$$P_n := \sum_{\sigma \in S} \sigma(D_n y_n) \in E(K_n).$$

Then $[P_n]$ is fixed by \mathscr{G}_n . Use the same set S to define P_m for any $m \mid n$. Note $P_1 = y_K$. The exact sequence

$$0 \to E[p] \to E \xrightarrow{p} E \to 0$$

gives

$$0 \to E[p](K_n) \to E(K_n) \xrightarrow{p} E(K_n) \to H^1(K_n, E[p]) \to H^1(K_n, E) \xrightarrow{p} H^1(K_n, E).$$

This gives the following commutative diagram:

c(n) is also defined in the diagram.

The middle restriction is \cong . 1. the exact sequence

$$0 \to H^1(K_n/K, E(K_n)[p]) \to H^1(K, E[p]) \xrightarrow{\operatorname{Res}} H^1(K_n, E[p])^{\mathscr{G}_n}.$$

(see e.g. Serre Galois Cohomology, p15).

Cr from the usual inflation-restriction map: G is a pro-finite group, $H \triangleleft G$ with G-module M, then we have the exact sequence:

$$0 \to H^1(G/H, M^H) \to H^1(G, M) \to H^1(H, M).$$

On the other hand, for any $[\alpha] \in G/N$ and $[\sigma] \in H^1(H, M)$ which comes from the image of some element in $H^1(G, M)$, one has

$$\sigma^{\alpha}(g) = \alpha \sigma(\alpha^{-1}g\alpha)$$
$$= \alpha(\sigma(\alpha^{-1}g) + \alpha^{-1}\sigma(\alpha))$$
$$= \cdots$$
$$= \alpha \sigma(\alpha^{-1}) + g\sigma(\alpha) + \sigma(\alpha),$$

while

$$0 = \sigma(1) = \sigma(\alpha \alpha^{-1}) = \sigma(\alpha) + \alpha \sigma(\alpha^{-1}),$$

 \mathbf{SO}

$$\sigma^{\alpha}(g) - \sigma(g) = g\sigma(\alpha) - \sigma(\alpha),$$

i.e.

 $[\alpha] = [\alpha^\sigma]$

in $H^1(H, M)$.

The cokernel of the middle map: From Hochschild-Serre-Leray spectral sequence, One has

$$0 \to H^1(G/H, M^H) \to H^1(G, M) \to H^1(H, M)^{G/H} \to H^2(G/H, M^H) \to H^2(G, H),$$

one sees the cokernel maps injectively into $H^2(K_n/K, E(K_n)[p])$. Since E has no p-torsion in K_n , the middle homomorphism is \cong .

c(n) is represented by 1-cocycle

$$f(\sigma) = \sigma(\frac{1}{p}P_n) - \frac{1}{p}P_n - \frac{(\sigma - 1)P_n}{p}.$$

 τ , the complex multiplication acts on $H^1(K, E[p])$. We have a direct decomposition with respect to τ 's eigenvalues ± 1 :

$$H^{1}(K, E[p]) = H^{1}(K, E[p])^{+} \oplus H^{1}(K, E[p])^{-}.$$

Denote w_n to be the Fricke involution, then for eigenform f associate to E,

$$f|w_N = \epsilon f,$$

where $\epsilon = \pm 1$.

Proposition 4.6.1. $y_n^{\tau} - \epsilon y_n^{\sigma}$ is a torsion point in $E(K_n)$ for some $\sigma \in \mathscr{G}_n$.

Proof. The various actions on Heegnar points given above show that for any $\sigma \in \mathscr{G}_n$, one has $\mathfrak{b} \in \operatorname{Pic}(\mathcal{O})$ such that $\theta(\mathfrak{b}) = \sigma$ and

$$w_N(x_n^{\sigma}) = w_N(\mathcal{O}, \mathfrak{n}, [\mathfrak{ab}^{\tau}]) = (\mathcal{O}, \mathfrak{n}^{\tau}, [\mathfrak{ab}^{\tau}\mathfrak{n}^{\tau}]).$$

So take $\mathfrak{b} = \mathfrak{n}^{\tau}(\mathfrak{a})^2$, then

$$w_N(x_n^{\sigma}) = x_n^{\tau}$$

where $\sigma = \theta(\mathfrak{b})$. So

$$(x_n - \infty)^{\tau} = w_N (x_n - \infty)^{\sigma} + (w_N \infty - \infty).$$

Here $(w_N \infty - \infty) = (0 - \infty)$ is the torsion point in $J_0(N)$.

Proposition 4.6.2. $[P_n]$ is in $\epsilon_n := \epsilon(-1)^{f_n}$ eigenspace for τ , where f_n is the number of prime divisors of n. The similar results hold for c(n) and d(n).

Proof.
$$P_n = \sum_{[\sigma] \in \mathscr{G}_n/G_n} \sigma D_n y_n$$
. One has $\operatorname{Gal}(K_n/\mathbb{Q}) \cong \mathscr{G}_n \rtimes \mathbb{Z}/2\mathbb{Z}$, hence
 $\sigma \tau \sigma = (\sigma, 1) \cdot (1, \tau) \cdot (\sigma, 1) = (\sigma, \tau)(\sigma, 1) = (\sigma(\tau \cdot \sigma), \tau) = (\sigma \sigma^{-1}, \tau) = (1, \tau),$

i.e.

$$\tau \sigma = \sigma^{-1} \tau.$$

Therefore

$$\tau P_n = \sum_{[\sigma] \in \mathscr{G}_n/G_n} \tau \sigma D_n y_n = \sum_{[\sigma] \in \mathscr{G}_n/G_n} \sigma^{-1} \tau D_n y_n.$$

Here *n* is square free and $D_n = \prod_{\text{prime } \ell \mid n} D_\ell$. Hence we only need to handle D_ℓ . Since $(\sigma_e ll - 1)D_\ell = \ell + 1 - \text{Tr}_\ell$ and G_ℓ is cyclic which implies the commutativity, hence

$$(\sigma_{\ell} - 1)D_{\ell}\tau = \tau(\sigma_{\ell} - 1)D_{\ell} = (\sigma_{\ell}^{-1} - 1)\tau D_{\ell} = -\sigma_{\ell}^{-1}(\sigma_{\ell} - 1)\tau D_{\ell},$$

i.e.

$$(\sigma_{\ell} - 1)(\tau D_{\ell} + \sigma_{\ell} D_{\ell} \tau) = 0,$$

 \mathbf{SO}

$$\tau D_{\ell} = -\sigma_{\ell} D_{\ell} \tau + m \mathrm{Tr}_{l},$$

for some $m \in \mathbb{Z}$. Tr_{ℓ} $y_n = a_{\ell}y_{n/\ell} = 0$ in $pE(K_n)$ since $p \mid a_{\ell}$. Also

$$\tau D_n = \tau \prod_{\ell \mid n} D_\ell$$

= $\tau D_{\ell_1} D_{\ell_2} \cdots D_{\ell_{f_n}}$
= $-\sigma_{\ell_1} D_{\ell_1} \tau D_{\ell_2} \cdots D_{\ell_{f_n}}$
= \cdots
= $(-1)^{f_n} \prod_{\ell \mid n} \sigma_\ell \cdot D_n \tau.$

Hence in $E(K_n)/pE(K_n)$,

$$\tau P_n = \sum_{[\sigma] \in \mathscr{G}_n/G_n} \sigma^{-1} \Big((-1)^{f_n} \prod_{\ell \mid n} \sigma_\ell \cdot D_n \tau(y_n) \Big)$$
$$= (-1)^{f_n} \prod_{\ell \mid n} \sigma_\ell \cdot \sum_{[\sigma] \in \mathscr{G}_n/G_n} \sigma^{-1} \cdot D_n(\tau y_n).$$

On the other hand, $\tau y_n = \epsilon \cdot \delta(y_n) + Q$ for some $\delta \in \mathscr{G}_n$ and some torsion point in $E(K_n)$. Since $E(K_n)$ has no *p*-torsion points, Q actually resides in $pE(K_n)$, therefore in $E(K_n)/pE(K_n)$,

$$\tau P_n = \epsilon_n \prod_{\ell \mid n} \sigma_\ell \cdot \delta \cdot \sum_{[\sigma] \in \mathscr{G}_n / G_n} \sigma^{-1} D_n y_n$$

Since in $E(K_n)/pE(K_n)$, $D_n y_n$ is fixed by G_n and $\{\sigma^{-1}\}$ is another set of representatives of \mathscr{G}_n/G_n , one has

$$\prod_{\ell \mid n} \sigma_{\ell} \cdot \delta \cdot \sum_{[\sigma] \in \mathscr{G}_n / G_n} \sigma^{-1} D_n y_n = P_n,$$

i.e.

$$\tau P_n = \epsilon_n P_n.$$

_		
_		

Proposition 4.6.3. 1. The class $d(n)_v$ is locally trivial in $H^1(K_v, E)[p]$ at the archimedean place $v = \infty$, and at all finite places v of K which do not divide n. 2. If $n = \ell n$ and λ is the unique prime of K dividing ℓ , the class $d(n)_{\lambda}$ is locally trivial in $H^1(K_{\lambda}, E)[p]$ iff $P_m \in pE(K_{\lambda m}) = pE(K_{\lambda})$ for one places λ_m of K_m dividing λ . *Proof.* Let $v = \infty$, then $K_v = \mathbb{C}$ and the Galois cohomology of E is trivial. If $v \neq \infty$ and $v \nmid n$, d(n) comes from $H^1(K_n/K, E)[p]$, where K_n is unramified at v since $v \nmid n$. Hence $d(n)_v$ lies in the subgroup $H^1(K_v^{nr}/K_v, E)$ which is trivial when E has good reduction at v, i.e. $v \nmid N$.

If $v \mid N$, E has bad reduction at v. Let E^0 be the connected component of the Néron module. Since $H^1(K_v^{nr}/K_v, E^0) = 0$, $H^1(K_v^{nr}/K_v, E) \hookrightarrow H^1(F_v, E/E^0)$. Let J_0 be the Jacobian of $X_0(N)$, then for any place $\omega \mid v$ in K_n , the class of the Heegner divisor $(x_n) - (\infty)$ in $J_0(K_{n,\omega})$ lies in J_0 up to translation by rational point $(0) - (\infty)$. Hence y_n is in E^0 up to translation by rational torsion. Since $E(\mathbb{Q})[p]$ is trivial, y_n (so $D_n y_n$ and P_n) lies in a subgroup E' whose image in E/E^0 has order prime to p. But $d(n)_v$ is killed by p, so $d(n)_v = 0$.

We need some Tate local duality. Let K_{λ} be a local field with ring of integers \mathcal{O}_{λ} and finite residue field F_{λ} of characteristic ℓ . Let E be an elliptic curve over K_{λ} with good reduction over F_{λ} . One has the exact sequence

$$0 \to E[p] \to E \xrightarrow{p} E \to 0$$

for any prime number $p \neq \ell$. Hence

$$E(K_{\lambda}) \xrightarrow{p} E(K_{\lambda}) \xrightarrow{\delta} H^{1}(\operatorname{Gal}(K_{\lambda}^{\operatorname{nr}}/K_{\lambda}), E[p]) \to H^{1}(\operatorname{Gal}(K_{\lambda}^{\operatorname{nr}}/K_{\lambda}), E) = 0$$

is exact. Hence

$$E(K_{\lambda})/p(K_{\lambda}) \cong H^{1}(\operatorname{Gal}(K_{\lambda}^{\operatorname{nr}}/K_{\lambda}), E[p]).$$

Weil pairing $E[p] \times E[p] \to \mu_p$ gives $E[p] \otimes E[p] \to \mu_p$ which induces the following pair by cup product:

$$<,>: H^{1}(K_{\lambda}, E[p]) \times H^{1}(K_{\lambda}, E[p]) \to H^{2}(K_{\lambda}, E[p] \otimes E[p]) \to H^{2}(K_{\lambda}, \mu_{p}) \xrightarrow{\operatorname{inv}} \mathbb{Z}/p\mathbb{Z}$$

$$(4.9)$$

Tate porves this pair is alternating and non-degenerate. We also have the exact sequence

$$0 \to E(K_{\lambda})/pE(K_{\lambda}) \to H^{1}(K_{\lambda}, E[p]) \to H^{1}(K_{\lambda}, E)[p] \to 0.$$

Since $E(K_{\lambda})/pE(K_{\lambda})$ is isotropic for the pairing in (4.9), one has the non-degenerate pair:

$$\langle , \rangle \colon E(K_{\lambda})/pE(K_{\lambda}) \times H^{1}(K_{\lambda}, E)[p] \to \mathbb{Z}/p\mathbb{Z}.$$
 (4.10)

 $\left[\begin{array}{c} \text{(form A course in Arithmetic by Serre). Let } V \text{ be an } A\text{-module, } (V,Q:V \to A) \\ \text{is a quadratic module if } Q \text{ satisfies: 1). } Q(av) = a^2v, \, \forall a \in A, v \in V; \, 2). \, (x,y) \mapsto \\ Q(x+y) - Q(x) - Q(y) \text{ is a bi-linear form.} \end{array} \right]$

Let A be a field with char $\neq 2$. Define $x \cdot y = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$, then $(x,y) \mapsto x \cdot y$ is a bilinear symmetric form and $Q(x) = x \cdot x$. $x \in V$ is called isotropic if Q(x) = 0. $x \perp y$ if $x \cdot y = 0$. Q is called non-degenerate if $V^{\perp} = 0$. Q is called U-isotropic if $U \subset U^{\perp}$.

Suppose all *p*-torsion points on *E* are define in K_{λ} , then fix a primitive *p*-th root ζ of unity in K_{λ} and then

$$\zeta^{\langle c_1, c_2 \rangle} = \{e_1, e_2\},\$$

where $\{,\}$ is the Weil pairing, $e_1 = (\frac{1}{p}c_1)^{\operatorname{Frob}(\lambda)-1}$, and c_2 corresponds to a homomorphism $\phi_2 : \mu_p \to E_p(K_\lambda)$ and $e_2 = \phi_2(\zeta)$.

Now we apply our assumption on K, l and λ (i.e. l is inert in K, $(l) = (\lambda)$ in K, $p \mid l + 1, a_l$. In this case $\operatorname{Gal}(K_{\lambda}/Q_l) \cong \operatorname{Gal}(K/Q) = \{1, \tau\}$, where τ is the complex conjugation.

Proposition 4.6.4. 1. The eigenspaces $(E(K_{\lambda})/pE(K_{\lambda}))^{\pm}$ and $H^{1}(K_{\lambda}, E)[p]^{\pm}$ for τ each has dimension 1 over $\mathbb{Z}/p\mathbb{Z}$.

2. The pairing in (4.10) induces non-degenerate pairings of $\mathbb{Z}/p\mathbb{Z}$ -pairings as $\mathbb{Z}/p\mathbb{Z}$ -vector spaces:

$$<,>^{\pm}: (E(K_{\lambda})/pE(K_{\lambda}))^{\pm} \times H^{1}(K_{\lambda},E)[p]^{\pm} \to \mathbb{Z}/p\mathbb{Z}.$$

Hence if $0 \neq 0 d_{\lambda} \in H^1(K_{\lambda}, E)[p]^{\pm}$ and $s_{\lambda} \in (E(K_{\lambda})/pE(K_{\lambda}))^{\pm}$ such that $\langle s_{\lambda}, d_{\lambda} \rangle = 0$, then $s_{\lambda} = 0$.

Proof.

From this result, we can prove a stronger result:

Proposition 4.6.5. Suppose $d \in H^1(K, E)[p]^{\pm}$ is locally trivial except at place λ in K. Then for any $s \in \text{Sel}(E/K)[p]^{\pm}$, one has the restriction s_{λ} of s is 0.

Proof. $s_{\lambda} \in (E(K_{\lambda})/pE(K_{\lambda}))^{\pm}$. Indeed, from the exact sequence

$$0 \to E[p] \to E \xrightarrow{p} E \to 0,$$

one has the exact sequence

$$0 \to E(K_{\lambda})/pE(K_{\lambda}) \to H^1(K_{\lambda}, E[p]) \to H^1(K_{\lambda}, E)$$

By definition, The image of s in $H^1(K_{\lambda}, E)$ is 0, hence s comes from $(E(K_{\lambda})/pE(K_{\lambda}))^{\pm}$. Hence we only need to prove $\langle s_{\lambda}, d_{\lambda} \rangle = 0$ by the proposition above.

Using (4.8), one can lift d to $H^1(K, E[p])$. The difference of two lifts is in E(K)/pE(K). one has

$$\sum_{v} < s_v, c_v >= 0,$$

by global class field theory and from assumption, $\langle s_v, c_v \rangle = 0$ for any $v \neq \lambda$, hence $\langle s_\lambda, c_\lambda \rangle = \langle s_\lambda, d_\lambda \rangle = 0.$

Now from our hypothesis, p is big enough such that $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$. (D, NP) = 1 implies $K \cap \mathbb{Q}(E[p]) = \mathbb{Q}$. Hence one has the following diagram:

The center of \mathcal{G} is $Z \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ acting on E[p] as multiplication. Hence $H^0(Z, E[p]) = 0 = H^0_T(Z, E[p])$. Since both Z and E[p] are finite, the Herbrand quotient h(E[p]) = 1, hence $H^1(E[p]) = 0$. Since Z is cyclic, $H^n(Z, E[p]) = 0$ for all $n \ge 0$.

Proposition 4.6.6. $H^n(\mathcal{G}, E[p]) = 0$ for $n \ge 0$ and

Res :
$$H^1(K, E[p]) \xrightarrow{\cong} H^1(L, E[p])^{\mathcal{G}} = Hom_{\mathcal{G}}(\operatorname{Gal}(\overline{\mathbb{Q}}/L), E(L)[p])$$

is an isomorphism as Gal(K/Q)-modules.

Proof. One has the spectral sequence $H^m(\mathcal{G}/Z, H^n(Z, E[p])) \Rightarrow H^{m+n}(\mathcal{G}, E[p])$. Since $H^n(Z, E[p]) = 0$, the spectral sequence satisfies *(n) condition in the sense of Ribes'. Hence one has the exact sequence for $n \ge 1$:

$$0 \to H^{n}(\mathcal{G}/Z, E[p]^{Z}) \xrightarrow{\text{Inf}} H^{n}(\mathcal{G}, E[p]) \xrightarrow{\text{Res}} H^{n}(Z, E[p])^{\mathcal{G}/Z} \xrightarrow{\text{tr}} H^{n+1}(\mathcal{G}/Z, E[p]^{Z}) \xrightarrow{\text{Inf}} H^{n+1}(\mathcal{G}, E[p])$$

Since both $E[p]^{Z}$ and $H^{n}(Z, E[p])$ are trivial, $H^{n}(\mathcal{G}, E[p])$ is trivial. For $n = 0$,
 $H^{0}(\mathcal{G}, E[p]) = E[p]^{\mathcal{G}} \subset E[p]^{Z} = 0.$

Since $\operatorname{Gal}(\overline{\mathbb{Q}}/L) \lhd \operatorname{Gal}(\overline{\mathbb{Q}}/K)$ and their quotient is $\operatorname{Gal}(L/K) = \mathcal{G}$, one has the

Leray-Serre long exact sequence

$$0 \to H^1(\mathcal{G}, E(L)[p]) \xrightarrow{\text{Inf}} H^1(K, E[p]) \xrightarrow{\text{Res}} H^1(L, E[p])^{\mathcal{G}} \to H^2(\mathcal{G}, E[p]) = 0.$$

By the definition of L, E(L)[p] = E[p], hence $H^1(\mathcal{G}, E(L)[p]) = 0$, so the restriction map is actually an isomorphism:

$$H^1(K, E[p]) \xrightarrow{\cong} H^1(L, E[p])^{\mathcal{G}} = \operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(\overline{\mathbb{Q}}/L), E[p]).$$

Here $s \in \operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(\overline{\mathbb{Q}}/L), E[p])$ means s is a homomorphism from $\operatorname{Gal}(\overline{\mathbb{Q}}/L)$ to E[p] such that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/K)$,

$$\sigma s(\sigma^{-1}\rho\sigma) = s(\rho),$$

for any $\rho \in \operatorname{Gal}(\overline{\mathbb{Q}}/L)$.

From this proposition, we obtain a pairing:

$$[,]: H^1(K, E[p]) \times \operatorname{Gal}(\overline{\mathbb{Q}}/L) \to E(L)[p],$$
(4.12)

which satisfies $[s^{\alpha}, \rho^{\sigma}] = [s, \rho^{\sigma}] = f(\sigma^{-1}\rho\sigma) = \sigma^{-1}s(\rho) = [s, \rho]^{\sigma^{-1}}.$

Now Let $S \subset H^1(K, E[p])$ be a finite subgroup, i.e. finite dimensional vector space over \mathbb{F}_p . Let $\operatorname{Gal}_S(\overline{\mathbb{Q}}/L)$ be the subgroup of $\rho \in \operatorname{Gal}(\overline{\mathbb{Q}}/L)$ such that $[s, \rho] = 0$ for all $s \in S$. Define $L_S := \overline{\mathbb{Q}}^{\operatorname{Gal}_S(\overline{\mathbb{Q}}/L)}$. Then L_S/L is Galois. Indeed, for any $\alpha \in \operatorname{Gal}(\overline{\mathbb{Q}}/L)$ and $\rho \in \operatorname{Gal}_S(\overline{\mathbb{Q}}/L)$,

$$[s, \alpha^{-1} \rho \alpha] = s(\alpha^{-1}) + s(\rho) + s(\alpha) = 0,$$

since $s(\rho) = [s, \rho] = 0$. So $\alpha^{-1}\rho\alpha \in \operatorname{Gal}_S(\overline{\mathbb{Q}}/L)$, i.e. L_S/L is Galois.

Proposition 4.6.7. The induced pairing:

$$[,]: S \times \operatorname{Gal}(L_S/L) \to E(L)[p]$$

$$(4.13)$$

is non-degenerate and it induces two isomorphisms:

$$\operatorname{Gal}(L_S/L) \xrightarrow{\cong} \operatorname{Hom}(S, E(L)[p])$$
 (4.14)

as \mathcal{G} -modules and

$$S \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(L_S/L), E(L)[p])$$
 (4.15)

Proof. Injectivities are obvious. Let $r = \dim_{\mathbb{F}_p}(S)$. Then $\operatorname{Gal}(L_S/L)$ is a \mathcal{G} submodule of $\operatorname{Hom}(S, E[p]) \cong E[p]^r$. E[p] is a simple \mathcal{G} -module, hence $\operatorname{Hom}(S, E[p])$ is semi-simple. Hence $\operatorname{Gal}(L_S/L) \cong E[p]^s$ for some $s \leq r$. So $\operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(L_S/L), E[p]) \cong$ $(\mathbb{Z}/p\mathbb{Z})^s$. Hence $r \leq s$. So r = s.

Now let $S = \operatorname{Sel}^{[p]}(E/K) \subset H^1(K, E[p])$. By our assumption, y_K is not divisible by p in E(K). δy_K is its image in $\operatorname{Sel}(E/K)[p]$, which is not zero. We have the following diagram:

$$M := L_{S}$$

$$|I$$

$$L(\frac{1}{p}y_{K}) = L_{\langle \delta y_{K} \rangle}$$

$$E[p]$$

$$L = K(E[p])$$

$$\mathcal{G}$$

$$K$$

$$|$$

$$\mathbb{Q}$$

Remark: (a) from the exact sequence:

$$0 \to E[p] \to E \xrightarrow{p} E \to 0,$$

one has the exact sequence

$$0 \to E(K)/pE(K) \xrightarrow{\delta} H^1(K, E[p]) \xrightarrow{\iota} H^1(K, E).$$

From the definition of Selmer group,

$$\operatorname{Sel}^{[p]}(E/K) = \ker\{H^1(K, E[p]) \to \prod_{\mathfrak{p}} H^1(G_{\mathfrak{p}}, E)\},\$$

which factors through $H^1(K, E[p]) \to H^1(K, E)$. Hence δy_K is in the Selmer group since $\iota(\delta y_K) = 0$.

(b) The connecting function δ is defined as follows:

$$\delta y_K = \left(g \mapsto \left(-\frac{1}{p}y_K\right) + g\left(\frac{1}{p}y_K\right)\right).$$

The general theory is: for the exact sequence

$$0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0,$$

written additively as G-modules, one has $\delta : H^0(G, C) \to H^1(G, A)$ as follows: for any $c \in C$, $\exists b \in B$ such that p(b) = c. Let $c \in H^0(G, C)$, then $\delta(c) = (\sigma \mapsto [i^{-1}(-b + \sigma(b))])$. By definition, $L_{\langle \delta y_K \rangle}$ is the fixed field of $\operatorname{Gal}_S(\overline{\mathbb{Q}}/L)$, which is in turn defined as

$$\operatorname{Gal}_{S}(\overline{\mathbb{Q}}/L) := \{ \rho \in \operatorname{Gal}(\overline{\mathbb{Q}}/L) \mid [\delta y_{K}, \rho] = 0, \forall s \in S \}.$$

But in this case

$$[\delta y_K, \rho] = (\delta y_K)(\rho) = -\frac{1}{p}y_K + \rho(\frac{1}{p}y_K).$$

Hence we must have

$$\rho(\frac{1}{p}y_K) = \frac{1}{p}y_K,$$

iff
$$\rho \in \operatorname{Gal}_S(\mathbb{Q}/L)$$
, i.e. $L(\frac{1}{p}y_K) = L_{\langle \delta y_K \rangle}$.

(3). $\operatorname{Gal}(L(\frac{1}{p}y_K)/L) \cong \operatorname{Hom}(\langle \delta y_K \rangle, E[p])$ which is defined by where δy_K is mapped. Hence is isomorphic to E[p].

Let τ is the complex conjugation in \mathbb{C} . τ acts on H by conjugation. Its eigenvalues are ± 1 . Now to calculate H^+ and I^+ , which have the obvious meaning.

Any $\sigma \in H$ is identified by an element in $\operatorname{Hom}(\operatorname{Sel}^{[p]}, E[p])$ by $s \mapsto [s, \sigma], \forall s \in \operatorname{Sel}^{[p]}(E/K)$. Hence σ^{τ} corresponds to $s \mapsto [s, \tau \sigma \tau]$ (notice that $\tau^{-1} = \tau$). Since $[s, \tau \sigma \tau]^{\tau} = [s, \sigma] \ (\tau^2 = 1)$, to fix by τ , we must have the form $[s, \sigma] + [s, \tau \sigma \tau]$, i.e. $H^+ = H^{\tau+1} := \{h^{\tau} \cdot h \mid h \in H\} = \{(\tau h)^2 \mid h \in H\}$, similarly, $I^+ = \{(\tau i)^2 \mid i \in I\}$, and so $H^+/I^+ = (H/I)^+ = E[p]^+ \cong \mathbb{Z}/p\mathbb{Z}$. Also one has

Proposition 4.6.8. Let $s \in Sel^{[p]}(E/K)^{\pm}$, then the followings are equivalent:

- (a) $[s, \rho] = 0$, for all $\rho \in H$;
- (b) $[s, \rho] = 0$, for all $\rho \in H^+$;
- (c) $[s, \rho] = 0$, for all $\rho \in H^+ I^+$;
- (d) s = 0.

Proof. It is enough to prove $(c) \Rightarrow (b) \Rightarrow (a)$. $(c) \Rightarrow (b)$ is trivial by group theory. For $(b) \Rightarrow (a)$, for any $s \in \operatorname{Sel}^{[p]}(E/K)$, it induces a \mathcal{G} -homomorphism $H \to E[p]$ which maps $H^+ \to E[p]^{\pm}$ and $H^- \to E[p]^{\mp}$. If $[s, H^+] = 0$, then $s(H) \subset E[p]^{\mp}$. But s(H) is a \mathcal{G} -submodule of the simple module E[p], hence form $s(H) \neq E[p]$, one has s(H) = 0.

Let λ be a prime of K which does not divide Np. Then λ is unramified in $M = L_S/K$.

We assume λ splits completely in L/K and λ_M be a prime factor of λ in M. The Frobenius element ρ of λ_M in $\operatorname{Gal}(M/K)$ lies in H since λ is totally split in L/K by our assumption. Denote $\operatorname{Frob}(\lambda) = \{\rho^g \mid g \in \mathcal{G}\}.$

Proposition 4.6.9. Let $s \in Sel^{[p]}(E/K)$. The followings are equivalent:

- (a) $[s, \rho] = 0;$
- (b) $[s, \operatorname{Frob}(\lambda)] = 0;$
- (c) $s_{\lambda} \equiv 0$ in $H^1(K_{\lambda}, E[p])$.

Proof. (a) and (b) are equivalent because of $[s, \rho^g] = [s, \rho]^g$ for any $g \in \mathcal{G}$. For $(a) \Leftrightarrow (c)$, we have the commutative diagram

$$\begin{array}{c} H^{1}(K, E[p]) \longrightarrow \prod_{\lambda} H^{1}(K_{\lambda}, E) \\ \downarrow \\ H^{1}(K_{\lambda}, E[p]) \end{array}$$

and exact sequence

$$0 \to E(K_{\lambda})/pE(K_{\lambda}) \to H^{1}(K_{\lambda}, E[p]) \to H^{1}(K_{\lambda}, E).$$

Hence from the definition of Selmer group, s_{λ} can be identified with an element in $E(K_{\lambda})/pE(K_{\lambda})$, say $s_{\lambda} = P_{\lambda}$ in $E(K_{\lambda})/pE(K_{\lambda})$. Then clearly $\frac{1}{p}P_{\lambda}$ is defined over M_{λ_M} and $[s, \rho] = -(\frac{1}{p}P_{\lambda}) + \rho(\frac{1}{p}P_{\lambda})$ in $E(M_{\lambda_M}) = E(M)$ from the definition of the connection map which is given above. Hence $[s, \rho] = 0$ iff $P_{\lambda} = 0$ in $E(K_{\lambda})/pE(K_{\lambda})$.

Finally we reach the point to prove our main result which is given in the following two results:

Theorem 4.6.10. Sel^[p] $(E/K)^{-\epsilon} = 0.$

Proof. Let $s \in Sel^{[p]}(E/K)^{-\epsilon}$, then is is enough to prove $[s, \rho] = 0$ for any $\rho \in H^+ - I^+$. Such element has the form $\rho = (\tau h)^2$ for some $h \in H - I$. Let ℓ be a rational prime which is unramified in M/\mathbb{Q} , and has a factor λ_M whose Frobenius is τh . Then $(\ell) = \lambda$ inert in K and λ splits completely in L. Hence the Frobenius of $F_{\lambda_M}/F_{\lambda}$ is $(\tau h)^2$. So it is enough to prove $s_{\lambda} = 0$ in $H^1(K_{\lambda}, E[p])$.

Let $c(\ell)$ and $d(\ell)$ be those constructed above. Then both are in $-\epsilon$ eigenspace. We want to prove $d(\ell)_{\lambda} \neq 0$. If not, then $y_K = P_1 \in pE(K_{\lambda})$, hence λ splits completely in $L(\frac{1}{1}y_K)$. But $\operatorname{Frob}(\lambda) = \rho$ is not in I^+ , this does not occur.

Using the notation in the proof of Theorem 4.6.10, one has

Theorem 4.6.11. The followings are equivalent:

- (1) $c(\ell) = 0$ in $H^1(K, E[p]);$
- (2) $c(\ell) \in \operatorname{Sel}^{[p]}(E/K) \subset H^1(K, E[p]);$
- (3) P_{ℓ} is divisible by p in $E(K_{\ell})$;
- (4) $d(\ell) = 0$ in $H^1(K, E[p]);$
- (5) $d(\ell)_{\lambda} = 0$ in $H^1(K_{\lambda}, E[p]);$
- (6) $P_1 = y_K$ is locally divisible by p in $E(K_{\lambda})$;
- (7) $h^{1+\tau}$ is in I^+ .

Proof. Easy.

Theorem 4.6.12. $Sel^{[p]}(E/K)^{\epsilon} \cong \mathbb{Z}/p\mathbb{Z} \cdot \delta y_K$

Proof. For $s \in zSel^{[p]}(E/K)^{\epsilon}$, it is enough to show $[s, \rho] = 0$ for all $\rho \in I$. This is because then from proposition 4.6.7, one has $s \in \operatorname{Hom}_{\mathcal{G}}(H/I, E_p) \cong \mathbb{Z}/pzZ \cdot \delta y_K$. The argument in the proof of proposition 4.6.8 gives that it is enough to show $[s, I^+] = 0$ (Replace H with I in the argument).

Let ℓ' be a prime with non-zero image $c(\ell')$ in $H^1(K, E[p])$. From theorem 4.6.11, we can select ℓ' such that its Frobenius is conjugate to τh in $\operatorname{Gal}(M/\mathbb{Q})$ for some $h \in H$ and $h^{1+\tau} \notin I^+(\operatorname{Given} h \in H \text{ and } h^{1+\tau} \notin I^+$, from Chebotarev density theorem, prime ℓ' whose Frobenius element is conjugate to τh in $\operatorname{Gal}(M/\mathbb{Q})$ has positive Dirichlet density, for such ℓ' , the proposition above implies $c(\ell')$ is non-trivial in $H^1(K, E[p])$. Hence $c(\ell') \notin \operatorname{Sel}^{[p]}$, hence the field extension $L' := L_{< c(\ell')>}$ of L has Galois group $\cong E[p]$ and $L' \cap M = L$. One obtain the following field tower:

where $S := \operatorname{Sel}^{[p]}(E/K)$. We have the prime ideal $(\ell) = \lambda$ in K which splits completely in L. It splits completely in L' iff $P_{\ell'}$ is locally a p-th power in $E(K_{\lambda_{\ell'}}) = E(K_{\lambda})$ for all factors $\lambda_{\ell'}$ of λ in $K_{\ell'}$. (?)

Let ℓ be a prime whose Frobenius element is conjugate to τi in $\operatorname{Gal}(M/\mathbb{Q})$ with $i \in I$ and whose Frobenius element is conjugate to τj in $\operatorname{Gal}(L'/\mathbb{Q})$ where $j \in \operatorname{Gal}(L'/L)$ such that $j^{1+\tau} \neq 1$. Claim $d(\ell \ell')$ in $H^1(K, E)[p]^{\epsilon}$ is locally trivial for all places $v \neq \lambda$ and $d(\ell \ell')_{\lambda} \neq 0$. The local triviality for $v \neq \lambda, \lambda'$ is clear. $i \in I \Longrightarrow c(\ell) = 0$ and $p \mid P_{\ell}$. By proposition 4.6.3, in the completion at a place dividing λ', P_{ℓ} is locally divisible by p and $d(\ell \ell')_{\lambda'} = 0$. Suppose $d(\ell \ell')_{\lambda} = 0$, then $P_{\ell'}$ is locally divisible by pin $E(K_{\lambda})$, but this means λ splits in L', so $(\tau j)^2 = j^{1+\tau} = 1$, which is a contradiction.

Now we have
$$s_{\lambda} = 0$$
, and hence $[s, I^+] = 0$.