
Chapter 4
Kolyvagin’s method

4.1 Eichler-Shimura construction

Let N a positive integer. We have seen that dim C(S2(N)) = g, where g is the genus

of the compact Riemann surface X0(N)(C) = Γ0(N)\H∗. Let T be the algebra

generated by all Hecke operator Tn over Z. In the proof of the rank of T over Z is

g, we know S2(N) has a basis f1, . . . , fg whose coefficients of their q-expansions are

integers.

From Jacobi-Abel’s theorem (Ref. Forster O. Lecture Notes on Riemann Surface

(GTM 81) §21), one knows that H1(X0(N)(C),Z) has dimension 2g over Z, and

when fixing any any basis ω1, . . . , ωg of Ω(X0(N)(C)) (typically, fix a basis f1, . . . , fg

of S2(N), then choose say ) ωj = 2πifj(z)dz, j = 1, . . . , g), we have

ΛN :=

{( ∫

α

ω1,

∫

α

ω2, . . . ,

∫

α

ωg

)∣∣∣∣α ∈ H1(X0(N)(C),Z)

}

is a lattice in Cg.

Eichler-Shimura construction shows that for any normalized newform f ∈ S2(N)

whose coefficients in its q-expansion are all integers, then f corresponds to an el-

liptic curve Ef such that L(Ef , s)
.
= L(f, s),

.
= means their Euler product coincide
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except finitely many primes (i.e. those primes p | N). Ef is quotient of the Jacobian

J0(N) of X0(N)(C) with a subabelian variety Af . Some preparation is needed before

we can show such construction.

•Universal property of the quotient of abelian varieties. Let A be an abelian

variety and C be an abelian subvariety of C. Then A/C is defined as an abelian

variety in the following sense: There exists an abelian variety A′ and a surjective

homomorphism f : A → A′ whose kernel is C. Moreover, any homomorphism

g : A → A′′ of abelian varieties such that C ⊆ kerg, ∃h : A′ → A′′ such that the

following diagram commutes:

A
f //

g
ÃÃA

AA
AA

AA
A A′

h
²²Â
Â
Â

A′′

(A′, f) is unique up to isomorphism and if A and C are defined over Q, then A′ and

F are also defined over Q.

• Universal property of X → J(X). Let X be a compact Riemann surface

of genus g with its Jacobian J(X). Fix a base point x0 in X to obtain a canonical

map Φ : X → J(X) with the following universal property: for any homomorphic

map F : X → T for any complex torus (i.e. Cn/Λ), we have the following diagram:

X
Φ //

F
""EE

EE
EE

EE
E J(X)

f

²²Â
Â
Â

T

where f is a holomorphic homomorphism satisfying

F = f ◦ Φ + F (x0).
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• Since J0(N) = Cg/ΛN is an abelian variety, the set of left invariant vector spaces

of J0(N) can be identified with the tangent space J at origin O of J0(N), which is

isomorphic to Cg. Distinct element in End(J0(N)) gives a distinct linear homomor-

phism on J ∼= Cg. Hence one has

End(J0(N)) ↪→ Mg(C).

• We know canonically J ∼= HomC(Ω(J0(N)),C) = Ω(J0(N))∗. Use z1, . . . , zg as

coordinates on J0(N), then

Ω(J0(N)) = ⊕g
j=1Cdzj.

One has a pairing:

< dzi, ej >= δij,

where δij is the Kronecker’s δ and e1, . . . , eg are the standard basis of Cg.

[
or more

generally, define < u, v >= v(u) for any u ∈ Ω(J0(N)) and v ∈ J, regarding J as

dual of Ω(J0(N)) over C.

]

• For any α ∈ End(J0(N)), define α∗ to be an endomorphism of Ω(J0(N)) by

< α∗(u), v >=< u, (dα)v >, ∀u ∈ Ω(J0(N)), v ∈ J.

[
This makes sense as follows: for any endomorphism α : J0(N) → J0(N), it induces

map OJ0(N),α(0) → OJ0(N),0, which in turns induces map

α∗ : M2
J0(N),α(0)/MJ0(N),α(0) = Ω(J0(N)) →M2

J0(N),0/MJ0(N),0 = Ω(J0(N)).
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α∗ also induces the map dα:

dα : HomC(M2
J0(N),0/MJ0(N),0,C) = J → HomC(M2

J0(N),α(0)/MJ0(N),α(0),C) = J,

by for any v ∈ HomC(M2
J0(N),0/MJ0(N),0,C),

dα(v)(u) = v(α∗u), ∀u ∈M2
J0(N),α(0)/MJ0(N),α(0),

i.e.

< α∗u, v >=< u, (dα)v > .
]

• Define Φ as follows:

Φ : H∗ π−→ Γ0(N)\H∗ Φ−→ J0(N).

Put π∗(ωj) = fj(z)dz, then f1, . . . , fg is a basis for S2(N).

One can easily verify Φ∗(dzj) = fj(z)dz.[

< Φ∗(dzj),
d

dz
>=< dzj, dΦ(

d

dz
) =< dzj,




f1(z)

...

fg(z)




>= fj(z)

]
Hence Φ∗ maps basis to basis.

• Therefore it makes sense to define µ : S2(N) → Ω(J0(N)) by

Φ∗(µ(f)) = f(z)dz, f ∈ S2(N).
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In particular, µ(fj) = dzj.

• For any n ∈ N, one has the Hecke operator Tn : X0(N) → Div(X0(N)). For

any τ ∈ X0(N)(C),

Tn(τ) =
∑

αiτ,

where αi runs through the elements in the set
{(

a b
0 d

) ∣∣ ad = n, d > 0, (a,N) = 1
}
.

Φ can also extend linearly to Div(X0(N)) → J0(N). Hence one obtain T n = Φ ◦Tn :

X0(N) → J0(N). From the universal property, one can define tn in the following

diagram:

X0(N) Φ //

T n $$JJJJJJJJJ
J0(N)

tn
²²Â
Â
Â

J0(N)

where tn satisfies

T n = tn ◦ Φ + T n(τ0). (4.1)

(4.1) has the explicit expression:

tn




∫ τ

τ0
f1(z)dz

...
∫ τ

τ0
fg(z)dz




=




∑
i

∫ αiτ

αiτ0
f1(z)dz

...
∑

i

∫ αiτ

αiτ0
fg(z)dz
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Hence

dtn




f1(τ)

...

fg(τ)




=




∑
i f1(αi(τ))αiτ

dτ

...
∑

i fg(αi(τ))αiτ
dτ




=




∑
i f1 ◦ [αi]2(τ)

...
∑

i fg ◦ [αi]2(τ)




=




Tnf1

...

Tnfg




= An




f1

...

fg




.

Here An becomes At
n when dtn acts on the dual of Ω(J0(N)), which is J ∼= Cg.

• Shimura-Taniyama. For any f ∈ S2(N),

t∗n(µ(f)) = µ(Tnf).

For any fj,

< t∗n(µ(fj)), el > =< µ(f), dtnel >

=< dzj, dtnel >

= (At
n)lj = (An)jl,
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and

< µ(Tn(fj)), el > =

g∑
i=1

< µ((An)jifi), el >

=

g∑
i=1

(An)ji < dzi, el >

= (An)jl.

• Eichler-Shimura construction Let f ∈ S2(N) be a normalized newform with

integer coefficients in its q-expansion f(z) =
∑

n>0 cnq
n, where q = e2πiz. Then there

exists an elliptic curve Ef defined over Q, which is the quotient of J0(N), i.e. there

is a homomorphism: ν : J0(N) → Ef . Also

• tn(kerν) = kerν.

• tnEf = cnEf .

• µ(f) is a nonzero multiple of ν∗(ω), where ω is the invariant differential of Ef .

• Ef
∼= C/Λf , where

Λf :=
{ ∫ γτ0

τ0

f(z)dz
∣∣ γ ∈ Γ0(N)

}

• L(Ef , s) equals to L(f, s) except at finitely many primes dividing N .

Proof. Let T be the commutative Q-subalgebra of EndQ(J0(N)) := End(J0(N))⊗Q
generated by all tn. Clearly T can be embedded into Mg(Q), hence dim QT is finite.

Let N be the nilradical ideal of T , then by Wedderburn’s theorem,

T ∼= (k1 ⊕ · · · ⊕ kr)⊕N ,
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for some number fields k1, . . . , kr. One has

t∗n(µ(f)) = µ(Tn(f)) = cnµ(f).

Hence the following map:

ρ : T → Q, tn 7→ cn

is a homomorphism as Q algebras. Clearly ρ(N ) = 0, hence WLOG, assume

ρ(k1) = Q, which implies k1
∼= Q and ρ is an isomorphism. One obtains an ideal

I := (k2 ⊕ · · · ⊕ kr)⊕R.

Now define Af be the abelian subvariety which is the sum of all α(J0(N)) for all

α ∈ I ∩ End(J0(N)). It can be proved tn is defined over Q (Ref. Knapp,

Elliptic curves §11, Ch.XI), hence Af is defined over Q. Hence one can form

the quotient (Ef , ν) of J0(N) by A (i.e. ν : J0(N) → Ef with kerν = Af ) and

everything is defined over Q. Since I is an ideal, it is easy to see βAf ⊆ Af for any

β ∈ T ∩ End(J0(N)). In particular tn(Af ) ⊆ Af . Hence ker(ν ◦ tn) ⊇ kerν, so by

universal mapping property, one has the following commutative diagram:

J0(N) ν //

ν◦tn ""FFFFFFFF
Ef

∃tn
²²Â
Â
Â

Ef

(4.2)

Hence tn acts on Ef as tn. From the definition of ρ, one has tn − ρ−1(cn) ∈ I and

ρ−1(cn) − [cn] ∈ I, hence tn − [cn] ∈ I ∩ End(J0(N)). So tn − [cn] acts as 0 on Ef .

I.e. tn(Ef ) = [cn]Ef .

Let m be the largest integer for which k1Nm 6= 0. Let 0 6= β ∈ k1Nm. WLOG, as-

sume β ∈ End(J0(N)) (after multiplying some m ∈ N since β(J0(N)) = mβ(J0(N))).

For any α ∈ I, βα = 0 since k1kj = 0 for any j 6= 1 and RmR = 0. Therefore
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β(Af ) = 0. Since β(J0(N)) 6= 0 because β 6= 0, hence Af 6= J0(N), i.e. dim Ef > 0.

Since dim Ef 6= 0, ∃ω′ ∈ Ω(Ef ) which is non-zero. ν : J0(N) → Ef induces

ν∗ : Ω(Ef ) → Ω(J0(N)). ν∗ is injective. From (4.2), one has

ν∗ ◦ t
∗
n = t∗n ◦ ν∗.

Since tn = [cn], t
∗
n = cn, i.e.

t∗n(ν∗(ω′)) = cnν
∗(ω′).

Put f ′ = µ−1(ν∗(ω′)), then

µ(Tnf
′) = t∗n(µ(f ′)) = t∗n(ν∗(ω′)) = cnν

∗(ω′) = cnµ(f ′).

So

Tnf
′ = cnf

′.

Suppose dim Ef > 1, then one has linearly independent ω′ and ω′′. Let f ′′ =

µ−1(ν∗(ω′′)), we have f ′′ and f ′ are linearly independent and

Tnf
′′ = cnf

′′.

This is a contradiction. Hence dim E = 1.

[
Uniqueness. Suppose A′ and (E ′, ν ′) are also satisfies the theorem with invari-

ant differential ω′. Then ν ′∗(ω′) and ν∗(ω) are multiples of each other. Hence they

annihilate the same subset of J — the tangent space of A′ and A. Since Af and A′

are the connected Lie subgroup of J0(N) with same Lie subalgebra, Af = A′.

]
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J0(N) ∼= Cg/Λ, where Λ has basis

lk =




∫
ck

f1dz

...
∫

ck
fgdz




, k = 1, . . . , 2g,

where c1, . . . , c2g are a basis of H1(X0(N)(C),Z) over Z. Write f =
∑

j rjfj, and

consequently

µ(f)(lk) =< µ(f), lk >=<
∑

j

rjµ(fj), lk >=
∑

j

rj < dzj, lk >

=
∑

j

rj

∫

ck

fjdz =

∫

ck

fdz.

Hence

µ(f)(Λ) = Λf .

Let a ⊂ J be the tangent space of A.

kerµ(f) = {u ∈ J
∣∣ < ν∗(ω), u >= 0}

= {u ∈ J
∣∣ < ω, (dν)(u) >= 0}

= {u ∈ J
∣∣ dν(u) = 0}

= ker(dν)

= a.

From Lie theory, one has exponential map J → J0(N) with kernel Λ, whose restric-

tion to a is the exponential map a → A. Since A is compact, a∩Λ is a lattice in a of

rank 2g − 2. Let x1, . . . , x2g−2 be a Z-basis for it and adding x2g−1 and x2g to make

Λ′ =
∑2g

j=1 Zxj has rank 2g. Hence Λ′ has finite index m in Λ. So Λ ⊂ 1
m

Λ′. So one

has

C = µ(f)(J) = µ(f)(
∑

Rxj) = µ(f)(Rx2g−1 + Rx2g).
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Hence µ(f)(x2g−1) and µ(f)(x2g) are linearly independent over R. On the other hand

µ(f)(Zx2g−1 + Zx2g) = µ(f)(
∑

j

Zxj)

= µ(f)(Λ′)

⊆ µ(f)(Λ)

⊆ µ(f)(
1

m
Λ′) = µ(f)(m−1Zx2g−1 + m−1Zx2g).

Hence one concludes Λf is a free abelian subgroup of C of rank 2 over Z that spans

C over R, i.e. Λf is a lattice in C.

Hence E = C/Λf is an elliptic over C. One has the map

δ : J
µ(f)−−→ J/a ∼= C→ C/Λf = E.

ker(δ) = µ(f)−1(Λf ) = a + Λ. Hence δ factors through the exponential map exp :

J → J0(N):

δ = ε ◦ exp,

for some holomorphic homomorphism ε : J0(N) → E with kernel exp(a + Λ) = A.

Hence ε is a morphism over C. The universal property says the following diagram

commutes:

J0(N) ν //

ε
##GG

GG
GG

GG
G

Ef

∃θ
²²Â
Â
Â

E

Since kerε = kerν = A, kerθ is trivial, hence Ef
∼= E.

For the equality of L(Ef , s) and L(f, s), this is a consequence of Eichler-Shimura

congruence. (Ref. Diamond & Shurman A first course in modular forms Chapter 8).

One has the following result:



4.1 Eichler-Shimura construction 44

Let E be an elliptic curve defined over Q and E has good reduction over

prime p, then

ap(E) = σp,∗ + σ∗p

as endomorphisms on Pic0(Ẽ). From Eichler-Shimura congruence:

Pic0(X0(N))
Tp−−−→ Pic0(X0(N))y

y
Pic0(X̃0(N)) −−−−→

σp,∗+σ∗p
Pic0(X̃0(N))

As we proved Tp acts on Ẽf as [cp], hence [cp] = [ap(Ef )]. Since End(Ef ) has no zero

divisors, ap(Ef ) = cp.

[
for Tp acts in Pic0(X1(N)) as follows:

Tp[E, Q] =
∑

C

[E/C,Q + C],

where C runs through all subgroup of E of order p such that C∩ < Q > is trivial.

In particular if p - N , then the sum runs through all such subgroups. Let C0 be the

kernel of the reduction map E[p] → E[p], where E is defined over Q (with ordinary

reduction at p | p, which is not necessary). Then

Lemma 4.1.1. [E/C,Q + C] =





[E
σp

, Q
σp

] C = C0

[E
σ−1

p
, [p]Q

σ−1
p

] C 6= C0

Let MS(N) be the moduli space of X1(N), one has the following diagram:

Div0(MS(N))
Tp−−−→ Div0(MS(N))y

y

Div0(MS(N))
σp+p<p>σ−1

p−−−−−−−−→ Div0(MS(N))



4.2 CM points 45

and

Div0(MS(N))
σp+p<p>σ−1

p−−−−−−−−→ Div0(MS(N))y
y

Div0(X1(N))
σp,∗+<p>∗σ∗p−−−−−−−−→ Div0(X1(N))

Under X0(N), < p > is trivial, hence one obtains σp,∗ + σ∗p.

One has the modular parametrization:

φ : X0(N) → Ef .

σp,∗ + σ∗p commutes with φ∗, hence σp,∗ + σ∗p on Pic0(X̃0(N)) becomes σp,∗ + σ∗p on

Pic0(Ẽf )

]

4.2 CM points

The converse of Eichler-Schimura theorem is also true. The converse is a deep

result due to Wiles, Taylor etc. From their results, for any elliptic curve E/Q of

conductor N , ∃f ∈ S2(N) which is a new form such that E is isogenous to Ef over

Q, where Ef is constructed from f via Eichler-Shimura construction and consequently

L(Ef , s) = L(E, s) = L(f, s). Hence it is often enough to study Ef for some newform

f ∈ S2(N). In such case and when N is square free, one has an explicit modular

parametrisation:

ΦN : X0(N)(C) = Γ0(N)\H∗ Φ1−→ C/Λf
ΦW−−→ Ef (C),

where Φ1 is given by

τ 7→
∫ τ

i∞
2πifdz,

and ΦW is the Weierstrass uniformisation. ΦN can be used to construct algebraic

points on E defined over some abelian extension of Q. Class field theory tells us

where these points, which are called Heegnar points, lie exactly. To construct such
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points, one starts with a quadratic imaginary field K = Q(
√

D) for some square free

negative integer D. It is a well-known fact that its ring of integers OK is

OK = Z[ωD], where ωD =





√
D D 6≡ 1(mod 4)

1+
√

D
2

D ≡ 1(mod 4).

OK is the maximal order of K (i.e. its conductor is 1) and any order O of K can be

written as

O = Z⊕ cZωD,

for some integer c > 0 and vice versa. One as a bijection

Ell(O) :=

{
isomorphism classes of E/C with CM of O

}
∼=←−−→ Pic(O),

where Pic(O) is the Picard group, which has several equivalent definitions, here it is

defined as the group generated by all invertible fractional O-ideals prime to c (hence

invertible) modulo the subset of principal O-ideals. It can be proved that Pic(O) is

finite and its order is

h(O) =
h(OK)f

[O∗
K : O∗]

∏

p|c

(
1− (dK

p

)1

p

)

It can be proved that

Pic(O) ∼= IK(c)/PK,Z(c),

where PK,Z(f) is the subgroup of IK(c) (the group of all OK-ideals prime to c)

generated by principal ideals of the form αOK for some α ∈ OK such that α ≡
a mod (cOK) for some integer a prime to c(Cox, Primes of forms X2 + nY 2, §7).

Class field theory gives the following result:

Theorem 4.2.1. For any proper fractional O-ideal a,K(j(a)) is the ring

class field of the order O, where j(a) is the j-invariant (a can be naturally
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identified with a lattice in C ). The Artin map:

ϕ : O ∼=−→ Gal(K(j(a))/K)

is defined as

a 7→ σa,

where

σa(j(b)) = j(ab),

for any fractional O-ideal a and b prime to c.

[
The class field theory is as follows:

Let L/K be an abelian extension and zfrakm be a modulus divisible by

all primes of K (including infinite primes) ramified in L, then the Artin

map ϕ : IK(m) → Gal(L/K) is surjective and if the exponents of finite

primes in m are sufficiently large, ker(ϕ) is a congruence subgroup for m,

i.e. PK,1(m) ⊂ ker(ϕ) ⊂ IK(m), and one has the isomorphism:

IK(m)/ker(ϕ)
∼=−→ Gal(L/K).

Conversely, for any modulus m of K and for any congruence subgroup H

for m (i.e. PK,1(m) ⊂ H ⊂ IK(m)), there exists a unique abelian extension

L/K whose ramified primes (including infinite primes) divide m and the

Artin map induces an isomorphism:

IK(m)/H
∼=−→ Gal(L/K).



4.2 CM points 48

In particular, let m = fOK for some positive integer f , clearly

PK,1(f) ⊂ PK,Z(f) ⊂ IK(f),

hence class field theory guarantees the unique existence of the abelian extension

Hf/K such that

IK(f)/PK,Z ∼= Gal(Hf/K).

Furthermore, if K is a quadratic imaginary field, then this is equivalent saying each

order corresponds uniquely an abelian extension of K which is called the ring class

field.

This can also be interpreted in the following way via CM: Pic(O) acts on Ell(O)

as follows: for any a whose norm (#O/a) is prime to the conductor c of O,

[a] · [C/Λ] := [C/a−1Λ].

This is well-defined: End(C/Λ) = {α ∈ C
∣∣ αΛ ⊆ Λ} = {αa−1Λ ⊆ a−1Λ} =

End(C/a−1Λ), which implies [a] · [C/Λ] ∈ Ell(O). Further, C/a−1Λ ∼= C/a′−1Λ ⇐⇒
∃a ∈ C, such that a−1Λ = a(a′)−1Λ ⇐⇒ Λ = aa(a′)−1Λ = a−1a−1a′Λ ⇐⇒
aa(a′)−1, a−1a−1a′ ⊆ O (by the definition of proper ideals) ⇐⇒ aa ⊆ a′, and a′ ⊆
aa ⇐⇒ aa = a′ ⇐⇒ a ∼= a′ as O-modules.

The action is transitive since for any C/Λ with CM O, Λ is homothetic to a lat-

tice contained in K and C/Λ′ ∼= C/Λ(Λ′Λ−1). Since one can always assume Λ and

a are in K, the action of Pic(O) and that of GK := Gal(K/K) on Ell(O) commute

with each other. One can define a group homomorphism:

η : GK → Pic(O), (C/Λ)σ = η(σ) · (C/Λ), ∀σ ∈ GK .
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For some other lattice Λ such that C/Λ ∈ Ell(O) which defines η′, since Pic(O) acts

on Ell(O) transitively, [b] · [C/Λ] = [C/Λ′] for some b ∈ Pic(O) prime to O. Hence

([b] · [C/Λ])σ = [b]([C/Λ])σ = [b] · η(σ) · (C/Λ) = [bη(σ)] · (C/Λ).

On the other hand

(C/Λ′)σ = η′(σ)(C/Λ′) = η′(σ) · ([b] · (C/Λ)) = [η′(σ)b] · (C/Λ).

So from the commuativity of Pic(O),

[bη(σ)](C/Λ) = [bη′(σ)](C/Λ).

The result proved earlier shows that bη′(σ) ∼= bη(σ) as O-module, i.e. η′(σ) = η(σ)

in Pic(O). It is easy to verify η is a group homomorphism.

The class field theory tells us there is an abelian extension Hc/K which is unramified

for all prime p - c whose Galois group Gal(Hc/K) ∼= Pic(O). One has the reciprocity

map:

ϕc : Pic(O) → Gc := Gal(Hc/K), p 7→ σp, ∀p - c.

Let H := (K)kerη, Galois theory tells us H/K is an abelian (hence Galois) extension.

Lemma 4.2.2. H = Hc.

Proof. Clearly j(E) ∈ H by the definition of H for any E ∈ Ell(O). Hence each

such E is defined over some abelian extension L/K. Fix such an E. From class field

theory (using uniqueness) and Galois theory, it is enough to show η is onto. Let p be

a prime in K unramified in H/K such that E has good reduction at all the primes of
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H above p and p splits in K/Q and p - j(A′)− j(A′′) for all distinct A,A′′ in Ell(O).

For the set of such primes (has Dirichlet density 1 (Only finitely many primes are

excluded) and hence), the corresponding Frobenius elements generate Gal(H/K).

Let P be a prime of L over p such that E/L has the good reduction EP. The

inclusion p → O induces θ : E ∼= C/Λ = C/ΛO = C/ΛO−1 → C/Λp−1, whose

degree is Np = p = OK/p = O/O∩p since p is not inert in K/Q. Their reduction at

P, θ : E → p · E has degree p, whose duality is purely inseparable, hence the only

possibility is the Frobenius map: θ̂ : E/E[p] → E/E[p]
(p)

= E. Hence

E ≡ (p · E)(p) = σp(p · E) = p · (σp(E))(mod P).

Hence η(σ−1
p ) = [p]. To prove θ̂ is purely inseparable, /////one///////uses/////the//////////////following//////////////theorem:

////////////Suppose////////E/L///is////an///////////elliptic/////////curve////////with//////CM////in////K//////and//////has//////the////////good///////////////reduction////at////////P | p
////for////////some//////////prime////in////Q,////////then////E//////has/////////Hasse//////////////invariant///0////iff///p///is//////not///////split////in//////K.///////(see////////Lang

////Ch/////13//////$4)./ One knows from Silverman’s AEC (p.78), the isogeny θ : E → E/E[p] is

separable. Consider θ̂◦θ : E → E, which is the map [p], since the characteristic of the

residue field is p, [p]∗ωE = pωE = 0. Hence [p] is not separable. Since θ is separable,

θ̂ : E/E[p] → E must be purely inseparable with degree p, hence E ∼= (E/E[p])p

and θ̂ is the Frobenius map: E/E[p] → E/E[p]
(p)

.
]

For τ ∈ H, define

Oτ := {γ ∈ M2(Z) ∩GL2(Q), γτ = τ} ∪ {02×2}.

It is easy to see

Oτ = {γ ∈ M2(Z)
∣∣ γ has eigenvectors

(
τ
1

)
and

(
τ
1

)}. (4.3)
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For each γ ∈ Oτ , define zγ to be the eigenvalue associated with the eigenvector
(

τ
1

)
,

consequently the map γ 7→ zγ gives Oτ ↪→ C. Under this identification, one has

Lemma 4.2.3. Oτ
∼= End(Eτ ), where Eτ = C/ < 1, τ >, τ ∈ H.

Proof. From (4.3), zγ(< 1, τ >) ⊆< 1, τ >, hence induces an endomorphism σγ of

Eτ . The map γ 7→ σγ is clearly injective and surjective.

[
Define CM(O) = {τ ∈ SL2(Z)\H

∣∣ Oτ = O}. The class group Pic(O) acts on

CM(O) as follows: for any class b ∈ Pic(O), it can be represented by an integral ideal

B ⊂ O such that O/B is cyclic (Cox, P. 236). For any τ ∈ CM(O), < 1, τ > B−1 is

a lattice, hence is homothetic to < 1, τ ′ > for some τ ′ ∈ SL2(Z)\H, define b ∗ τ = τ ′.

It is easy to see ∗ is an action and compatible with the action on Ell(O). From the

class field theory, one has for any prime [p] ∈ Pic(O),

j(b ∗ τ) = j(p · C/ < 1, τ >) = j((C/ < 1, τ >)σp) = j(C/ < 1, τ >)σp = j(τ)σp = ϕ(p)j(τ)

]

The main theorem of CM asserts for any τ ∈ H∩K where K is a quadratic imaginary

field, j(τ) ∈ H, where H/K is the ring class field associated with the orderOτ . Define

Oτ,N := Oτ ∩ ONτ and let ΦN and Ef be as before, one has

Theorem 4.2.4. For any τ ∈ H ∩ K, ΦN(τ) ∈ Ef (H), where H is the ring class

field with respect to Oτ,N .

Proof. j(τ) and j(Nτ) are in H. Hence ΦN(τ) is the image of a point in X0(N)(H)

and ΦN is defined over Q.

Remark One can easily prove Oτ,N = {γ ∈ M0(N)
∣∣ γτ = τ} ∪ {02×2}, where

M0(N) ⊂ M2(Z) whose element is upper triangular modulo N .
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(The following data are extracted from Darmon’s Rational points over modular el-

liptic curves). Take N = 11, the elliptic curve with this conductor is (the dimension

of S2(11) is 1):

y2 + y = x3 − x2 − 10x− 20.

The order with smallest discriminant embedded in M0(11) is OK = Z(1+
√−7
2

) ⊂
K := Q(

√−7) which has class number 1. OK in M0(11) is Z+Z
( −4 −2

11 5

)
whose fixed

point is τ = −9+
√−7

22
, which corresponds to a point (1−√−7

2
,−2− 2

√−7) in E(C) to

25 decimal digits of accuracy.

4.3 Euler System

Let K be an imaginary quadratic extension of Q which is not Q(i) or Q(
√−3).

For any positive integer λ, denote Kλ to be the ring class field of K with conductor

λ. Let E/Q be an elliptic curve of conductor N and ` be a fixed prime number

satisfying some conditions. One has the following field towers:

Kλ

K

Q

Let Σ be the set of positive integers relative prime to N . Define the set T to be

T := {τλ ∈ lim←−H1(Kλ, E[`n])
∣∣λ ∈ Σ}.

Here the projective limit is induced by the natural map H1(Kλ, E[`n2 ]) → H1(Kλ, E[`n1 ])

for any n2 ≥ n1, which is induced by E[`n2 ] → E[`n1 ]. T is called the 0-th Euler

system if for any prime number δ 6= 2 relative prime to N (so δλ ∈ Σ) and λ such
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that the prime divisor δ′ of δ in K is unramified in Kλ, then

corδλ/λ(τδλ) = yδτλ,

where corδλ/λ is the corestriction map:

H1(Kλδ, E[`n]) → H1(Kλ, E[`n]),

and

yδ = Fr−1
δ′ (xδ − Pδ(Frδ′)) ∈ Z[G(Kλ/K)].

Here

xδ := [Kδ : K1],

and Frδ′ and Pδ are defined as follows: From class field theory, one has Artin map:

θ : I
S(λ)
K /K(λ),1Nm(I

S(λ)
Kλ

)
∼=−→ Gal(Kλ/K),

we define Frδ′ = θ(δ′). Since δ is a prime number which is not a divisor of N , E has

good reduction over δ, Pδ(X) := X2 − aδX + δ is the characteristic polynomial of

the Frobenius automorphism on the Tate module Tq for any prime number q 6= δ.

[
corestriction map: In functorial way, suppose H is a subgroup of G with finite

index. Let M be a G-module, then for any m ∈ MH ,

NmG/Hm :=
∑

[s]∈G/H

sm

is independent of the choice of S, and is clearly fixed by G. Hence NmG/H defines a

homomorphism:

MH → MG,

which can be extended uniquely to Hr(H, M) → Hr(G,M), which is called the

corestriction map. This map can also be constructed explicitly: One has a natural



4.3 Euler System 54

map:

IndG
HM → M, ϕ 7→

∑

[s]∈G/H

sϕ(s−1),

which in turn gives

Hr(G, IndH
GM) → Hr(G,M).

From Shapiro’s lemma, one has the composition:

Hr(H, M)
∼=−→ Hr(G, IndH

GM) → Hr(G,M),

which is the corestriction map. One has the following property:

Cor ◦ Res = [G : H].

]

Lemma 4.3.1. yδ is independent of the choice of δ′.

Proof. If δ is ramified or inert in K, then δ′ is unique. Suppose δ splits in K, then

δ = δ′δσ, where σ is the complex conjugation.

Since δ is a prime,

xδ = [Kδ : K1] = #(OK/δOK)×/(Z/δZ)×.

On the other hand,

OK/δOK =
(
Z⊕ 1 +

√
D

2
Z

)/
δ
(
Z⊕ 1 +

√
D

2
Z

) ∼= Z/δZ⊕ Z/δZ.

Hence

xδ = δ − 1.
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So

yδ = Fr−1
δ′ (δ − 1− Fr2

δ′ + aδFrδ′ − δ) = aδ − Frδ′ − Fr−1
δ′ .

Since θ(δ) = 1 and δ = δ′(δ′)σ, Fr−1
δ′ = Frδ′σ , i.e.

Frδ′ + Fr−1
δ′ = Frδ′σ + Fr−1

δ′σ .

This proves the independence.

4.4 Basic assumption

Let E/Q be an elliptic curve of conductor N . Let K = Q(
√−D) be an imaginary

quadratic field in which all prime factors of N are split. Gross and Zagier prove that

if L′(E/K, 1) 6= 0, then ĥ(yk) 6= 0, where ĥ is the Néron-Tate canonical height and

yk = TrHK/K(y1), where y1 is a Heegnar point defined over HK , the Hilbert class

field of K. This implies the rank of E(K) is at least 1.

Kolyvagin proves in this case E(K) has rank 1. Here I give the Kolyvagin’s main

idea in his proof, following Gross.

First, we assume E is not CM over C. In this case, Q(E[p])/Q is Galois and Serre

proves Gal(Q(E[p])/Q) ∼= GL2(Z/pZ) for all sufficient large primes p.

By assumption, the order of yK which is defined over K is infinite. Since E(K)

is finitely generated, there are only finitely many integers n such that yK = nP for

some P ∈ E(K). The argument is as follows: Suppose the rank of E(K) is 2 (

similar argument for other cases), which is generated by Q1 and Q2. Ignoring the

torsion part, we can assume

yk = b1Q1 + b2Q2.
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Suppose yK = nP for some P ∈ E(K) and P = a1Q1 + a2Q2. Then

nP = na1Q1 + na2Q2 = b1Q1 + b2Q2.

The sum is the direct sum as Z-modules. Hence

b1 = na1; b2 = na2.

When yK is fixed, b1 and b2 are fixed and there are only finitely many ways to write

a given integer into a product of two integers.

From now on, we assume p is a sufficiently large prime (i.e. to ensure Gal(Q(E[p])/Q) ∼=
GL2(Z/pZ)) and yK 6= pP for any P ∈ E(K).

4.5 Definitions of Selmer groups and Shafarevich groups (for my own
reference)

Let K be a number field. Let E and E ′ be elliptic curves defined over K and

φ : E → E ′ be an isogeny defined over K. The sequence

0 → E[φ] → E
φ−→ E ′ → 0

is exact as GK-modules, where GK = Gal(K/K). This yields the exact sequence:

0 → E(K)[φ] → E(K)
φ−→ E ′(K)

δ−→ H1(GK , E[φ]) → H1(GK , E)
φ−→ H1(GK , E ′),

which in turn gives the exact sequence:

0 → E ′(K)/φ(E(K))
δ−→ H1(GK , E[φ]) → H1(GK , E)[φ] → 0.
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For any place p of K, the inclusion Gp := Gal(Kp/Kp) ⊂ GK and E(K) ⊂ E(Kp)

gives the restriction map H1(GK , E[φ]) → H1(Gp, E). The φ-Selmer group of E/K

is defined by

Sφ(E/K) := ker
{

H1(GK , E[φ]) →
∏

p

H1(Gp, E)
}

.

The Shafarevich group SH(E/K) is defined by

SH(E/K) := ker
{

H1(GK , E) →
∏

p

H1(Gp, E)
}
.

Further by these definitions, we have the exact sequence

0 → E ′(K)/φ(E(K)) → Sφ(E/K) → SH(E/K)[φ] → 0.

In particular, let φ = [p], we have the exact sequence

0 → E(K)/pE(K)
δ−→ Sp(E/K) → SH(E/K)[p] → 0. (4.4)

Here δ is the connection map induced from the exact sequence 0 → E[p] → E
[p]−→

E → 0.

4.6 Kolyvagin’s proof

Kolyvagin actually proves the following result: Under the conditions mentioned

above, Sp(E/K) is cyclic and generated by δyK . Then the exact sequence (4.4)

asserts E(K) has rank 1 and SH(E/K)[p] is trivial.

1. Construct cohomology classes c(n) ∈ H1(GK , E[p]) based on Heegnar points

of conductor n prime to N .
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Assume O×
K = ±1. Take an ideal N ⊂ OK such that O/N ∼= Z/NZ.

Take an order On := Z + nOK . Define Nn := N ∩ On, which is an invertible

On-ideal. This is because Nm(N ) = N which is prime to n, i.e. N is an OK-ideal

prime to n, and hence Nn is an On-ideal prime to n with same norm, which also

implies Nn is also invertible. See Cox p144.

The isogeny C/On → C/N−1
n with kernel On/Nn

∼= Z/NZ defines a point xn on

X0(N) according to the moduli interpretation. xn is defined over Kn, the ring class

field of modulus nOK . We have the following diagram:

Kn

(OK/nOK)×/(Z/nZ)×

Pic(On)K1

Pic(OK)

K

<1,τ>

Q

The diagram comes from class field theory. Gal(Kn/K1) comes from the following

two exact sequences:

0 → IK(n) ∩ PK/PK,Z(n) → IK(n)/PK,Z(n) = Pic(On) → IK/PK = IK(1)/PK,Z(n) = Pic(OK) → 0,

and when O×
K = ±1,

1 → (Z/nZ)× → (OK/nOK)× → IK(n) ∩ PK/PK,Z(n) → 1,

where PK,Z(n) is the set of principle ideas p satisfying p ≡ a(mod n) for some a ∈ Z.

Here we add some background on Heegnar points. A Heegnar corresponds
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to pairs (E, E ′) of two N -isogenous elliptic curves with the same O of complex

multiplications. From the moduli interpretation of X0(N), such pair determines

a point y on X0(N). Such a point can also be identified with y = (O, n, [a]),

where n is a proper (hence invertible) O-ideal such that O/n is cyclic with order

N and [a] denotes an element in the class group of O. One has the natural map

E = C/a → C/an−1 = E ′ with kernel an−1/a ∼= Z/NZ. To find the real point,

choose an oriented basis < ω1, ω2 > of a such that an−1 =< ω1, ω2/N >, and y

corresponds to ω1/ω2.

The conductor of y is the conductor of O. For the complex conjugation τ , one

has

(O, n, [a])τ = (O, nτ , [aτ ]),

since τ is continuous. Note [aτ ] = [a]−1

Let Kc be the ring of class field corresponding to the conductor of O. Then one

has the Artin map: θ : Pic(O) → Gal(Kc/K), and

(O, n, [a])θ([b]) = (O, n, [ab−1]) = (O, n, [abτ ]).

For the Fricket involution wN ,

wN(O, n, [a]) = (O, nτ , [an−1] = (O, nτ , [anτ ]).

We also have the Hecke operator T` on y with prime number ` - N and (c,N) = 1,
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in this case

T`(O, n, [a]) =
∑

a/b=Z/`Z
(Ob := End(b), nb := nOb ∩ Ob, [b]),

where the sum is over ` + 1 sub-lattices in a.

=⇒=⇒=⇒=⇒=⇒=⇒=⇒=⇒=⇒=⇒=⇒=⇒=⇒

Back to our original setting. We also assume n is square-free and n - NDp. This

implies for any prime divisor ` of n, ` is unramified in the extension K(E[p]). We

also assume

Frob(`) = Frob(τ) (4.5)

as conjugate classes in Gal(K(E[p])/Q). Hence Frob(`) = τ in Gal(K/Q) and so l

is inert in K, we use λ to denote (l) in K. We also have

a` ≡ ` + 1 ≡ 0(mod p).

The reason is as follows: from the Galois representation from Tate modules of elliptic

curves defined over Q, for any ` - pN , the characteristic polynomial for Frob(`) acting

on E[p] is

x2 − a`x + `.

The characteristic polynomial for Frob(τ) acting on E[p] is x2 − 1. Since Frob(`) =

Frob(τ) and characteristic polynomial depends only on the conjugacy class, one must

have these two characteristic polynomials are equal mod p, i.e.

a` ≡ 0(mod p), and ` ≡ −1(mod p).
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Fλ := OK/λ, the residue field. It has `2 elements, since ` is inert in K. From

the condition (4.5), we know the residue field OK(E[p])/p is a quadratic extension of

Z/(`) = F` for any prime p in K(E[p] over ` , but ` is inert in K, which means in

K, we already have

[OK/(λ) : F`] = 2.

Hence λ in K splits completely in K(E[p]). Let Fλ := OK/(λ). The above discussion

implies that the reduction Ẽ of E over ` have all its p-torsion points over Fλ(Note

E has good reduction over `), i.e.

Ẽ[p] = Ẽ(Fλ)[p] ∼= (Z/pZ)2.

One can also obtain the eigen values for τ . Points in Ẽ(Fλ) = Ẽ(F`2) fixed by τ

must be in Ẽ(F`) and vise versa. Hence #Ẽ(Fλ)
+ = ` + 1− a`. One has

Ẽ(Fλ) = Ẽ(Fλ)
+ ⊕ Ẽ(Fλ)

−,

and Weil’s conjecture gives

#Ẽ(F`2) = (` + 1)2 − a2
` = (` + 1− a`)(` + 1 + a`),

So

#̃E(Fλ)
− = ` + 1 + a`.

n =
∏

`. Gn := Gal(Kn/K1). hen Gn =
∏

G`. G`
∼= F×

λ /F×
` , which is cyclic

of order ` + 1. Fix a generator σl and define Tr` =
∑

σ∈G`
σ in Z[G`]. Let D` be a
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solution of

(σl − 1)Dl = ` + 1− Tr`. (4.6)

Suppose D` and D′
` are two resolutions of (4.6), then

(σ` − 1)D` − (σ` − 1)D′
` = (σ` − 1)(D` −D′

`) = 0,

hence D` is well-defined up to elements in Z · Tr`. Dn :=
∏

D`.

Dnyn in E(Kn) gives a class in E(Kn)/pE(Kn) and is fixed by Gn.

Proof. Gn =
∏

`. Hence it is enough to prove (σ` − 1)Dnyn ∈ pE(Kn). n = `m.

Hence

(σ` − 1)Dn = (σ` − 1)D`Dm = (` + 1− Tr`)Dm,

so

(σ` − 1)Dnyn = (` + 1)Dmyn −Dm(Tr`yn).

p | `+1, hence it is enough to show Tr`yn ∈ pE(Km). But Tr`yn = a` · ym and p | a`.

Another property is that each prime factor λn of ` in Kn divides a unique prime λm

of Km, and yn ≡ Frob(λm)(ym)(mod λn).

[
The proof of the two properties used in the above proof: By definition, xm can be

identified with (Om,Nm, [Om]) , where Nm = N ∩Om, then

T`xm =
∑

Om/b=Z/`Z
(End(b),NmEnd(b) ∩ End(b), [b]).

One has that Om = Z+mOK = Z+m· 1+
√

dK

2
= [1,md], where dK is the discriminant

of K and d = 1+
√

dK

2
. From Cox p235, the cyclic sublattices of Om are:

[1, `md], [`,md + j], j = 0, . . . , `− 1.
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For b = [1, `md], since `m = n, [1, `md] = [1, nd] = On, and so in this case,

End(b) = b = On. For b = [`,md + j], from Cox p.135 Lemma 7.5 and p.209

Theorem 10.4, we only need to consider the lattice [1, md+j
`

]. md+j
`

satisfies the

quadratic equation in Z[x]:

`2x2 + (−m− 2j)x + ((
m

2
+ j)2 +

m2

4
|dK |).

Note since dK ≡ 1(mod 4), (m
2

+ j)2 + m2

4
|dK | ∈ Z. Hence [1, md+j

`
] is a proper ideal

for the order [1, `2 · md+j
`

] = [1, `md] = [1, nd] = On, i.e. End(b) = On. Hence

T`xm = (On,Nn, [On]) +
`−1∑
j=0

(On,Nn, [[1,
md + j

`
]]
)
.

G` is the subgroup of Gn = Gal(Kn/K1) fixing Km, i.e. G` = Gal(Kn/Km) which is

the subgroup of Gal(Kn/K) fixing Km. Since n is square free, all sublattices of Om

of index `, which are orders in On are those whose images of Artin map fix j(Om).

I.e.

T`xm = Tr`(xn) =
∑
σ∈G`

(On,Nn, [On])σ. (4.7)

From Eichler-Shimura construction, one has ϕ(Tr`(xn)) = a` · ϕ(xn).

For the second property, since ` - m, λ is unramified in Km/K. Since (λ) is

also principal, λ is totally split in Km since Artin map maps λ to the identity in

Gal(Km/K) ∼= Pic(Om). Since Gal(Kn/Km) ∼= G`
∼= F×

λ /F×
` , so all primes above λ

in Kn has trivial residue field extension, but factors λm of λ in Km are ramified in

Kn, thus must be totally ramified, i.e. λm = (λn)`+1. So the residue field Fλn has `2

elements and is canonically isomorphic to Fλ. From (4.7), one sees that any point in

the divisor T`(xm) is the conjugate of xn over Kn/Km. Since λm is totally ramified

in Kn, any point in the divisor T`(xm) ≡ xn(mod λn).
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]

The properties of {yn} forms an Euler system in the sense of Kolyvagin.

We have the following tower of Galois extension:

Kn

Gn

GnK1

K

Q

Let S be a set of coset rep., define

Pn :=
∑
σ∈S

σ(Dnyn) ∈ E(Kn).

Then [Pn] is fixed by Gn. Use the same set S to define Pm for any m | n. Note

P1 = yK . The exact sequence

0 → E[p] → E
p−→ E → 0

gives

0 → E[p](Kn) → E(Kn)
p−→ E(Kn) → H1(Kn, E[p]) → H1(Kn, E)

p−→ H1(Kn, E).
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This gives the following commutative diagram:

0

²²
H1(Kn/K, E)[p]

Inf
²²

d̃(n) 7→d(n)


0 // E(K)/pE(K)

²²

δ // H1(K, E[p])

Res∼=
²²

//

c(n) 7→d(n)
,,
H1(K, E)[p] //

Res
²²

0

0 // (E(Kn)/pE(Kn))Gn
δn //

[Pn] 7→δn[Pn]

22
H1(Kn, E[p])Gn //

δn[Pn] 7→c(n)

TT

H1(Kn, E)[p]Gn

(4.8)

c(n) is also defined in the diagram.

The middle restriction is ∼=. 1. the exact sequence

0 → H1(Kn/K, E(Kn)[p]) → H1(K, E[p])
Res−−→ H1(Kn, E[p])Gn .

(see e.g. Serre Galois Cohomology, p15).

[
Or from the usual inflation-restriction map: G is a pro-finite group, H / G with

G-module M , then we have the exact sequence:

0 → H1(G/H, MH) → H1(G,M) → H1(H, M).

On the other hand, for any [α] ∈ G/N and [σ] ∈ H1(H, M) which comes from the

image of some element in H1(G,M), one has

σα(g) = ασ(α−1gα)

= α(σ(α−1g) + α−1σ(α))

= · · ·

= ασ(α−1) + gσ(α) + σ(α),
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while

0 = σ(1) = σ(αα−1) = σ(α) + ασ(α−1),

so

σα(g)− σ(g) = gσ(α)− σ(α),

i.e.

[α] = [ασ]

in H1(H, M).

]

The cokernel of the middle map: From Hochschild-Serre-Leray spectral sequence,

One has

0 → H1(G/H, MH) → H1(G,M) → H1(H, M)G/H → H2(G/H, MH) → H2(G,H),

one sees the cokernel maps injectively into H2(Kn/K, E(Kn)[p]). Since E has no

p-torsion in Kn, the middle homomorphism is ∼=.

c(n) is represented by 1-cocycle

f(σ) = σ(
1

p
Pn)− 1

p
Pn − (σ − 1)Pn

p
.

τ , the complex multiplication acts on H1(K, E[p]). We have a direct decomposi-

tion with respect to τ ’s eigenvalues ±1:

H1(K, E[p]) = H1(K, E[p])+ ⊕H1(K, E[p])−.
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Denote wn to be the Fricke involution, then for eigenform f associate to E,

f
∣∣wN = εf,

where ε = ±1.

Proposition 4.6.1. yτ
n − εyσ

n is a torsion point in E(Kn) for some σ ∈ Gn.

Proof. The various actions on Heegnar points given above show that for any σ ∈ Gn,

one has b ∈ Pic(O) such that θ(b) = σ and

wN(xσ
n) = wN(O, n, [abτ ]) = (O, nτ , [abτnτ ]).

So take b = nτ (a)2, then

wN(xσ
n) = xτ

n,

where σ = θ(b). So

(xn −∞)τ = wN(xn −∞)σ + (wN∞−∞).

Here (wN∞−∞) = (0−∞) is the torsion point in J0(N).

Proposition 4.6.2. [Pn] is in εn := ε(−1)fn eigenspace for τ , where fn is the number

of prime divisors of n. The similar results hold for c(n) and d(n).

Proof. Pn =
∑

[σ]∈Gn/Gn

σDnyn. One has Gal(Kn/Q) ∼= Gn o Z/2Z, hence

στσ = (σ, 1) · (1, τ) · (σ, 1) = (σ, τ)(σ, 1) = (σ(τ · σ), τ) = (σσ−1, τ) = (1, τ),
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i.e.

τσ = σ−1τ.

Therefore

τPn =
∑

[σ]∈Gn/Gn

τσDnyn =
∑

[σ]∈Gn/Gn

σ−1τDnyn.

Here n is square free and Dn =
∏

prime `|n
D`. Hence we only need to handle D`. Since

(σell − 1)D` = ` + 1− Tr` and G` is cyclic which implies the commutativity, hence

(σ` − 1)D`τ = τ(σ` − 1)D` = (σ−1
` − 1)τD` = −σ−1

` (σ` − 1)τD`,

i.e.

(σ` − 1)(τD` + σ`D`τ) = 0,

so

τD` = −σ`D`τ + mTrl,

for some m ∈ Z. Tr`yn = a`yn/` = 0 in pE(Kn) since p | a`. Also

τDn = τ
∏

`|n
D`

= τD`1D`2 · · ·D`fn

= −σ`1D`1τD`2 · · ·D`fn

= · · ·

= (−1)fn
∏

`|n
σ` ·Dnτ.

Hence in E(Kn)/pE(Kn),

τPn =
∑

[σ]∈Gn/Gn

σ−1
(
(−1)fn

∏

`|n
σ` ·Dnτ(yn)

)

= (−1)fn
∏

`|n
σ` ·

∑

[σ]∈Gn/Gn

σ−1 ·Dn(τyn).
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On the other hand, τyn = ε · δ(yn) + Q for some δ ∈ Gn and some torsion point in

E(Kn). Since E(Kn) has no p-torsion points, Q actually resides in pE(Kn), therefore

in E(Kn)/pE(Kn),

τPn = εn

∏

`|n
σ` · δ ·

∑

[σ]∈Gn/Gn

σ−1Dnyn.

Since in E(Kn)/pE(Kn), Dnyn is fixed by Gn and {σ−1} is another set of represen-

tatives of Gn/Gn, one has

∏

`|n
σ` · δ ·

∑

[σ]∈Gn/Gn

σ−1Dnyn = Pn,

i.e.

τPn = εnPn.

Proposition 4.6.3. 1. The class d(n)v is locally trivial in H1(Kv, E)[p] at the

archimedean place v = ∞, and at all finite places v of K which do not divide n.

2. If n = `n and λ is the unique prime of K dividing `, the class d(n)λ is locally trivial

in H1(Kλ, E)[p] iff Pm ∈ pE(Kλm) = pE(Kλ) for one places λm of Km dividing λ.

Proof. Let v = ∞, then Kv = C and the Galois cohomology of E is trivial. If v 6= ∞
and v - n, d(n) comes from H1(Kn/K, E)[p], where Kn is unramified at v since v - n.

Hence d(n)v lies in the subgroup H1(Knr
v /Kv, E) which is trivial when E has good

reduction at v, i.e. v - N .

If v | N , E has bad reduction at v. Let E0 be the connected component of the

Néron module. Since H1(Knr
v /Kv, E

0) = 0, H1(Knr
v /Kv, E) ↪→ H1(Fv, E/E0). Let

J0 be the Jacobian of X0(N), then for any place ω | v in Kn, the class of the Heegner
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divisor (xn)−(∞) in J0(Kn,ω) lies in J0 up to translation by rational point (0)−(∞).

Hence yn is in E0 up to translation by rational torsion. Since E(Q)[p] is trivial, yn

(so Dnyn and Pn ) lies in a subgroup E ′ whose image in E/E0 has order prime to p.

But d(n)v is killed by p, so d(n)v = 0.

We need some Tate local duality. Let Kλ be a local field with ring of integers

Oλ and finite residue field Fλ of characteristic `. Let E be an elliptic curve over Kλ

with good reduction over Fλ. One has the exact sequence

0 → E[p] → E
p−→ E → 0

for any prime number p 6= `. Hence

E(Kλ)
p−→ E(Kλ)

δ−→ H1(Gal(Knr
λ /Kλ), E[p]) → H1(Gal(Knr

λ /Kλ), E) = 0

is exact. Hence

E(Kλ)/p(Kλ) ∼= H1(Gal(Knr
λ /Kλ), E[p]).

Weil pairing E[p] × E[p] → µp gives E[p] ⊗ E[p] → µp which induces the following

pair by cup product:

<,>: H1(Kλ, E[p])×H1(Kλ, E[p]) → H2(Kλ, E[p]⊗ E[p]) → H2(Kλ, µp)
inv−−→∼= Z/pZ.

(4.9)

Tate porves this pair is alternating and non-degenerate. We also have the exact

sequence

0 → E(Kλ)/pE(Kλ) → H1(Kλ, E[p]) → H1(Kλ, E)[p] → 0.
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Since E(Kλ)/pE(Kλ) is isotropic for the pairing in (4.9), one has the non-degenerate

pair:

<,>: E(Kλ)/pE(Kλ)×H1(Kλ, E)[p] → Z/pZ. (4.10)
[

(form A course in Arithmetic by Serre). Let V be an A-module, (V, Q : V → A)

is a quadratic module if Q satisfies: 1). Q(av) = a2v, ∀a ∈ A, v ∈ V ; 2). (x, y) 7→
Q(x + y)−Q(x)−Q(y) is a bi-linear form.

Let A be a field with char 6= 2. Define x · y = 1
2
(Q(x + y) − Q(x) − Q(y)), then

(x, y) 7→ x · y is a bilinear symmetric form and Q(x) = x ·x. x ∈ V is called isotropic

if Q(x) = 0. x ⊥ y if x · y = 0. Q is called non-degenerate if V ⊥ = 0. Q is called

U -isotropic if U ⊂ U⊥.

]

Suppose all p-torsion points on E are define in Kλ, then fix a primitive p-th root ζ

of unity in Kλ and then

ζ<c1,c2> = {e1, e2},

where {, } is the Weil pairing, e1 = (1
p
c1)

Frob(λ)−1, and c2 corresponds to a homomor-

phism φ2 : µp → Ep(Kλ) and e2 = φ2(ζ).

Now we apply our assumption on K, l and λ (i.e. l is inert in K, (l) = (λ) in

K, p | ` + 1, a`. In this case Gal(Kλ/Q`) ∼= Gal(K/Q) = {1, τ}, where τ is the

complex conjugation.

Proposition 4.6.4. 1. The eigenspaces (E(Kλ)/pE(Kλ))
± and H1(Kλ, E)[p]± for

τ each has dimension 1 over Z/pZ.
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2. The pairing in (4.10) induces non-degenerate pairings of Z/pZ-pairings as Z/pZ-

vector spaces:

<,>±: (E(Kλ)/pE(Kλ))
± ×H1(Kλ, E)[p]± → Z/pZ.

Hence if 0 6= 0dλ ∈ H1(Kλ, E)[p]± and sλ ∈ (E(Kλ)/pE(Kλ))
± such that < sλ, dλ >=

0, then sλ = 0.

Proof.

From this result, we can prove a stronger result:

Proposition 4.6.5. Suppose d ∈ H1(K, E)[p]± is locally trivial except at place λ in

K. Then for any s ∈ Sel(E/K)[p]±, one has the restriction sλ of s is 0.

Proof. sλ ∈ (E(Kλ)/pE(Kλ))
±. Indeed, from the exact sequence

0 → E[p] → E
p−→ E → 0,

one has the exact sequence

0 → E(Kλ)/pE(Kλ) → H1(Kλ, E[p]) → H1(Kλ, E).

By definition, The image of s in H1(Kλ, E) is 0, hence s comes from (E(Kλ)/pE(Kλ))
±.

Hence we only need to prove < sλ, dλ >= 0 by the proposition above.

Using (4.8), one can lift d to H1(K, E[p]). The difference of two lifts is in E(K)/pE(K).

one has
∑

v

< sv, cv >= 0,

by global class field theory and from assumption, < sv, cv >= 0 for any v 6= λ, hence

< sλ, cλ >=< sλ, dλ >= 0.
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Now from our hypothesis, p is big enough such that Gal(Q(E[p])/Q) ∼= GL2(Z/pZ).

(D,NP ) = 1 implies K ∩Q(E[p]) = Q. Hence one has the following diagram:

L = K(E[p])

G
ppppppppppppp

QQQQQQQQQQQQ

K

NNNNNNNNNNNNN Q(E[p])

G∼=GL2(Z/pZ)mmmmmmmmmmmm

Q = K ∩Q(E[p])

(4.11)

The center of G is Z ∼= (Z/pZ)× acting on E[p] as multiplication. Hence H0(Z, E[p]) =

0 = H0
T (Z, E[p]). Since both Z and E[p] are finite, the Herbrand quotient h(E[p]) =

1, hence H1(E[p]) = 0. Since Z is cyclic, Hn(Z, E[p]) = 0 for all n ≥ 0.

Proposition 4.6.6. Hn(G, E[p]) = 0 for n ≥ 0 and

Res : H1(K, E[p])
∼=−→ H1(L,E[p])G = HomG(Gal(Q/L), E(L)[p])

is an isomorphism as Gal(K/Q)-modules.

Proof. One has the spectral sequence Hm(G/Z, Hn(Z, E[p])) ⇒ Hm+n(G, E[p]). Since

Hn(Z, E[p]) = 0, the spectral sequence satisfies ∗(n) condition in the sense of Ribes’.

Hence one has the exact sequence for n ≥ 1:

0 → Hn(G/Z,E[p]Z)
Inf−→ Hn(G, E[p])

Res−−→ Hn(Z, E[p])G/Z tr−→ Hn+1(G/Z,E[p]Z)
Inf−→ Hn+1(G, E[p]).

Since both E[p]Z and Hn(Z, E[p]) are trivial, Hn(G, E[p]) is trivial. For n = 0,

H0(G, E[p]) = E[p]G ⊂ E[p]Z = 0.

Since Gal(Q/L) C Gal(Q/K) and their quotient is Gal(L/K) = G, one has the
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Leray-Serre long exact sequence

0 → H1(G, E(L)[p])
Inf−→ H1(K, E[p])

Res−−→ H1(L,E[p])G → H2(G, E[p]) = 0.

By the definition of L, E(L)[p] = E[p], hence H1(G, E(L)[p]) = 0, so the restriction

map is actually an isomorphism:

H1(K, E[p])
∼=−→ H1(L,E[p])G = HomG(Gal(Q/L), E[p]).

Here s ∈ HomG(Gal(Q/L), E[p]) means s is a homomorphism from Gal(Q/L) to

E[p]) such that for any σ ∈ Gal(Q/K),

σs(σ−1ρσ) = s(ρ),

for any ρ ∈ Gal(Q/L).

From this proposition, we obtain a pairing:

[, ] : H1(K, E[p])×Gal(Q/L) → E(L)[p], (4.12)

which satisfies [sα, ρσ] = [s, ρσ] = f(σ−1ρσ) = σ−1s(ρ) = [s, ρ]σ
−1

.

Now Let S ⊂ H1(K, E[p]) be a finite subgroup, i.e. finite dimensional vector space

over Fp. Let GalS(Q/L) be the subgroup of ρ ∈ Gal(Q/L) such that [s, ρ] = 0 for all

s ∈ S. Define LS := QGalS(Q/L)
. Then LS/L is Galois. Indeed, for any α ∈ Gal(Q/L)

and ρ ∈ GalS(Q/L),

[s, α−1ρα] = s(α−1) + s(ρ) + s(α) = 0,

since s(ρ) = [s, ρ] = 0. So α−1ρα ∈ GalS(Q/L), i.e. LS/L is Galois.
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Proposition 4.6.7. The induced pairing:

[, ] : S ×Gal(LS/L) → E(L)[p] (4.13)

is non-degenerate and it induces two isomorphisms:

Gal(LS/L)
∼=−→ Hom(S, E(L)[p]) (4.14)

as G-modules and

S
∼=−→ HomG(Gal(LS/L), E(L)[p]) (4.15)

Proof. Injectivities are obvious. Let r = dim Fp(S). Then Gal(LS/L) is a G-

submodule of Hom(S, E[p]) ∼= E[p]r. E[p] is a simple G-module, hence Hom(S, E[p])

is semi-simple. Hence Gal(LS/L) ∼= E[p]s for some s ≤ r. So HomG(Gal(LS/L), E[p]) ∼=
(Z/pZ)s. Hence r ≤ s. So r = s.

Now let S = Sel[p](E/K) ⊂ H1(K, E[p]). By our assumption, yK is not divisible by

p in E(K). δyK is its image in Sel(E/K)[p], which is not zero. We have the following

diagram:

M := LS

I

H∼=Hom(Sel[p](E/K),E[p])L(1
p
yK) = L<δyK>

E[p]

L = K(E[p])

G

K

Q

Remark: (a) from the exact sequence:

0 → E[p] → E
p−→ E → 0,
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one has the exact sequence

0 → E(K)/pE(K)
δ−→ H1(K, E[p])

ι−→ H1(K, E).

From the definition of Selmer group,

Sel[p](E/K) = ker{H1(K, E[p]) →
∏

p

H1(Gp, E)},

which factors through H1(K, E[p]) → H1(K, E). Hence δyK is in the Selmer group

since ι(δyK) = 0.

(b) The connecting function δ is defined as follows:

δyK =
(
g 7→ (−1

p
yK) + g(

1

p
yK)

)
.

[
The general theory is: for the exact sequence

0 → A
i−→ B

p−→ C → 0,

written additively as G-modules, one has δ : H0(G,C) → H1(G,A) as follows: for

any c ∈ C, ∃b ∈ B such that p(b) = c. Let c ∈ H0(G,C), then δ(c) = (σ 7→
[i−1(−b + σ(b))]).

]
By definition, L<δyK> is the fixed field of GalS(Q/L), which is

in turn defined as

GalS(Q/L) := {ρ ∈ Gal(Q/L)
∣∣ [δyK , ρ] = 0,∀ s ∈ S}.

But in this case

[δyK , ρ] = (δyK)(ρ) = −1

p
yK + ρ(

1

p
yK).

Hence we must have

ρ(
1

p
yK) =

1

p
yK ,
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iff ρ ∈ GalS(Q/L), i.e. L(1
p
yK) = L<δyK>.

(3). Gal(L(1
p
yK)/L) ∼= Hom(< δyK >,E[p]) which is defined by where δyK is

mapped. Hence is isomorphic to E[p].

Let τ is the complex conjugation in C. τ acts on H by conjugation. Its eigen-

values are ±1. Now to calculate H+ and I+, which have the obvious meaning.

Any σ ∈ H is identified by an element in Hom(Sel[p], E[p]) by s 7→ [s, σ], ∀ s ∈
Sel[p](E/K). Hence στ corresponds to s 7→ [s, τστ ] (notice that τ−1 = τ). Since

[s, τστ ]τ = [s, σ] (τ 2 = 1), to fix by τ , we must have the form [s, σ] + [s, τστ ], i.e.

H+ = Hτ+1 := {hτ · h
∣∣ h ∈ H} = {(τh)2

∣∣ h ∈ H}, similarly, I+ = {(τi)2
∣∣ i ∈ I},

and so H+/I+ = (H/I)+ = E[p]+ ∼= Z/pZ. Also one has

Proposition 4.6.8. Let s ∈ Sel[p](E/K)±, then the followings are equivalent:

• (a) [s, ρ] = 0, for all ρ ∈ H;

• (b) [s, ρ] = 0, for all ρ ∈ H+;

• (c) [s, ρ] = 0, for all ρ ∈ H+ − I+;

• (d) s = 0.

Proof. It is enough to prove (c) ⇒ (b) ⇒ (a). (c) ⇒ (b) is trivial by group theory.

For (b) ⇒ (a), for any s ∈ Sel[p](E/K), it induces a G-homomorphism H → E[p]

which maps H+ → E[p]± and H− → E[p]∓. If [s,H+] = 0, then s(H) ⊂ E[p]∓. But

s(H) is a G-submodule of the simple module E[p], hence form s(H) 6= E[p], one has

s(H) = 0.

Let λ be a prime of K which does not divide Np. Then λ is unramified in M = LS/K.
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We assume λ splits completely in L/K and λM be a prime factor of λ in M . The

Frobenius element ρ of λM in Gal(M/K) lies in H since λ is totally split in L/K by

our assumption. Denote Frob(λ) = {ρg
∣∣ g ∈ G}.

Proposition 4.6.9. Let s ∈ Sel[p](E/K). The followings are equivalent:

(a) [s, ρ] = 0;

(b) [s, Frob(λ)] = 0;

(c) sλ ≡ 0 in H1(Kλ, E[p]).

Proof. (a) and (b) are equivalent because of [s, ρg] = [s, ρ]g for any g ∈ G. For

(a) ⇔ (c), we have the commutative diagram

H1(K, E[p]) //

²²²²Â
Â
Â

∏
λ H1(Kλ, E)

H1(Kλ, E[p])

66mmmmmmm

,

and exact sequence

0 → E(Kλ)/pE(Kλ) → H1(Kλ, E[p]) → H1(Kλ, E).

Hence from the definition of Selmer group, sλ can be identified with an element in

E(Kλ)/pE(Kλ), say sλ = Pλ in E(Kλ)/pE(Kλ). Then clearly 1
p
Pλ is defined over

MλM
and [s, ρ] = −(1

p
Pλ) + ρ(1

p
Pλ) in E(MλM

) = E(M) from the definition of the

connection map which is given above. Hence [s, ρ] = 0 iff Pλ = 0 in E(Kλ)/pE(Kλ).

Finally we reach the point to prove our main result which is given in the follow-

ing two results:
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Theorem 4.6.10. Sel[p](E/K)−ε = 0.

Proof. Let s ∈ Sel[p](E/K)−ε, then is is enough to prove [s, ρ] = 0 for any ρ ∈
H+ − I+. Such element has the form ρ = (τh)2 for some h ∈ H − I. Let ` be a

rational prime which is unramified in M/Q, and has a factor λM whose Frobenius is

τh. Then (`) = λ inert in K and λ splits completely in L. Hence the Frobenius of

FλM
/Fλ is (τh)2. So it is enough to prove sλ = 0 in H1(Kλ, E[p]).

Let c(`) and d(`) be those constructed above. Then both are in −ε eigenspace. We

want to prove d(`)λ 6= 0. If not, then yK = P1 ∈ pE(Kλ), hence λ splits completely

in L(1
1
yK). But Frob(λ) = ρ is not in I+, this does not occur.

Using the notation in the proof of Theorem 4.6.10, one has

Theorem 4.6.11. The followings are equivalent:

(1) c(`) = 0 in H1(K, E[p]);

(2) c(`) ∈ Sel[p](E/K) ⊂ H1(K, E[p]);

(3) P` is divisible by p in E(K`);

(4) d(`) = 0 in H1(K, E[p]);

(5) d(`)λ = 0 in H1(Kλ, E[p]);

(6) P1 = yK is locally divisible by p in E(Kλ);

(7) h1+τ is in I+.

Proof. Easy.

Theorem 4.6.12. Sel[p](E/K)ε ∼= Z/pZ · δyK
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Proof. For s ∈ zSel[p](E/K)ε, it is enough to show [s, ρ] = 0 for all ρ ∈ I. This is be-

cause then from proposition 4.6.7, one has s ∈ HomG(H/I, Ep) ∼= Z/pzZ · δyK . The

argument in the proof of proposition 4.6.8 gives that it is enough to show [s, I+] = 0

(Replace H with I in the argument).

Let `′ be a prime with non-zero image c(`′) in H1(K, E[p]). From theorem 4.6.11, we

can select `′ such that its Frobenius is conjugate to τh in Gal(M/Q) for some h ∈ H

and h1+τ /∈ I+(Given h ∈ H and h1+τ /∈ I+, from Chebotarev density theorem, prime

`′ whose Frobenius element is conjugate to τh in Gal(M/Q) has positive Dirichlet

density, for such `′, the proposition above implies c(`′) is non-trivial in H1(K, E[p])).

Hence c(`′) /∈ Sel[p], hence the field extension L′ := L<c(`′)> of L has Galois group

∼= E[p] and L′ ∩M = L. One obtain the following field tower:

Q

M := LS

I

Hom(S,E[p])L′ = L<c(`′)>

E[p] PPPPPPPPPPPPP
L(1

p
yK)

E[p]

L = K(E[p])

G

K

Q

where S := Sel[p](E/K). We have the prime ideal (`) = λ in K which splits com-

pletely in L. It splits completely in L′ iff P`′ is locally a p-th power in E(Kλ`′ ) =

E(Kλ) for all factors λ`′ of λ in K`′ . (?)
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Let ` be a prime whose Frobenius element is conjugate to τi in Gal(M/Q) with i ∈ I

and whose Frobenius element is conjugate to τj in Gal(L′/Q) where j ∈ Gal(L′/L)

such that j1+τ 6= 1. Claim d(``′) in H1(K, E)[p]ε is locally trivial for all places v 6= λ

and d(``′)λ 6= 0. The local triviality for v 6= λ, λ′ is clear. i ∈ I =⇒ c(`) = 0 and

p | P`. By proposition 4.6.3, in the completion at a place dividing λ′, P` is locally

divisible by p and d(``′)λ′ = 0. Suppose d(``′)λ = 0, then P`′ is locally divisible by p

in E(Kλ), but this means λ splits in L′, so (τj)2 = j1+τ = 1, which is a contradiction.

Now we have sλ = 0, and hence [s, I+] = 0.




