Chapter 4
Kolyvagin’s method

4.1 Eichler-Shimura construction

Let N a positive integer. We have seen that dim ¢(S5(N)) = ¢, where g is the genus
of the compact Riemann surface Xo(N)(C) = I'o(N)\H*. Let T be the algebra
generated by all Hecke operator T, over Z. In the proof of the rank of T over 7Z is
g, we know S(N) has a basis fi, ..., f, whose coefficients of their g-expansions are

integers.

From Jacobi-Abel’s theorem (Ref. Forster O. Lecture Notes on Riemann Surface
(GTM 81) §21), one knows that Hy(Xo(N)(C),Z) has dimension 2g over Z, and
when fixing any any basis wy, ..., w, of Q(Xo(N)(C)) (typically, fix a basis fi,..., f,

of S3(IN), then choose say ) w; = 2mif;(2)dz, j =1,...,g), we have

(o o )

is a lattice in C9.

o€ Hl(XO(N)((C),Z)}

Eichler-Shimura construction shows that for any normalized newform f € Sy(N)
whose coefficients in its g-expansion are all integers, then f corresponds to an el-

liptic curve E such that L(Ey,s) = L(f,s), = means their Euler product coincide

33
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except finitely many primes (i.e. those primes p | N). Ey is quotient of the Jacobian
Jo(N) of Xo(N)(C) with a subabelian variety Ay. Some preparation is needed before

we can show such construction.

e Universal property of the quotient of abelian varieties. Let A be an abelian
variety and C' be an abelian subvariety of C. Then A/C is defined as an abelian
variety in the following sense: There exists an abelian variety A’ and a surjective
homomorphism f : A — A’ whose kernel is C. Moreover, any homomorphism
g: A — A" of abelian varieties such that C' C kerg, dh : A" — A” such that the
following diagram commutes:

AL p

|
x I'h

\
A//

(A, f) is unique up to isomorphism and if A and C are defined over Q, then A’ and

I are also defined over Q.

e Universal property of X — J(X). Let X be a compact Riemann surface
of genus g with its Jacobian J(X). Fix a base point zy in X to obtain a canonical
map ® : X — J(X) with the following universal property: for any homomorphic

map F': X — T for any complex torus (i.e. C"/A), we have the following diagram:

where f is a holomorphic homomorphism satisfying

F=fod+ F(x).
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e Since Jy(N) = C9/Ay is an abelian variety, the set of left invariant vector spaces
of Jo(N) can be identified with the tangent space J at origin O of Jy(N), which is
isomorphic to C9. Distinct element in End(Jy(V)) gives a distinct linear homomor-

phism on J = C9. Hence one has

End(Jo(N)) — M,(C).

e We know canonically J = Homc(Q(Jo(N)),C) = Q(Jo(N))*. Use z,...,2, as

coordinates on Jy(N), then
Q(Jo(N)) = &7_,Cdz;.

One has a pairing:

< dz;, ej >= (5@',
where 0;; is the Kronecker’s § and e, ..., e, are the standard basis of CY. | or more
generally, define < u,v >= v(u) for any u € Q(Jy(N)) and v € J, regarding J as
dual of Q(Jy(NV)) over C.
e For any o € End(Jy(N)), define o* to be an endomorphism of Q(Jo(NV)) by

< o (u),v >=< u, (da)v >, Yu € Q(Jo(N)), v € J.

This makes sense as follows: for any endomorphism « : Jo(N) — Jo(NV), it induces

map O jy(n),a0) — Ouy(v),0, Which in turns induces map

a* : M3 a0)/ Mao),a0) = QIo(N)) = M3 (n).0/ Magno = UJo(N)).
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a* also induces the map do:
dov - Home (M3 3y 0/ Mug(v.0, C) = J — Home (M3 ) a(0)/ Muov),e0), C) = 3,

by for any v € Home (M3 x o/ Mg(v),0, C),
da(v)(u) = v(a™u), Yu € M3 (n) a@0)/Ma().a0);

1.e.

< au,v >=< u, (da)v > .

e Define @ as follows:

O H I To(N\H S Jo(N).

Put 7*(w;) = fj(2)dz, then fi,..., f, is a basis for Sy(N).

One can easily verify ®*(dz;) = f;(2)dz.

fi(2)
d >=< dzj,dc;b(d%) =< dzj, : >= f;(2)

< P (de), E
fo(2)

Hence ®* maps basis to basis.

e Therefore it makes sense to define p : So(N) — Q(Jo(N)) by

O (u(f)) = f(2)dz, | € S2(N).
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In particular, u(f;) = dz;.

e For any n € N, one has the Hecke operator T, :

any 7 € Xo(N)(C),

T, (1) = Z T,

Xo(N) — Div(Xo(V)). For

where o; runs through the elements in the set {(8 Z) ‘ ad =n,d >0, (a,N) = 1}.

® can also extend linearly to Div(X(N)) — Jo(N). Hence one obtain T,, = ®o T, :

Xo(N) — Jo(N). From the universal property, one can define ¢, in the following

diagram:
Xo(N) =2 Jy(N)
Ty Y
Jo(N)

where t,, satisfies

(4.1) has the explicit expression:

f; fi(z)dz > f;; h

I To(2)dz i Jaim To

(4.1)

(2)dz

(2)dz



4.1 Eichler-Shimura construction

38

Hence

fi(7)

fo(T)

Zi fi(ai(T)) (fj:

> folau(T)) 5
> fiofaila(T)

> fgolaula(r)

Tnfl

Tty

h

fg

Here A,, becomes A, when dt,, acts on the dual of Q(Jy(N)), which is J = C¥.

e Shimura-Taniyama. For any f € Sy(N),

tn(u(f)) = u(Taf).

For any f;,

< t;kz(:u(fj))ael > =< N(f)vdtnel >

=< dzj,dt,e; >

= (A7) = (An)j,
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and

( fj el>—z<,u ]’Lf’L e >

—Z ﬂ<dzl,el>

= (An)ji-

e Eichler-Shimura construction Let f € S3(N) be a normalized newform with
integer coefficients in its g-expansion f(z) = >, ., ¢,¢", where ¢ = ™. Then there
exists an elliptic curve Ey defined over Q, which is the quotient of Jy(V), i.e. there
is a homomorphism: v : Jy(N) — Ey. Also
tn(kerv) = kerv.

o 1, [ly =c,Ly.

e /i(f) is a nonzero multiple of v*(w), where w is the invariant differential of E.

o Ey=C/Ay, where

V70

Af_{ f(z)dz |y € To(N)}

e L(Ey,s) equals to L(f,s) except at finitely many primes dividing N.

Proof. Let T be the commutative Q-subalgebra of Endg(Jo(N)) := End(Jo(N)) @Q

generated by all ¢,,. Clearly 7 can be embedded into My(Q), hence dim 7 is finite.

Let NV be the nilradical ideal of 7, then by Wedderburn’s theorem,

T=(ki @ - Dk) DN,
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for some number fields ki, ..., k.. One has

Hence the following map:

p: T —Q th—cy

is a homomorphism as Q algebras. Clearly p(N) = 0, hence WLOG, assume
p(k1) = Q, which implies k1 = Q and p is an isomorphism. One obtains an ideal

Ii=(ky® - ®k)DR.

Now define A; be the abelian subvariety which is the sum of all a(Jy(N)) for all
a € I NEnd(Jy(N)). It can be proved ¢, is defined over Q (Ref. Knapp,
Elliptic curves §11, Ch.XI), hence A; is defined over Q. Hence one can form
the quotient (Ey,v) of Jo(N) by A (ie. v : Jo(N) — E; with kerv = Ay) and
everything is defined over Q. Since [ is an ideal, it is easy to see fAy C Ay for any
B e T NEnd(Jy(N)). In particular ¢,(As) C As. Hence ker(v ot,) D kerv, so by

universal mapping property, one has the following commutative diagram:

Jo(N) —— E} (4.2)

I
| 57
Vok\ vatn

Ly
Hence t,, acts on Ey as ¢,. From the definition of p, one has ¢, — p(c,) € I and
p~Hen) = [en] € I, hence ¢, — [¢,] € I NEnd(Jy(N)). So t, — [c,] acts as 0 on Ej.
Le. tn(Ef> = [Cn]Ef.

Let m be the largest integer for which ki N™ # 0. Let 0 # § € ktN™. WLOG, as-
sume 3 € End(Jo(N)) (after multiplying some m € N since 5(Jo(N)) = mB(Jo(NV))).
For any a € I, fa = 0 since kik; = 0 for any j # 1 and R™R = 0. Therefore
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B(Af) = 0. Since B(Jo(N)) # 0 because 3 # 0, hence Ay # Jo(N), i.e. dim Ey > 0.

Since dim E; # 0, 3w’ € Q(Ey) which is non-zero. v : Jo(N) — E induces
v Q(Er) — Q(Jo(NV)). v* is injective. From (4.2), one has

Since t,, = [c,], T, = cq, 1.€.

n

Put f' = pu~'(v*(v')), then
p(Tnf") = o (u(f") = 6, (V' (W) = e (W) = enp( ).

S0
Tnf = cnf "
Suppose dim E; > 1, then one has linearly independent «’ and w”. Let f"” =

p=t(v*(w")), we have f” and f’ are linearly independent and

Tnf” = Cnf”'

This is a contradiction. Hence dim F = 1.

Uniqueness. Suppose A’ and (E’,V') are also satisfies the theorem with invari-
ant differential w’. Then v*(w') and v*(w) are multiples of each other. Hence they
annihilate the same subset of J — the tangent space of A’ and A. Since A; and A’

are the connected Lie subgroup of Jy(N) with same Lie subalgebra, A; = A’
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Jo(N) = C9/A, where A has basis

ka fle

fck fqdz

where ¢, ..., ¢y are a basis of Hy(Xo(N)(C),Z) over Z. Write f = > ;r;f;, and

consequently

p(F)(Ie) =< p(f) e >=< > rip(fy) e >= > 1 < dzj, I >

:;rj/%fjdz:/%fdz. ]

Hence

Let a C J be the tangent space of A.

kerp(f) ={u e J| <v'(w),u>=0}

={u e 3‘ < w, (dv)(u) >= 0}

= {u € J|dv(u) = 0}
= ker(dv)

= a.

From Lie theory, one has exponential map J — Jo(N) with kernel A, whose restric-

tion to a is the exponential map a — A. Since A is compact, aNA is a lattice in a of

rank 2g — 2. Let x1,...,%9,—2 be a Z-basis for it and adding x9,—1 and x4 to make

N = 232’11 Zzx; has rank 2g. Hence A’ has finite index m in A. So A € =A’. So one

has

C=ulfH@) = ZR@ [)(Ragg_1 + Ray,).
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Hence p(f)(x24-1) and p(f)(x2,) are linearly independent over R. On the other hand

() (Zrag—1 + Ziag) = M(f)(z Lzj)

= pu(f)(A)

Cu(fI(N) = p(f)(m™ Loy + m™ Zay,).

Hence one concludes Ay is a free abelian subgroup of C of rank 2 over Z that spans

C over R, i.e. Ay is a lattice in C.

Hence £ = C/Ay is an elliptic over C. One has the map

5: 3 5/a=C - C/A; = E.

ker(0) = u(f)"*(Ay) = a+ A. Hence § factors through the exponential map exp :

0 = e o exp,

for some holomorphic homomorphism € : Jo(N) — E with kernel exp(a + A) = A.
Hence ¢ is a morphism over C. The universal property says the following diagram
commutes:

JO<N) L>Ef

Since kere = kerv = A, kerf is trivial, hence EFy = E.

For the equality of L(E},s) and L(f,s), this is a consequence of Eichler-Shimura
congruence. (Ref. Diamond & Shurman A first course in modular forms Chapter 8).

One has the following result:
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Let E be an elliptic curve defined over Q and F has good reduction over
prime p, then

ap(E) = oy + 0,
as endomorphisms on Pic’(E). From Eichler-Shimura congruence:

Pic®(Xo(N)) —2— Pic®(Xo(N))

! !

Pic’(Xo(N)) ——— Pic®(Xo(N))

Ipxtop

As we proved T, acts on Ef as [¢,], hence [¢,] = [a,(Ey)]. Since End(Ey) has no zero

divisors, a,(Ef) = ¢,. [ for T;, acts in Pic’(X;(N)) as follows:

T,[E,Ql =) [E/C,Q+C),

c

where C' runs through all subgroup of F of order p such that CN < @ > is trivial.
In particular if p{ N, then the sum runs through all such subgroups. Let Cj be the
kernel of the reduction map E[p] — E[p], where E is defined over Q (with ordinary

reduction at p | p, which is not necessary). Then

— [E7, Q) C =Cy
Lemma 4.1.1. [E/C,Q + C| =

%P =0
(B, plQ7 ] C# G
Let M S(N) be the moduli space of X;(N), one has the following diagram:

Ty

Div’(MS(N)) —2=  Div’(MS(N))

l l

Div(MS(N)) 2222 1iy®(MS(N))
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and
op+p<p>op, 1
—)

Div?(MS(N)) Div’(MS(N))

! !

DivO(X . (N)) 27 pigO (X, (V)

Under Xo(N), < p > is trivial, hence one obtains o, . + ;.

One has the modular parametrization:
¢: Xo(N) — Ef.

* : * s 00 v *
op« + 07 commutes with ¢,, hence ;. + o5 on Pic’(Xo(V)) becomes 0, + o, on

Pic®(Ey) O

4.2 CM points

The converse of Eichler-Schimura theorem is also true. The converse is a deep
result due to Wiles, Taylor etc. From their results, for any elliptic curve E/Q of
conductor N, 3f € S3(N) which is a new form such that E is isogenous to E; over
Q, where EY is constructed from f via Eichler-Shimura construction and consequently
L(Ef,s) = L(E,s) = L(f,s). Hence it is often enough to study E for some newform
f € S2(N). In such case and when N is square free, one has an explicit modular

parametrisation:
Dy 1 Xo(N)(C) = o(N)\H* 25 C/Ap 25 By(C),

where @, is given by

Tl—>/ 2mifdz,

and @y is the Weierstrass uniformisation. ® can be used to construct algebraic
points on E defined over some abelian extension of Q. Class field theory tells us

where these points, which are called Heegnar points, lie exactly. To construct such
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points, one starts with a quadratic imaginary field KX = Q(v/D) for some square free
negative integer D. It is a well-known fact that its ring of integers Ok is

VD D # 1(mod 4)

Ok = Z|wp]|, where wp =
1%/5 D = 1(mod 4).
Ok is the maximal order of K (i.e. its conductor is 1) and any order O of K can be
written as

O0=7Z® clwp,

for some integer ¢ > 0 and vice versa. One as a bijection
El(O) := { isomorphism classes of E/C with CM of O} —— Pic(0),

where Pic(Q) is the Picard group, which has several equivalent definitions, here it is
defined as the group generated by all invertible fractional O-ideals prime to ¢ (hence
invertible) modulo the subset of principal O-ideals. It can be proved that Pic(O) is

finite and its order is

It can be proved that
PIC(O) = ]K(C)/Psz(C),

where Pk z(f) is the subgroup of Ix(c) (the group of all Og-ideals prime to c)
generated by principal ideals of the form aOg for some o € Ok such that a =
amod (cOk) for some integer a prime to ¢(Cox, Primes of forms X? + nY? §7).
Class field theory gives the following result:

Theorem 4.2.1. For any proper fractional O-ideal a,K(j(a)) is the ring

class field of the order O, where j(a) is the j-invariant (a can be naturally
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identified with a lattice in C ). The Artin map:
p: 0= Gal(K(j(a)/K)

1s defined as

a|—>0'u,

where
oa(j(b)) = j(ab),

for any fractional O-ideal a and b prime to c.

The class field theory is as follows:

Let L/K be an abelian extension and zfrakm be a modulus divisible by
all primes of K (including infinite primes) ramified in L, then the Artin
map ¢ : Ig(m) — Gal(L/K) is surjective and if the exponents of finite
primes in m are sufficiently large, ker(y) is a congruence subgroup for m,

i.e. Pri(m) C ker(yp) C Ix(m), and one has the isomorphism:

Conversely, for any modulus m of K and for any congruence subgroup H
for m (i.e. Pgi(m) C H C Ix(m)), there exists a unique abelian extension
L/K whose ramified primes (including infinite primes) divide m and the

Artin map induces an isomorphism:

Ix(m)/H S Gal(L/K).
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In particular, let m = fOg for some positive integer f, clearly

Pr1(f) C Pra(f) C Ik(f),

hence class field theory guarantees the unique existence of the abelian extension
H¢/K such that

Ix(f)/Pxz = Gal(Hp/K).

Furthermore, if K is a quadratic imaginary field, then this is equivalent saying each

order corresponds uniquely an abelian extension of K which is called the ring class

field.

This can also be interpreted in the following way via CM: Pic(Q) acts on Ell(O)

as follows: for any a whose norm (#0/a) is prime to the conductor ¢ of O,
[a] - [C/A] = [C/a""A].

This is well-defined: End(C/A) = {a € C|aA € A} = {aa™'A C a'A} =
End(C/a"'A), which implies [a] - [C/A] € EI(O). Further, C/a™'A 2 C/a’'A +—
Ja € C, such that a™'A = a(d) A <= A = aa(d) A = ¢ laldA —
aa(a’)™ e ta"ta’ € O (by the definition of proper ideals) <= aa C /, and a’ C

aa <= aa=a <= a=d as O-modules.

The action is transitive since for any C/A with CM O, A is homothetic to a lat-
tice contained in K and C/A’ = C/A(AN'A™'). Since one can always assume A and
a are in K, the action of Pic(Q) and that of G := Gal(K/K) on Ell(O) commute

with each other. One can define a group homomorphism:

1+ Gx — Pic(0), (C/A)’ =1(o) - (C/A), Yo € Gx.
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For some other lattice A such that C/A € Ell(O) which defines 7/, since Pic(O) acts
on Ell(O) transitively, [b] - [C/A] = [C/A'] for some b € Pic(O) prime to O. Hence
([6] - [C/A])” = [O](IC/A])” = [b] - (o) - (C/A) = [bn(a)] - (C/A).

On the other hand

(C/N)7 =n'(0)(C/N') =n'(0) - ([b] - (C/A)) = [if'(o)b] - (C/A).

So from the commuativity of Pic(Q),

[bn(0))(C/A) = b (0)](C/A).

The result proved earlier shows that br/(o) = bn(o) as O-module, i.e. 7'(0) = n(0)

in Pic(O). It is easy to verify 7 is a group homomorphism.

The class field theory tells us there is an abelian extension H./K which is unramified
for all prime p { ¢ whose Galois group Gal(H./K) = Pic(O). One has the reciprocity
map:

¢c: Pic(0) — G, := Gal(H./K), p — o, Vp | c.

Let H := (K)*™ Galois theory tells us H/K is an abelian (hence Galois) extension.

Lemma 4.2.2. H = H,.

Proof. Clearly j(F) € H by the definition of H for any E € Ell(O). Hence each
such F is defined over some abelian extension L/K. Fix such an E. From class field
theory (using uniqueness) and Galois theory, it is enough to show 7 is onto. Let p be

a prime in K unramified in H/K such that £ has good reduction at all the primes of
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H above p and p splits in K/Q and p 1 j(A") — j(A”) for all distinct A, A” in El(O).
For the set of such primes (has Dirichlet density 1 (Only finitely many primes are

excluded) and hence), the corresponding Frobenius elements generate Gal(H/K).

Let P be a prime of L over p such that E/L has the good reduction E‘B- The
inclusion p — O induces § : E = C/A = C/AO = C/AO~! — C/Ap~!, whose
degree is Np = p = Ok /p = O/ONp since p is not inert in K /Q. Their reduction at

PB,0: E — p-E has degree p, whose duality is purely inseparable, hence the only

possibility is the Frobenius map: 9. E /Elp| - E/E [p](p) = E. Hence
E=(p - E)? =0oy(p- E) =p - (0,(E))(mod P).

Hence 5(o;") = [p). To prove 8 is purely inseparable, s/ STy oty
TN 1 3 A AN T A ATV L A Al et s g o M ot A N

T Hoteey oo ey B et ] s ot Aty 0 8L 1 3 0 oty Aty I e T
(H/NE BN/ One knows from Silverman’s AEC (p.78), the isogeny 0 : E — E/E[p] is

separable. Consider §of : E — E. which is the map [p], since the characteristic of the

residue field is p, [p]*@wr = pwg = 0. Hence [p] is not separable. Since @ is separable,

-~

6 : E/E[p] — E must be purely inseparable with degree p, hence E = (E/E|[p])P

D]

and 6 is the Frobenius map: E/E[p] — E/E[p](p). O

For 7 € 'H, define

O, = {y € My(Z) N GLy(Q), 77 = 7} U {022}
It is easy to see

O, = {y € Mx(Z) |~ has eigenvectors (7) and (7)}. (4.3)
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For each v € O, define z, to be the eigenvalue associated with the eigenvector ( 1 ),
consequently the map v — z, gives O, — C. Under this identification, one has

Lemma 4.2.3. O, = End(E;), where E, =C/ < 1,7 >, 7 € H.

Proof. From (4.3), z,(< 1,7 >) C< 1,7 >, hence induces an endomorphism o, of

E.. The map v +— o, is clearly injective and surjective. ]

Define CM(0) = {r € SLy(Z)\H | O, = O}. The class group Pic(O) acts on
CM(O) as follows: for any class b € Pic(O), it can be represented by an integral ideal
B C O such that O/B is cyclic (Cox, P. 236). For any 7 € CM(0O), < 1,7 > Bl is
a lattice, hence is homothetic to < 1, 7" > for some 7" € SLy(Z)\'H, define bx7 = 7.
It is easy to see * is an action and compatible with the action on Ell(O). From the

class field theory, one has for any prime [p] € Pic(O),

Jox7)=34p-C/ <1m>)=j(C/ <1,7>)7)=j(C/ <1,7>)" =j(1)" = »(p)j(7)

The main theorem of CM asserts for any 7 € HNK where K is a quadratic imaginary
field, j(7) € H, where H/K is the ring class field associated with the order O,. Define
O;n = 0O, N Oy, and let 5 and E; be as before, one has

Theorem 4.2.4. For any 7 € HN K, ®n(7) € Ef(H), where H is the ring class

field with respect to O .

Proof. j(1) and j(N7) are in H. Hence ®y(7) is the image of a point in Xo(N)(H)
and @ is defined over Q. ]

Remark One can easily prove O,y = {y € My(N) | y7 = 7} U {0242}, where

My(N) C My(Z) whose element is upper triangular modulo N.
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(The following data are extracted from Darmon’s Rational points over modular el-
liptic curves). Take N = 11, the elliptic curve with this conductor is (the dimension
of Sp(11) is 1):

v 4y =2 — 22— 10z — 20.

The order with smallest discriminant embedded in My(11) is O = Z(HTﬁ) C

K := Q(+v/—7) which has class number 1. Ok in My(11) is Z+Z( 7 3*) whose fixed

—_gzﬁ, which corresponds to a point (1_ﬁ, —2—2y/=T7) in E(C) to

point 1s 7 = 5

25 decimal digits of accuracy.
4.3 Euler System

Let K be an imaginary quadratic extension of Q which is not Q(7) or Q(v/—3).
For any positive integer A, denote K to be the ring class field of K with conductor
A. Let E/Q be an elliptic curve of conductor N and ¢ be a fixed prime number

satisfying some conditions. One has the following field towers:

Ky
K
Q

Let X be the set of positive integers relative prime to N. Define the set T to be

T :={r €lim H'(K\, E[("]) | A € ©}.

Here the projective limit is induced by the natural map H'(Ky, E[("2]) — H'(K, E[(™])

for any ny > ny, which is induced by E[("2] — E[¢™]. T is called the 0-th Euler

system if for any prime number § # 2 relative prime to N (so dA € X) and A such
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that the prime divisor ¢’ of § in K is unramified in K, then

corsx/A(Tsx) = YsTa,

where corsy /) is the corestriction map:

H' (K5, E[("]) — H'(Ky, E[("]),

and

Ys = Fr;l(l’g — P(;(Fl"(;/)) € Z[G(K)\/K)]
Here

x5 = [Ks : Ky,

and Frg and Pj are defined as follows: From class field theory, one has Artin map:
0: I3V /Koy Nm(IgY) = Gal(Ky/K),

we define Frg = 6(¢'). Since 6 is a prime number which is not a divisor of N, E has
good reduction over §, Ps(X) := X% — asX + ¢ is the characteristic polynomial of

the Frobenius automorphism on the Tate module 7}, for any prime number ¢ # ¢.

corestriction map: In functorial way, suppose H is a subgroup of G with finite

index. Let M be a G-module, then for any m € M,

ng/Hm = Z sm
[sleG/H

is independent of the choice of S, and is clearly fixed by G. Hence Nmg,/y defines a
homomorphism:

MH N MG,

which can be extended uniquely to H"(H, M) — H"(G, M), which is called the

corestriction map. This map can also be constructed explicitly: One has a natural
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map:

WG M 3 sl
[sleG/H

which in turn gives

H™(G,IndZ M) — H"(G, M).

From Shapiro’s lemma, one has the composition:
H'(H,M) = H"(G,Ind M) — H"(G, M),
which is the corestriction map. One has the following property:

CoroRes =[G : H].

Lemma 4.3.1. y; is independent of the choice of §'.

Proof. 1f 0 is ramified or inert in K, then ¢’ is unique. Suppose ¢ splits in K, then

0 = ¢§'07, where o is the complex conjugation.

Since ¢ is a prime,

w5 = [Ks : K] = #(O 50K /(Z/5T)".

On the other hand,

Ok /60K = (Z &)

1+\/EZ)/5(Z@1+\/5

5 L) = L/SL& L/L.

Hence

15:5—1.
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So

Ys = Frg,l(é —1—Fr3 + asFrs — 6) = asg — Frg — Frgl.
Since 6(§) = 1 and § = §'(8')7, Fry' = Frge, i.e.
FI‘(;/ —+ FI‘E/I = Fl"(;/a —+ Fr(;i

This proves the independence. [

4.4 Basic assumption

Let E/Q be an elliptic curve of conductor N. Let K = Q(v/—D) be an imaginary
quadratic field in which all prime factors of N are split. Gross and Zagier prove that
if /(E/K,1) # 0, then h(y) # 0, where h is the Néron-Tate canonical height and
Y = Tru,/x(y1), where y; is a Heegnar point defined over Hy, the Hilbert class
field of K. This implies the rank of E(K) is at least 1.

Kolyvagin proves in this case E(K) has rank 1. Here I give the Kolyvagin’s main

idea in his proof, following Gross.

First, we assume £ is not CM over C. In this case, Q(F[p])/Q is Galois and Serre

proves Gal(Q(E[p])/Q) = GLy(Z/pZ) for all sufficient large primes p.

By assumption, the order of yx which is defined over K is infinite. Since E(K)
is finitely generated, there are only finitely many integers n such that yx = nP for
some P € F(K). The argument is as follows: Suppose the rank of F(K) is 2 (
similar argument for other cases), which is generated by 1 and Q. Ignoring the

torsion part, we can assume

Yr = 01Q1 + b2Q2.
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Suppose yx = nP for some P € E(K) and P = a1Q; + a2Q2. Then
nP = na1Q1 + nasQs = b1Q1 + Q.
The sum is the direct sum as Z-modules. Hence
b1 = nay; by = nas.
When yg is fixed, b; and by are fixed and there are only finitely many ways to write

a given integer into a product of two integers.

From now on, we assume p is a sufficiently large prime (i.e. to ensure Gal(Q(E[p])/Q) =

GL2(Z/pZ)) and yx # pP for any P € E(K).

4.5 Definitions of Selmer groups and Shafarevich groups (for my own
reference)

Let K be a number field. Let F and E’ be elliptic curves defined over K and
¢ : F — FE' be an isogeny defined over K. The sequence
0= Elg] > ESE —0
is exact as G'g-modules, where G = Gal(K/K). This yields the exact sequence:
0 — E(K)[¢] — BE(K) 2 B'(K) % H Gy, E[¢]) — H Gk, E) 2 HY(Gx, E),
which in turn gives the exact sequence:

0 — E'(K)/¢(BE(K)) > H' (G, El¢]) — H'(Gk, E)[¢] — 0.
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For any place p of K, the inclusion G, := Gal(K,/K,) C Gk and E(K) C E(K,)
gives the restriction map H'(Gg, E[¢]) — H*(Gy, E). The ¢-Selmer group of E/K
is defined by

SH(B/K) = ker{Hl(GK, El¢)) — [[ H'(Gy, E)}.

The Shafarevich group GH(E/K) is defined by
SH(E/K) = ker{Hl(GK, E) - [[H'(Gy B)}.
p
Further by these definitions, we have the exact sequence
0 — E'(K)/é(E(K)) — S*(E/K) — 69(E/K)[¢] — 0.
In particular, let ¢ = [p], we have the exact sequence
0— E(K)/pE(K) i>Sp(E/K)—>C‘517)(E/K)[p] — 0. (4.4)

Here § is the connection map induced from the exact sequence 0 — Elp| — E LR

E — 0.

4.6 Kolyvagin’s proof

Kolyvagin actually proves the following result: Under the conditions mentioned
above, SP(F/K) is cyclic and generated by dyx. Then the exact sequence (4.4)

asserts F/(K) has rank 1 and &$H(E/K)[p| is trivial.

1. Construct cohomology classes c¢(n) € H'(Gg, E[p]) based on Heegnar points

of conductor n prime to N.
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Assume O = £1. Take an ideal N' C O such that O/N = Z/NZ.

Take an order O,, := Z + nOk. Define N, := N N O,, which is an invertible
O,-ideal. This is because Nm(N') = N which is prime to n, i.e. N is an Og-ideal
prime to n, and hence N, is an O,-ideal prime to n with same norm, which also

implies NV, is also invertible. See Cox pl44.

The isogeny C/0,, — C/N. ' with kernel O, /N,, & Z/NZ defines a point z,, on
Xo(N) according to the moduli interpretation. x,, is defined over K,, the ring class

field of modulus nOg. We have the following diagram:

K,
(Ok /nOr)* [(Z/nL)*
K, Pic(On)
Pic(Ok)
K

<l,7>

Q

The diagram comes from class field theory. Gal(K,/K;) comes from the following

two exact sequences:
0 — Ix(n) N Px/Pkz(n) — Ix(n)/Pkz(n) = Pic(O,) — Ix/Px = Ix(1)/ Pk z(n) = Pic(Ok) — 0,
and when Oj = £1,
1 = (Z/nZ)* — (O /nOk)* — Ix(n) N Px/Pkz(n) — 1,

where Pk 7(n) is the set of principle ideas p satisfying p = a(mod n) for some a € Z.

Here we add some background on Heegnar points. A Heegnar corresponds



4.6 Kolyvagin’s proof 59

to pairs (E, E') of two N-isogenous elliptic curves with the same O of complex
multiplications. From the moduli interpretation of Xy(N), such pair determines
a point y on Xo(N). Such a point can also be identified with y = (O,n,]|a]),
where n is a proper (hence invertible) O-ideal such that O/n is cyclic with order
N and [a] denotes an element in the class group of O. One has the natural map

FE = C/a — C/an™! = FE’ with kernel an™'/a & Z/NZ. To find the real point,

1

choose an oriented basis < wj,ws > of a such that an™' =< wy,wy/N >, and y

corresponds to wy /ws.

The conductor of y is the conductor of O. For the complex conjugation 7, one
has
(O,ﬁ, [a])T = (OvnT7 [uT])y

since T is continuous. Note [a”] = [a] 7!

Let K. be the ring of class field corresponding to the conductor of @. Then one
has the Artin map: 6 : Pic(O) — Gal(K./K), and

(O,n, [a)"™ = (O, n,[ab™"]) = (O, n, [ab7]).
For the Fricket involution wy,

wy(O,n,[a]) = (O, [an"'] = (O, n7, [an")).

We also have the Hecke operator T on y with prime number ¢4 N and (¢, N) = 1,
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in this case
T(O.n[a]) = > (Op:=End(b),n := Oy N O, [b]),
a/b=Z/lZ
where the sum is over ¢ + 1 sub-lattices in a.

Back to our original setting. We also assume n is square-free and n t NDp. This
implies for any prime divisor ¢ of n, ¢ is unramified in the extension K(E[p]). We

also assume

Frob(¢) = Frob(7) (4.5)

as conjugate classes in Gal(K (E|[p])/Q). Hence Frob(¢) = 7 in Gal(K/Q) and so [

is inert in K, we use A to denote (1) in K. We also have
ag =/(+1=0(mod p).

The reason is as follows: from the Galois representation from Tate modules of elliptic
curves defined over Q, for any ¢ 1 pN, the characteristic polynomial for Frob(¢) acting
on Elp| is

2 — apx + L.

The characteristic polynomial for Frob(7) acting on E[p] is 2% — 1. Since Frob(¢) =
Frob(7) and characteristic polynomial depends only on the conjugacy class, one must

have these two characteristic polynomials are equal mod p, i.e.

ay = 0(mod p), and ¢ = —1(mod p).
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F\ := Og/\, the residue field. It has ¢? elements, since ¢ is inert in K. From
the condition (4.5), we know the residue field O (gp))/p is a quadratic extension of
Z/(¢) =T, for any prime p in K(E[p] over £ , but £ is inert in K, which means in
K, we already have

Hence A in K splits completely in K (E|[p]). Let F)\ := Ok /(\). The above discussion
implies that the reduction E of E over ¢ have all its p-torsion points over F)(Note

E has good reduction over ¢), i.e.

One can also obtain the eigen values for 7. Points in E (Fy) = E(ng) fixed by 7

must be in F(F,) and vise versa. Hence #E(F\)* = ¢+ 1 — a,. One has
B(F\) = B(R\)* @ E(F)),
and Weil’s conjecture gives
HE(Fp) =412 —a2={+1—a)(l + 1+ ay),

So

#E(F)\)_ :E—i- 1 —Fag.

n = [[¢ G, := Gal(K,/K;). hen G, = [[G,. Gy = F/F/, which is cyclic

of order ¢ + 1. Fix a generator o; and define Tr, = ZOGG@ o in Z[G,]. Let D, be a
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solution of

(O'l — 1)Dl =/ -+ 1— TI‘[. (46)

Suppose D, and D} are two resolutions of (4.6), then
(Ug - 1)Dg - (O’g - 1)D2 = (O’g - 1)<Dg - Dé) = 0,

hence D, is well-defined up to elements in Z - Try. D,, :=[] D,.

D,y, in E(K,) gives a class in E(K,,)/pE(K,) and is fixed by G,.

Proof. G,, = []¢. Hence it is enough to prove (o, — 1)D,y, € pE(K,). n = {m.
Hence

(0’[ - 1)Dn = (Jg - 1)DgDm = (6 +1-— TI'g)Dm,

SO
p | £+ 1, hence it is enough to show Try, € pE(K,,). But Trpy, = a¢- ym, and p | ay.

Another property is that each prime factor A\, of ¢ in K, divides a unique prime \,,

of K,,, and y, = Frob(\,;,) (yy,)(mod \y,). O

The proof of the two properties used in the above proof: By definition, x,, can be

identified with (O,,, Npn, [On]) , where N, = N N O,,, then

Tywm = Y (End(b),N;,End(b) N End(b), [b]).

O /b=T/!T.

One has that O,, = Z+mOx = Z+m- %df = [1,md], where df is the discriminant

of K and d = %ﬂ. From Cox p235, the cyclic sublattices of O,, are:

[1,¢md], [(,md+ j], j=0,...,0—1.
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For b = [1,¢md], since fm = n, [1,¢md] = [1,nd] = O,, and so in this case,
End(b) = b = O,. For b = [¢,md + j], from Cox p.135 Lemma 7.5 and p.209
Theorem 10.4, we only need to consider the lattice [1, #] mdtj satisfies the

¢

quadratic equation in Z[xz]:

2
a4 (=m = 2j)z + (5 + ) + “-ldxl).

Note since dx = 1(mod 4), (2 + j)* + mTQ|dK| € 7Z. Hence [1, mdjj] is a proper ideal

for the order [1,¢* - #] = [1,¢md] = [1,nd] = O,, i.e. End(b) = O,,. Hence

~

-1
Téxm = (OnaNna [On]) + (On;Nm Hl,

J

md + j

iy

Il
o

G is the subgroup of G,, = Gal(K,,/K)) fixing K,,, i.e. G, = Gal(K,,/K,,) which is
the subgroup of Gal(K,,/K) fixing K,,. Since n is square free, all sublattices of O,,
of index ¢, which are orders in O,, are those whose images of Artin map fix j(O,,).

Le.
Ty = Tro(zn) = Y (O, Na,y [0n])°. (4.7)

oceGy

From Eichler-Shimura construction, one has ¢(Tr,(z,)) = as - ©(z,).

For the second property, since ¢ { m, A is unramified in K,,/K. Since ()\) is
also principal, A is totally split in K, since Artin map maps A to the identity in
Gal(K,,/K) = Pic(O,,). Since Gal(K,,/K,,) = G, = F\'/F/, so all primes above A
in K, has trivial residue field extension, but factors \,, of A in K, are ramified in
K,, thus must be totally ramified, i.e. \,, = (A,)*"!. So the residue field F, has (2
elements and is canonically isomorphic to Fy. From (4.7), one sees that any point in
the divisor Ty(x,,) is the conjugate of x, over K, /K,,. Since \,, is totally ramified

in K, any point in the divisor Ty(x,,) = x,(mod \,).
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The properties of {y,} forms an Euler system in the sense of Kolyvagin.

We have the following tower of Galois extension:

K %

Let S be a set of coset rep., define
P,:=Y o(Duy.) € E(K,).
c€eS

Then [P,] is fixed by ¥,,. Use the same set S to define P,, for any m | n. Note

P, = yi. The exact sequence
0—Ejp—-ELE—-0
gives

0 — E[p|(K,) — E(K,) % E(K,) — H'(K,, E[p|)) — H'(K,,E) % H\(K,, E).
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This gives the following commutative diagram:

H' (K /K, E)[p]

e(n)—d(n) Inf \id(n)Hd(n)

0 E(K)/pE(K) —*— H'(K, E[p)) HY(K, E)[p| 0
J/ RgSi ;Y Sn[Pp]—c(n) Res
0 — (B(K,)/pE(K,))" == H'(K,, Elp))* — H'(K.,, B)[p|*
[Pn}Hdn[Pn]
(4.8)

c(n) is also defined in the diagram.

The middle restriction is =. 1. the exact sequence

0 — HY(K,/K, B(K,)[p]) — H'(K,E[p]) == H'(K,, E[p))*.

(see e.g. Serre Galois Cohomology, p15).
Or from the usual inflation-restriction map: G is a pro-finite group, H < G with
G-module M, then we have the exact sequence:
0— HY(G/H,M") - HY(G, M) — H'(H, M).

On the other hand, for any [o] € G/N and [o] € H'(H, M) which comes from the

image of some element in H'(G, M), one has

o%(g) = ao(a 'ga)

=a(o(atg) + a lo(a))

— ao(a™) + go(a) + o(a),
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while
0=0(1) =c(aa™) =0(a)+ac(a™),
o%(g9) —o(g) = go(a) —a(a),
[a] = [a”]
in H'(H,M).

The cokernel of the middle map: From Hochschild-Serre-Leray spectral sequence,

One has
0 — HY(G/H, M™) — H'(G, M) — H'(H, M)S/" — F(G/H, M) — (G, ),
one sees the cokernel maps injectively into H*(K,/K, F(K,)[p]). Since E has no

p-torsion in K, the middle homomorphism is =.

c(n) is represented by 1-cocycle

7, the complex multiplication acts on H'(K, E[p]). We have a direct decomposi-

tion with respect to 7’s eigenvalues £1:

H'(K, Elp]) = H'(K, Elp)* & H'(K, E[p])".
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Denote w, to be the Fricke involution, then for eigenform f associate to F,

f"lUNZEf,

where € = +1.

Proposition 4.6.1. y. — ey? is a torsion point in E(K,) for some o € 4,,.
Proof. The various actions on Heegnar points given above show that for any o € 4,,,

one has b € Pic(O) such that 0(b) = o and

wy(x?) =wn(O,n, [ab™]) = (O,n", [ab™n"]).

n

So take b =n7(a)?, then

where 0 = 6(b). So
(X, —00)" = wy(z, —00)7 + (Wyoo — 0).

Here (wyoo — o0) = (0 — 00) is the torsion point in Jy(V). O

Proposition 4.6.2. [P,] is in €, := ¢(—1)/" eigenspace for T, where f, is the number

of prime divisors of n. The similar results hold for ¢(n) and d(n).

Proof. P, = > o0D,y,. One has Gal(K,/Q) = 9, x Z/2Z, hence

[c]€9n/Gn

oro = (0,1)-(1,7) - (0,1) = (0,7)(0,1) = (6(1 - 0),7) = (60", 7) = (1,7),
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ie.
To=o0'T.
Therefore
TP, = Z ToDyy, = Z o YDy,
[0]€%,/Gn [0]€%n/Gn
Here n is square free and D,, = [] D,. Hence we only need to handle D,. Since
prime £|n

(o ll = 1)Dy = £+ 1 — Try and Gy is cyclic which implies the commutativity, hence

(00— 1)Dyr = 1(09p — 1) Dy = (0[1 —)7rD, = —O'Zl(O'g — 171Dy,

1.e.

(00 — 1)(7D¢ + 0¢Dy7) = 0,

SO

TDg = —O'ngT + mTrl,

for some m € Z. Tryy, = agyn/e = 0 in pE(K,) since p | a;. Also

™D, =T H D,
Ln

== TDnggQ N 'Dgfn

= —O’ngngDgQ s Défn

= (=1)% Hag - D,T.

ln
Hence in E(K,)/pE(K,),

P= Y o (=" [ov- i)

[0]€%/Gn ln

= (—1)f" HO’g . Z o L. D, (Tyy).

tln [0]€% /G
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On the other hand, 7y, = € §(y,) + @ for some § € ¥, and some torsion point in
E(K,). Since E(K,) has no p-torsion points, @) actually resides in pE(K,), therefore
in E(K,)/pE(Ky),
TP, =¢, HO’g -0 - Z o Doy,
n [0]€% /G

Since in E(K,)/pE(K,), Dyy, is fixed by G,, and {c~'} is another set of represen-
tatives of ¢4, /G,,, one has

Hag -0 - Z o 'Dyy, = P,,

tn (0]€%n /Cn
ie.

TP, =¢,P,.

Proposition 4.6.3. 1. The class d(n), is locally trivial in H'(K,, E)[p| at the
archimedean place v = 0o, and at all finite places v of K which do not divide n.

2. Ifn = {n and X is the unique prime of K dividing ¢, the class d(n)y is locally trivial
in HY(Ky, E)[p| iff P € pE(K)xm) = pE(K)) for one places A\, of K, dividing .

Proof. Let v = oo, then K,, = C and the Galois cohomology of E is trivial. If v # oo
and v { n, d(n) comes from H'(K, /K, E)[p], where K,, is unramified at v since v { n.
Hence d(n), lies in the subgroup H'(K™/K,, E) which is trivial when E has good

reduction at v, i.e. v{ N.

If v | N, E has bad reduction at v. Let E° be the connected component of the
Néron module. Since H'(K*/K,, E°) = 0, H'(K*/K,,E) — H'(F,,E/E°). Let

Jo be the Jacobian of X((N), then for any place w | v in K, the class of the Heegner
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divisor (z,,) —(00) in Jo (K, ) lies in Jy up to translation by rational point (0)— (c0).
Hence ¥, is in E° up to translation by rational torsion. Since E(Q)[p] is trivial, y,
(so Dpy, and P, ) lies in a subgroup E’ whose image in E/E° has order prime to p.
But d(n), is killed by p, so d(n), = 0. O

We need some Tate local duality. Let K, be a local field with ring of integers
O, and finite residue field F) of characteristic £. Let E be an elliptic curve over K

with good reduction over Fy. One has the exact sequence
0—Epl—-ELE—-0
for any prime number p # ¢. Hence
B(Ky) % E(K,) = H'(Gal(K}'/K), Elp)) — H'(Gal(K}'/K»), B) = 0

is exact. Hence

E(K,)/p(K)) = H'(Gal(K}'/Ky), Elp)).

Weil pairing E[p] x E[p] — p, gives E[p] ® E[p| — p, which induces the following

pair by cup product:

<,>: HY(Ky, E[p]) x H (K}, E[p]) — H*(K\, E[p] ® E[p]) — H*(K}x, 1) % Z/pZ.
(4.9)
Tate porves this pair is alternating and non-degenerate. We also have the exact

sequence

0 — E(K))/pE(K)) — H'(Ky, Elpl) — H'(Ky, E)[p] — 0.
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Since E(K))/pE(K)) is isotropic for the pairing in (4.9), one has the non-degenerate
pair:

<,>: B(K))/pE(K,) x H(K\, E)[p] — Z/pZ. (4.10)

(form A course in Arithmetic by Serre). Let V' be an A-module, (V,Q : V — A)
is a quadratic module if Q satisfies: 1). Q(av) = a?v, Va € A,v € V; 2). (z,y) —

Qx4+ y) — Q(x) — Q(y) is a bi-linear form.

Let A be a field with char # 2. Define z -y = 3(Q(z + y) — Q(z) — Q(y)), then
(z,y) — x -y is a bilinear symmetric form and Q(z) = z-z. x € V is called isotropic
if Q(z) =0. o Lyifx-y=0. Q is called non-degenerate if V- = 0. Q is called

U-isotropic if U c U*.

Suppose all p-torsion points on E are define in K, then fix a primitive p-th root ¢
of unity in K and then
=027 = {ey, 2},

Frob(A\)—1

where {, } is the Weil pairing, e; = (%cl) , and ¢y corresponds to a homomor-

phism ¢ : p, — E,(K)) and ex = ¢2(().

Now we apply our assumption on K, [ and A (i.e. [ is inert in K, (I) = (A) in
K, p| ¢+ 1,a,. In this case Gal(K,/Q,) = Gal(K/Q) = {1,7}, where 7 is the
complex conjugation.

Proposition 4.6.4. 1. The cigenspaces (E(K,)/pE(K)))* and H (K, E)[p]* for

T each has dimension 1 over Z/pZ.
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2. The pairing in (4.10) induces non-degenerate pairings of Z/pZ-pairings as Z/pZ.-

vector spaces:

<, >%1 (BE(K))/pE(K)))™ x H'(Ky, E)[p]* — Z/pZ.
Hence if 0 # 0dy € HY(Ky, E)[p|* and sy € (E(K))/pE(K)))* such that < sy, dy >=
0, then sy = 0.

Proof. ]

From this result, we can prove a stronger result:
Proposition 4.6.5. Suppose d € H' (K, E)[p|* is locally trivial except at place X\ in

K. Then for any s € Sel(E/K)[p|*, one has the restriction s of s is 0.

Proof. sy € (E(K))/pE(K)))*. Indeed, from the exact sequence
0—Epl—-ELE—O,
one has the exact sequence
0 — E(K,)/pE(K)) — H'(K\, E]p]) — H'(K\, E).
By definition, The image of s in H' (K, F) is 0, hence s comes from (E(K))/pE(K)))*.

Hence we only need to prove < sy, dy >= 0 by the proposition above.

Using (4.8), one can lift d to H' (K, E[p]). The difference of two lifts is in F(K)/pE(K).

one has

Z < Sy, Cy >=0,
v

by global class field theory and from assumption, < s,, ¢, >= 0 for any v # A, hence

< Sy, C\ >=< S)\,d,\ >=0. ]
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Now from our hypothesis, p is big enough such that Gal(Q(E[p])/Q) = GLy(Z/pZ).
(D, NP) =1 implies K N Q(E[p]) = Q. Hence one has the following diagram:

L=K(
i
K
\ GGy (2 /p)

Q=KnNQ(E[p])

The center of G is Z = (Z/pZ)* acting on E[p] as multiplication. Hence H°(Z, E[p]) =

(4.11)

Q(E[p])

va

0 = H%(Z, E[p]). Since both Z and E|[p] are finite, the Herbrand quotient h(E[p]) =
1, hence H'(E[p]) = 0. Since Z is cyclic, H"(Z, E[p]) = 0 for all n > 0.

Proposition 4.6.6. H"(G, E[p]) =0 forn >0 and
Res: HI(K, E[p]) 2 H'(L, Elp))® = Homg(Gal(@/L), B(L)[p))

is an isomorphism as Gal(K/Q)-modules.

Proof. One has the spectral sequence H™(G/Z, H"(Z, E[p])) = H™(G, E[p]). Since
H™(Z, E[p]) = 0, the spectral sequence satisfies *(n) condition in the sense of Ribes’.

Hence one has the exact sequence for n > 1:

0 — H™(G/Z, Elp)?) ™% H™(G, E[p]) = H"(Z, E[p))9? % H"™Y(G/Z, E[p)?) ™ H™ (G, Elp)).

Since both E[p]? and H"(Z, E[p]) are trivial, H"(G, E[p]) is trivial. For n = 0,
H(G, E[p]) = E[p)° € E[p]” =0.

Since Gal(Q/L) < Gal(Q/K) and their quotient is Gal(L/K) = G, one has the
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Leray-Serre long exact sequence

0 — H'(G, B(L)[p]) = H'(K, E[p) == H'(L, E[p))° — H*(G, E[p]) = 0.

By the definition of L, E(L)[p] = E[p], hence H(G, E(L)[p]) = 0, so the restriction

map is actually an isomorphism:
H'(K, Elpl) = H(L, E[p))? = Homg(Gal(Q/L), E[p]).

Here s € Homg(Gal(Q/L), E[p]) means s is a homomorphism from Gal(Q/L) to
E[p]) such that for any o € Gal(Q/K),

os(c” po) = s(p),

for any p € Gal(Q/L). O

From this proposition, we obtain a pairing:

L]+ H'(K, E[p]) x Gal(Q/L) — E(L)]p], (4.12)

which satisfies [s®, p?] = [s, p°] = f(o 7 po) = o7 1s(p) = [s, p]°

Now Let S € H'(K, E[p]) be a finite subgroup, i.e. finite dimensional vector space
over F,. Let Galg(Q/L) be the subgroup of p € Gal(Q/L) such that [s, p] = 0 for all

—Galg(Q/L)

s € S. Define Lg :=Q . Then Lg/L is Galois. Indeed, for any o € Gal(Q/L)

and p € Galg(Q/L),

[s,a ' pa] = s(a™!) + s(p) + s(a) =0,

since s(p) = [s,p] = 0. So a~'pa € Galg(Q/L), i.e. Lg/L is Galois.
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Proposition 4.6.7. The induced pairing:

]+ 5 xGal(Ls/L) — E(L)[p] (4.13)
15 non-degenerate and it induces two isomorphisms:

Gal(Ls/L) = Hom(S, E(L)[p]) (4.14)

as G-modules and

S = Homg(Gal(Ls/L), E(L)[p]) (4.15)

Proof. Injectivities are obvious. Let r = dim g, (S). Then Gal(Ls/L) is a G-
submodule of Hom(S, E[p]) = Ep|". E[p] is a simple G-module, hence Hom(S, Ep])
is semi-simple. Hence Gal(Lg/L) = E|p]® for some s < r. So Homg(Gal(Ls/L), E[p]) =
(Z/pZ)®. Hence r <'s. So r = s. O

Now let S = Sel”(E/K) ¢ H'(K, E[p]). By our assumption, y is not divisible by
pin E(K). 0yk is its image in Sel(£/K)[p|, which is not zero. We have the following

diagram:

L(lyK) = Lesyy> H~Hom(Sell’!(E/K),E[p])

Q

Remark: (a) from the exact sequence:

0— E[pl - E% E—0,
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one has the exact sequence
0 — E(K)/pE(K) % H'(K,E[p)) - H'(K, E).
From the definition of Selmer group,

Sel(E/K) = ker{H(K, Elp)) — [[ H'(G,, E)},
p

which factors through H'(K, E[p]) — H'(K, E). Hence dyk is in the Selmer group

since ¢(dyx) = 0.

(b) The connecting function 0 is defined as follows:

Sy = (g — (—%y;«) + g(}%yx)).

The general theory is: for the exact sequence

0-ASBEC0,

written additively as G-modules, one has ¢ : H°(G,C) — HY(G, A) as follows: for
any ¢ € C, 3b € B such that p(b) = ¢. Let ¢ € H°G,C), then §(c) = (o0 —
[i7Y(=b+ a(b))]). | By definition, L_g,,~ is the fixed field of Galg(Q/L), which is

in turn defined as

Gals(Q/L) := {p € Gal(Q/L) ‘ [0yxc, p] = 0,Vs € S}.

But in this case

By, pl = (Oui)(p) = —%yK T pgym.

Hence we must have

1 1
p(=Yk) = YK,
p p
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iff p € Galg(Q/L), i.e. L(2yx) = Lesye>-

(3). Gal(L(%yK)/L) ~ Hom(< dyx >, E[p]) which is defined by where dyx is

mapped. Hence is isomorphic to E[p].

Let 7 is the complex conjugation in C. 7 acts on H by conjugation. Its eigen-

values are +1. Now to calculate H* and I, which have the obvious meaning.

Any o € H is identified by an element in Hom(Sel?”, E[p]) by s — [s,0], Vs €
Sel”(E/K). Hence ¢ corresponds to s — [s,707] (notice that 7=' = 7). Since
[s,7oT]” = [s,0] (72 = 1), to fix by 7, we must have the form [s,o] + [s,To7], i.e.
Ht = H ™ = {n"-h|h e H} = {(th)*| h € H}, similarly, I" = {(7i)*|i € I},
and so H" /1T = (H/I)™ = E[p|t = Z/pZ. Also one has
Proposition 4.6.8. Let s € Sel?!(E/K)*, then the followings are equivalent:

e (a) [s,p] =0, forallp e H;
e (b) [s,p] =0, forallpe HT;
e (¢) [s,p] =0, forallpe H" — I*;

(

Proof. 1t is enough to prove (¢) = (b) = (a). (¢) = (b) is trivial by group theory.
For (b) = (a), for any s € Sel”(E/K), it induces a G-homomorphism H — E[p]
which maps H™ — E[p]* and H- — E[p|T. If [s, HT] = 0, then s(H) C E[p]T. But
s(H) is a G-submodule of the simple module E|[p|, hence form s(H) # E[p], one has
s(H) = 0. O

Let A be a prime of K which does not divide Np. Then A is unramified in M = Lg/K.
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We assume A splits completely in L/K and Ay be a prime factor of A\ in M. The
Frobenius element p of Ay in Gal(M/K) lies in H since A is totally split in L/K by

our assumption. Denote Frob(\) = {p?|g € G}.

Proposition 4.6.9. Let s € Sel? (E/K). The followings are equivalent:
(a) [s,p] =0;
(b) [s,Frob(\)] = 0;
(c) sx=01in H(Ky, E[p]).

Proof. (a) and (b) are equivalent because of [s,pI] = [s,p)? for any g € G. For

(a) < (c), we have the commutative diagram

H'(K, E[p]) HH; HY(Ky E),

I
—~
| —

—~
V —~
—~

H' (K, E[p])

and exact sequence
0 — BE(Ky)/pE(Ky) — H'(Ky, Elp]) — H' (K, E).

Hence from the definition of Selmer group, s, can be identified with an element in
E(K,)/pE(K),), say sy = P\ in E(K,)/pE(K)). Then clearly %P,\ is defined over
M,,, and [s, p] = —(%PA) + p(%P)\) in E(M,,,) = E(M) from the definition of the
connection map which is given above. Hence [s, p| = 0 iff P\ = 0 in E(K))/pE(K)).

O

Finally we reach the point to prove our main result which is given in the follow-

ing two results:
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Theorem 4.6.10. Sel”(E/K)~ = 0.

Proof. Let s € Sel[p](E/K)_e, then is is enough to prove [s,p] = 0 for any p €
H*™ — I'*. Such element has the form p = (7h)? for some h € H — I. Let { be a
rational prime which is unramified in M/Q, and has a factor A\y; whose Frobenius is
Th. Then (¢) = X inert in K and A splits completely in L. Hence the Frobenius of

Fy,,/Fy is (Th)?. So it is enough to prove sy = 0 in H' (K}, E[p]).

Let ¢(¢) and d(¢) be those constructed above. Then both are in —e eigenspace. We
want to prove d(¢) # 0. If not, then yx = P, € pE(K)), hence A splits completely

in L(1yx). But Frob(\) = p is not in I, this does not occur. O

Using the notation in the proof of Theorem 4.6.10, one has
Theorem 4.6.11. The followings are equivalent:
c(t) =0 in HY(K, E[p));

() € Sel”(E/K) c HY(K, E[p]);

3) Py is divisible by p in E(Ky);
d(l) = 0 in H'(K, E[p]);
5) d()y =0 in H' (K, E[p]);

Proof. Easy. ]

Theorem 4.6.12. Sel? (E/K)* = Z/pZ - Syx
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Proof. For s € zSellP!(E/K)¢, it is enough to show [s, p] = 0 for all p € I. This is be-
cause then from proposition 4.6.7, one has s € Homg(H/I, E,) = Z/pzZ - 0yk. The
argument in the proof of proposition 4.6.8 gives that it is enough to show [s, IT] =0

(Replace H with [ in the argument).

Let ¢ be a prime with non-zero image ¢(¢') in H'(K, E[p]). From theorem 4.6.11, we
can select ¢’ such that its Frobenius is conjugate to 7h in Gal(M/Q) for some h € H
and A7 ¢ I (Given h € H and h'*™ ¢ I, from Chebotarev density theorem, prime
¢" whose Frobenius element is conjugate to 7h in Gal(M/Q) has positive Dirichlet
density, for such ¢, the proposition above implies ¢(¢’) is non-trivial in H*(K, E[p])).
Hence ¢(¢') ¢ Sel™ hence the field extension L' := L.cwy> of L has Galois group

= Ep] and L' N M = L. One obtain the following field tower:

<l

YK) Hom(S, E[p])

Q

where S := Sel” (E/K). We have the prime ideal () = A in K which splits com-
pletely in L. It splits completely in L' iff Py is locally a p-th power in E(K),) =
E(K)) for all factors Ay of A in K. (7)
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Let ¢ be a prime whose Frobenius element is conjugate to i in Gal(M/Q) with i € T
and whose Frobenius element is conjugate to 7j in Gal(L'/Q) where j € Gal(L'/L)
such that j1*7 = 1. Claim d(¢¢') in H'(K, E)[p]° is locally trivial for all places v # A
and d(¢0'), # 0. The local triviality for v # A, X is clear. i € [ = ¢(¢) = 0 and
p | Pp. By proposition 4.6.3, in the completion at a place dividing A, P, is locally
divisible by p and d(¢¢')x = 0. Suppose d(¢¢"), = 0, then Py is locally divisible by p

in E£(K,), but this means A splits in L, so (75)% = j*7 = 1, which is a contradiction.

Now we have s, = 0, and hence [s, 7] = 0. O





