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1 Optimal separating hyperplanes

Consider two-class classification problem, where we find a hyperplane or affine set L

defined by the equation f(x) = β0 + β>x = 0. The classifier is sign(x>β + β0). It has

some important properties that can help us formula the SVM:
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1. For any x1 and x2 lying in L

β>(x1 − x2) = 0

and hence

β? =
β

‖β‖

is the unit vector normal (perpendicular) to the surface of L.

2. For any point x0 in L, β>x0 = −β0.

3. The signed distance of any point x to L is

〈β?, x− x0〉 = β?>(x− x0) =
β>

‖β‖
(x− x0) =

1

‖β‖
(β>x+ β0)

=
1

‖f ′(x)‖
f(x),

where x0 is a point in L.

With preparation of those notions, we are ready to introduce the SVM. For simplicity, let

us first consider the well-separated case, where there is no overlapping points between two

classes, while the non-overlapping case will be discussed later. We hope to find a separating

hyperplane (which characterized by β and β0) by maximizing the distance of points to the

decision boundary, those points are all correctly classified.

We observe that the correctly classified point i has the following property,

• when true yi = +1, the predicted ŷi = f(xi) = x>i β + β0 > 0 (half space)

• when true yi = −1, the predicted ŷi = f(xi) = x>i β + β0 < 0 (half space)
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For both cases, the distance of a correctly classified xi to the decision surface is given by

yi(β
>xi + β0)

‖β‖
> 0

We hope to achieve the following two goals:

• Correctly classification: we require that all the points (xi, yi) for i = 1, . . . , N be

correctly classified (later we will relax this requirements by introducing slackness).

• Maximized margin: the lower-bound of the respective distances of N points to the

hyperplane (i.e. the margin) should be maximized. We define lower-bound as mar-

ginM > 0, which basically is the perpendicular distance from the hyperplane to the

closest point xi.

Thus the problem ofmaximizing themargin of the separating hyperplane can be formulated

as the following optimization problem

max
(β,β0)

M

subject to
1

‖β‖
yi(β

>xi + β0) ≥M, i = 1, . . . , N. (1)

The above problem can be further simplified. Observe that any positively scaled β → κβ

and β0 → κβ0 would still satisfy the inequality constraint:

1

‖β‖
yi(β

>xi + β0) ≥M
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Therefore we can arbitrarily set ‖β‖ = 1/M . Thus (1) can be simplified to

max
β,β0

1

‖β‖

subject to yi(β
>xi + β0) ≥ 1, i = 1, . . . , N.

which is equivalent to

min
β,β0

1

2
‖β‖2

subject to yi(β
>xi + β0) ≥ 1, i = 1, . . . , N. (2)

This is a convex quadratic optimization problem, inwhichweminimize a quadratic function

subject to a set of linear inequality constraints. The corresponding Lagrangian is

L(β, β0, α) =
1

2
‖β‖2 +

N∑
i=1

αi[1− yi(β>xi + β0)], (3)

with αi ≥ 0. Now we can find the dual problem of (2), which is the maximization problem

of the Lagrange dual function LD(α) in terms of the dual variable α, subjecting to the

constraint for the dual variable αi ≥ 0 for i = 1, . . . , N . LD(α) is defined as follows

LD(α) = min
(β,β0)

L(β, β0, α) (4)

The dual problem therefore is

max
α

LD(α) = max
α

min
(β,β0)

L(β, β0, α)

subject to αi ≥ 0 (5)
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This dual problem can be further simplified. Observing that at the solution of the primal

problem (2) β = β∗ and β0 = β∗0 , the stationarity condition holds ∂L(β,β0,α)
∂β0

∣∣∣∣∣
β=β∗

= 0 and

∂L(β,β0,α)
∂β

∣∣∣∣∣
β0=β∗

0

= 0, which yields

∂L(β, β0, α)

∂β0

∣∣∣∣∣
β=β∗

= 0 =⇒ β∗ =
N∑
i=1

αiyixi, (6)

∂L(β, β0, α)

∂β

∣∣∣∣∣
β0=β∗

0

= 0 =⇒ 0 =
N∑
i=1

αiyi, (7)

and plug these in (4), we obtain a simplified version of LD(α)

LD(α) = min
(β,β0)

L(β, β0, α) = L(β∗, β∗0 , α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
>
i xk

Hence the dual problem (5) can be simplified into

max
α

LD(α) = max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
>
i xk

subject to αi ≥ 0 and
N∑
i=1

αiyi = 0. (8)

This is the dual form of the non-overlapping case of the linear SVM.

We can further get insight into the property of the primal and dual solutions. The

solution β∗, β∗0 and α∗ of the above primal and dual problems must satisfy the Karush-

Kuhn-Tucker conditions, which include

• stationarity: (6) and (7),

• dual feasibility: (8) and
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• complementary slackness:

α∗i [yi(x
>
i β
∗ + β∗0)− 1] = 0 ∀i, (9)

from which we see that

• If α∗i > 0, to satisfy (9), it must be that yi(x>i β∗ + β∗0) = 1, xi is on the boundary of

the margin.

• If yi(x>i β∗ + β∗0) > 1, then xi is not on the boundary of the margin, then it must be

that α∗i = 0.

We see that the solution vector β∗ and β∗0 is defined in terms of a linear combination of

the support point xi, where corresponding α∗i > 0. To predict new data points using the

trained model, we evaluate the sign sign(f(x)) = sign(x>β∗ + β∗0). Plug in (6), we get

f(x) =
N∑
i=1

α∗i yi 〈xi, x〉+ β∗0 . (10)

Data points with αi > 0, are called support vector; Data points with αi = 0, plays no role

in (10).

2 Overlapping class distributions

For the general data set, there is no x>β + β0 = 0 to perfectly separate class “+1” from

class “−1”.
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Figure 1: The same data as in Figure ??. The shaded region delineates the maximum
margin separating the two classes. There are three support points indicated, which lie on
the boundary of the margin, and the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using logistic regression (red line), which
is very close to the optimal separating hyperplane.

7



Figure 2: Support vector classifiers. The left panel shows the separable case. The decision
boundary is the solid line, while broken lines bound the shaded maximal margin of width
2M = 2/‖β‖. The right panel shows the nonseparable (overlap) case. The points labeled
ξ?j are on the wrong side of their margin by an amount ξ?j =Mξj; points on the correct side
have ξ?j = 0. The margin is maximized subject to a total budget

∑
ξj ≤ constant. Hence∑

ξ?j is the total distance of points on the wrong side of their margin.
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The original optimization problem is

max
(β,β0)

M

subject to
1

‖β‖
yi(β

>xi + β0) ≥M, i = 1, . . . , N. (11)

Suppose now that the classes overlap in feature space. We now allow for some points to be

on the wrong side of the margin. Define the slack variables ξ = (ξ1, ξ2, . . . , ξN). There is

a natural way to modify the constraint in (11):

1

‖β‖
yi(β

>xi + β0) ≥M(1− ξi) ∀i, ξi ≥ 0,
N∑
i=1

ξi ≤ const.

Misclassifications occur when ξi > 1. DefineM = 1/‖β‖, we get

min
β,β0

1

2
‖β‖2

subject to yi(β
>xi + β0) ≥ 1− ξi ∀i, ξi ≥ 0,

N∑
i=1

ξi ≤ const.

The problem is quadratic with linear inequality constraints, hence is convex optimization

problem. For convenience, we re-express it as

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi (12)

subject to yi(β
>xi + β0) ≥ 1− ξi ∀i, ξi ≥ 0
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We know that

yi(x
>
i β + β0) + ξi ≥ 1, ∀i

ξi ≥ 0

⇐⇒(1− ξi − yi(x>i β + β0)) ≤ 0, ∀i,

− ξi ≤ 0.

We obtain the Lagrangian as

L(β, β0, ξ, µ, α) =
1

2
‖β‖2 + C

n∑
i=1

ξi +
N∑
i=1

αi
[
(1− ξi)− yi(x>i β + β0)

]
−

N∑
i=1

µiξi.

(13)

∂L

∂β
= β −

N∑
i=1

αiyixi = 0 (14)

∂L

∂β0
= −

N∑
i=1

αiyi = 0

∂L

∂ξi
= C − αi − µi = 0

⇐⇒


αi = C − µi∑N

i=1 αiyi = 0∑N
i=1 αiyixi = β

(15)

and αi ≥ 0, µi ≥ 0, ξi ≥ 0 ∀i. Plug in (15) into (13) we get the Lagrange dual function
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as LD(µ, α) = minβ,β0,ξ L(β, β0, ξ, µ, α).

LD(µ, α) =
1

2

∥∥∥∥∥
N∑
i=1

αiyixi

∥∥∥∥∥
2

2

+
N∑
i=1

αi(1− yi(x>i β + β0))

=
1

2

∥∥∥∥∥
N∑
i=1

αiyixi

∥∥∥∥∥
2

2

+
N∑
i=1

αi −

(
N∑
i=1

αiyixi

)>( N∑
i=1

αiyixi

)

= −1

2

∥∥∥∥∥
N∑
i=1

αiyixi

∥∥∥∥∥
2

2

+
N∑
i=1

αi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
>
i xj.

We find that αi ≥ 0, µi ≥ 0 and αi = C−µi implies 0 ≤ αi ≤ C. We therefore maximize

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
>
i xj (16)

subject to 0 ≤ αi ≤ C,
N∑
i=1

αiyi = 0.

Maximizing the dual problem (16) is a simpler convex quadratic programming problem

than the primal (12), and can be solved with standard techniques.
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Let’s check the K.K.T. conditions to gain more insight:

Stationarity :


αi = C − µi∑N

i=1 αiyi = 0∑N
i=1 αiyixi = β

(17)

Complementary

slackness
:

αi(yi(x
>
i β + β0)− (1− ξi)) = 0

µiξi = 0
(18)

Primal

feasibility
:

yi(x
>
i β + β0)− (1− ξi) ≥ 0

ξi ≥ 0
(19)

Dual

feasibility
:

αi ≥ 0

µi ≥ 0
(20)

From (14) we see that the solution for β has the form

β̂ =
N∑
i=1

α̂iyixi =
∑
i:αi 6=0

αiyixi

with nonzero coefficient α̂i only for those observations i for which the constraints in (19)

are exactly met. i.e.

• If yi(x>i β + β0)− (1− ξi) > 0 then αi = 0.

• If αi 6= 0, yi(x
>
i β + β0)− (1− ξi) = 0. These observations are called the support

vectors. We have two scenarios for αi 6= 0, :

– If ξi = 0, then xi lies exactly on the margin and by (17) and (18), we get

αi ∈ (0, C].
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– If ξi > 0, then by (18) µi = 0, then by (17) αi = C.

Given the solutions β̂0 and β̂, the decision function can be written as

Ĝ(x) =sgn(x>β̂ + β̂0).

3 Support Vector Machines and Kernels

The Lagrange dual function has the form

LD(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi, xj〉,

and produce the classifier

sgn(x>β + β0)

=sgn(β0 + x>
∑
i

αiyixi)

=sgn(β0 +
∑
i

αiyi〈x, xi〉).

so the computation and use of the fitted SVMonly requires 〈xi, xj〉.The support vector clas-

sifier described so far finds linear boundaries in the input feature space. As with other linear

methods, we can make the procedure more flexible by enlarging the feature space using ba-

sis expansions such as polynomials or splines. Now we can perform similar inner product

operation for the transformed feature vectors h(xi), h(xi) = (h1(xi), h2(xi), . . . , hM(xi)),
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Figure 3: The linear support vector boundary for the mixture data example with two over-
lapping classes, for two different values of C. The broken lines indicate the margins,
where f(x) = ±1. The support points (αi > 0) are all the points on the wrong side
of their margin. The black solid dots are those support points falling exactly on the margin
(ξi = 0, αi > 0). In the upper panel 62% of the observations are support points, while in
the lower panel 85% are. The broken purple curve in the background is the Bayes decision
boundary.
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i = 1, . . . , n, where each xi ∈ Rp is transformed to h(xi) ∈ RM .

LD(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈h(xi), h(xj)〉,

Generally linear boundaries in the enlarged space achieve better training-class separation,

and translate to nonlinear boundaries in the original space.

f(x) =h(x)>β + β0

=
n∑
i=1

αiyi 〈h(x), h(xi)〉+ β0.

In fact, we need not specify the transformation h(x) at all, but require only knowledge of

the kernel function

K(x, x′) = 〈h(x), h(x′)〉

that computes inner products in the transformed space. K should be a symmetric positive

(semi-) definite function; Three popular choices for K in the SVM literature are

Replace 〈xi, xj〉 with K(xi, xj). We require K(xi, xj) = exp(−γ‖xi − xj‖2) > 0.
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Then SVM dual becomes

max
N∑
i=1

αi −
1

2

N∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)

s.t. 0 ≤ αi ≤ C

N∑
i=1

αiyi = 0.

and the solution can be written as

f̂(x) =
N∑
i=1

α̂iyiK(x, xi) + β̂0.

Consider for example a feature space with two inputsX1 andX2, and a polynomial kernel

of degree 2. Then

K(X,X ′) = (1 + 〈X,X ′〉)2

= (1 +X1X
′
1 +X2X

′
2)

2

= 1 + 2X1X
′
1 + 2X2X

′
2 + (X1X

′
1)

2 + (X2X
′
2)

2 + 2X1X
′
1X2X

′
2.

ThenM = 6, and if we chose h1(X) = 1, h2(X) =
√
2X1, h3(X) =

√
2X2, h4(X) = X2

1 ,

h5(X) = X2
2 , h6(X) =

√
2X1X2, then K(X,X ′) = 〈h(X), h(X ′)〉.

4 The SVM as A Penalization Method

The SVM with overlapping class distributions is
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Figure 4: Two nonlinear SVMs for the mixture data. The upper plot uses a 4th degree
polynomial kernel, the lower a radial basis kernel (with γ = 1). In each case C was tuned
to approximately achieve the best test error performance, and C = 1 worked well in both
cases. The radial basis kernel performs the best (close to Bayes optimal), as might be
expected given the data arise from mixtures of Gaussians. The broken purple curve in the
background is the Bayes decision boundary.
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min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi

subject to yi(β
>xi + β0) ≥ 1− ξi ∀i, ξi ≥ 0

We can also eliminate the linear inequality constraints.

∀i, ξi ≥ 0 and ξi ≥ 1− yi(x>i β + β0)

⇐⇒max(1− yi(x>i β + β0), 0) ≤ ξi.

Given (β, β0),
∑

i ξi should be minimized, therefore the optimal value ξ?i should have the

property that ξ?i = max(1− yi(xT
iβ

? + β?0), 0). Then,

(β?, β?0) = arg min
(β,β0)

1

2
‖β‖22 + C

∑
i

max(1− yi(xT
iβ + β0), 0)

= arg min
(β,β0)

n∑
i=1

max(1− yi(xT
iβ + β0), 0) + λ‖β‖22.

Let φhinge = max(1− t, 0) = (1− t)+ and f(x) = x>β + β0. The problem becomes

min
N∑
i=1

φhinge(yif(xi)) + λ‖β‖22. (21)

If the data are separable, then the limit of β̂λ in (21) as λ→ 0 defines the optimal separating

hyperplane. Compare it with logistic regression:

min
N∑
i=1

φlogit(yif(xi))
2 + λ‖β‖22.
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where yi = ±1, and φlogit(t) = log(1 + exp(−t)). This error function is also plotted in

Figure 5 and we see that it has a similar form to the support vector error function. The key

difference is that the flat region in φhinge(t) = (1− t)+ leads to sparse solutions.

Both the logistic error and the hinge loss can be viewed as continuous approximations

to the misclassification error. Another continuous error function that has sometimes been

used to solve classification problems is the squared error, which is again plotted in Figure

5. It has the property, however, of placing increasing emphasis on data points that are

correctly classified but that are a long way from the decision boundary on the correct side.

Such points will be strongly weighted at the expense of misclassified points, and so if the

objective is to minimize the misclassification rate, then a monotonically decreasing error

function would be a better choice.

5 Kernel Regression

Now we extended the model

min
N∑
i=1

φ(yi, f(xi))
2 + λ‖β‖22.

to the kernel case. We consider the problem

f̂(x) = arg min
f∈HK

n∑
i=1

φ(yi, f(xi)) + λ‖f‖2HK
, (22)

We express f(x) in a finite-dimensional subspace spanned by kernel functions on observa-

tional data, i.e.,

f(x) =
n∑
i=1

αiK(xi, x), (23)
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Figure 5: The support vector loss function (hinge loss), compared to the negative log-
likelihood loss (binomial deviance) for logistic regression, squared-er- ror loss, and a “Hu-
berized” version of the squared hinge loss. All are shown as a function of yf rather than f ,
because of the symmetry between the y = +1 and y = −1 case. The deviance and Huber
have the same asymptotes as the SVM loss, but are rounded in the interior. All are scaled
to have the limiting left-tail slope of -1.
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Figure 6: The population minimizers for the different loss functions in Figure 5. Logis-
tic regression uses the binomial log-likelihood or deviance. Linear discriminant analysis
uses squared-error loss. The SVM hinge loss estimates the mode of the posterior class
probabilities, whereas the others estimate a linear transformation of these probabilities.

for some {αi}ni=1 ⊂ R. By (23) and the reproducing property of RKHS we have

‖f‖2HK
=

n∑
i=1

n∑
j=1

αiαjK(xi,xj). (24)

Based on (23) and (24)we can rewrite theminimization problem (22) in a finite-dimensional

space

{α̂i}ni=1 = arg min
{αi}ni=1

n∑
i=1

φ

(
yi,

n∑
j=1

αjK(xi, xj)

)
+ λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj). (25)

The corresponding estimator is f̂(x) =
∑n

i=1 α̂iK(xi, x).
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