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m References

m Reading assignment: Probabilistic Machine Learning: An

Introduction (PML) Chapter 22

! https://developers.google.com/machine-learning/recommendation/collaborative/basics
2csc 311, University of Toronto






Netflix Prize

m In 2006, Netflix released a large dataset of 100,480,507 movie ratings

(on a scale of 1 to 5) from 480,189 users of 17,770 movies.
m The ratings matrix is 99% sparse (unknown).
m A prize of $1M, known as the Netflix Prize.

m The prize claimed on September 21, 2009 by a team known as

“BellKor's Pragmatic Chaos”

m They proposed an ensemble of different methods®. We describe a key

component in their ensemble.

8 https://www.jstor.org/stable/41714795



MATRIX FACTORIZATION



A Movie Recommendation Example

Consider a feedback data matrix X € R™*?:

m N rows, each row represents a user.
m p columns, each column represents a movie.

m Binary feedback

1 user i interested in movie j
zi; = [X]i; =
0 otherwise

fori=1,---,Nandj=1,-,p.



A Movie Recommendation Example
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1D feature

m In a simplest example, the user feedback is explained by the product

of 1D user feature and 1D movie feature
Tij = UpV15

m User feature: uy; € [—1,1] describes user ¢’s interest in children’s
movies (closer to -1) or adult movies (closer to +1).

m Movie feature: vy; € [-1, 1] describes whether movie j is for
children (closer to -1) or adults (closer to +1).
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In a simplest example, the user feedback is approximated by the product of

1D user feature and 1D movie feature

Tij = U1V15
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However 1D feature might not be sufficient enough to explain users’

preferences. e.g. the first and second users’ preferences
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2D feature

m If one feature was not enough, let's add a second one!

m Addl. user feature: uy; € [—1, 1] describes user i’s interest in

arthouse movies (closer to -1) or blockbuster movies (closer to +1).

m Addl. movie feature: v,; € [—1, 1] describes whether movie j is

arthouse (closer to -1) or blockbuster (closer to +1).



With a second feature, the user and movie feature are two dimensional

; T
m User i: column vector U; = (uy;, us;)

. T
m Movie j: column vector V; = (vy;,va;)
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m Features of users with similar preferences will be close together.

m Features of movies liked by similar users will be close in the feature

space.
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The user feedback is explained by 2D user feature and movie feature

-
zij = [X]ij = wrvj + ugivey; = Uy Vj
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T T
Inner product U; V; measures similarity

m Inner product UiTVj = uy,;U1; + Ug;V; Measures similarity between U,
and V;, measures how much user i likes movie j
m Users and their liked movies will be close in the feature space.
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Matrix factorization

m In this example, we hand-engineered the features. In practice, the

latent features can be learned automatically.

m Matrix factorization solves

min Z(xm i
{U:,V;} (i)



Ex. Collaborative Filtering

Collaborative filtering:
m Uses similarities between users and items simultaneously to provide
recommendations.
m Recommend an item to user A based on the interests of a similar
user B.

m The embeddings can be learned automatically, without relying on

hand-engineering of features.



Connection to rank-i matrix approximation

m The matrix factorization problem (with k-dimensional feature)

. T 2
min Z (.1'” - U7, ‘/j)
{Ui,Vj}(Z. -

%)
can also be written as

min || X -UV'||Z2 = XUV
uU,v

where



Connection to rank-i matrix approximation

m One the other hand, the rank-k matrix approximation of X considers

X(k) = argmin|| X - C||» = X =~X(k) =U,Z,V,
rank(C)=k
3)

m Unlike U, and V;, in (3), U and V in (2) are not necessarily

orthonormal.



MATRIX COMPLETION VIA FACTORIZATION



Matrix completion via factorization

m Sometimes, some entries of the matrix are missing, matrix completion
can predict the missing values using the observed ones.

m Let O = {(4,7) : entry (¢,7) of matrix X is observed}

m Matrix completion solves

. T 2
min Z (xij -U; Vj)
U;,Vji(4,5)€e0 (i.)€0
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Matrix completion via factorization

m The dimension of U; and V; can be generalized to k in

. T
min Z (z;; - U;
U;,V;:(i,5)€0 (i.))€0

2
V;)
. T T
with U; = (14, ug;, +++, ug;) and Vj = (vq;, 25, -+, Vk;)
m The objective is non-convex in U; and V; jointly, and hard to find the

global minimum.

m However, as a function of either U; and V; individually, the problem is

convex and easy to optimize.



Alternating Least Squares

m Use alternating minimization to solve

. T
ml{nl Z (.’17” - U'i
ULViiieo S

V;)?

m Alternating Least Squares (ALS): fix V; and optimize U;, followed by

fix U; and optimize V;, and so on until convergence.



Alternating Least Squares

m Decompose the cost into a sum of independent terms:

only depends on Uj, fixing V;

Z (xij -

-
Y (e -UV) =Yy (4)
(i,j)€O i:(i,5)€0 §:(i,5)€0
only depends on V}, fixing U;
|
= z Z (25 - ®)

ji(i,)e0  |ix(if)eo

m Assume values of V; are fixed (known), (4) can be minimized
independently for U, for each observed row : : (i,5) € O

. T 2 . T 2
min Y ULV = om0 Y S (= UV)

Ui(.0)€0 (5o i:(i,7)€0 j:(i,7)€0

Z mln Z (x5 — Z— )

i:(4,5)€0 Ui (i,7)€0
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Alternating Least Squares

m This can be minimized independently for U; for each observed row
1:(i,5) €O
-

Ul = arg II(lJln . Z (x5 = U;
j:(4,5)€0

V;)?

m This is essentially a linear regression problem. Its optimal solution is:

-1
U;=( > Vjva) Y (6)

3:(4,5)€0 J:(4,5)€0

25



Proof of (6)

Compute the derivative of the objective function in (6) and set it to zero

0 T2
Uy > (e =TIV ==2 ) Vilwy -
i j:(4,5)€0 J:(i,5)€0
=2 ) Vilwy
j:(4,5)€0

which gives the equation
Y Vim= oy vv'u;
j:(i,5)€e0O j:(i,5)€e0O
Therefore the solution of (6) is

-1
U( 3 Vjva) > Vi

J:(4,5)€0 J:(4,5)€0

Ui'V;)

T

-V,'U) =0
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Alternating Least Squares

m Similarly, assuming values of U; are known, (5) can be minimized

independently for V; for each observed column j : (i,j) € O

. T
Vj+ = arg min Z (x;; = U;
7 iii,5)e0

v;)?

m lts optimal solution is:

-1
vjf:( S UiUiT) Y wU;

i:(i,j)€O i:(i,7)€0
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ALS for matrix completion problem

Bl Initialize U; and V; randomly, for (4, j) € O

H Repeat step 3 and 4 until convergence

A fori:=1,---, N do

=1
Ui = ( > VjVjT) > @Y
Ji(4,5)€0 Ji(i,5)€0
A forj=1,---,pdo

=il
Vj=( > UiUiT) >yl

i:(i,7)€0 i:(i,7)€O
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MATRIX COMPLETION IN HIGH-DIMENSION



Matrix completion in high-dimension

m There might be an overfitting issue when the dimensions of U; and V;
are very high. To overcome overfitting, we consider the regularized
problem

min_ Y (zy-U V) AN Y GIEEA Y VP

Vo Viilid)e0 ; eo i(i,7)€0 ji.g)eo
with U; = (uq;, ugi, -~~,uki)T and V; = (vy,v95, ~--7vkj)T.

m Here )\ > 0 is a tuning parameter for controlling strength of
regularization.

m We use Alternating Least Squares (ALS): fix V; and optimize U,

followed by fix U; and optimize V;, and so on until convergence.



Alternating Least Squares

m This can be minimized independently for U, for each observed row
i:(i,7) €0
U =argmin Y (w2 = U V;)® + MU
U, . &=
ji(4,5)€0

m This is essentially a linear regression problem. Its optimal solution is:

-1
U:=( > VjVjTHIk) S 2,V )

J:(i,5)€0 J:(i,5)€0
where I is a k X k identity matrix. Here k is the dimension of U; and

V.

j-
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Proof of (7)

Compute the derivative of the objective function in (7) and set it to zero

0 T, N\2 2
P Y (g = U V) + MU
i j:(4,5)€O
= -2 Z ‘/;(Z‘ZJ_V]TUZ)+2)\U1 =0
J:(i,5)€0

which gives the equation

Sy VjVjTUi+/\Ui=( Sy vjvfmlk)Ui: Y Vi
j:(i,5)€0 j:(i,5)€0 7:(i,5)€0
Therefore the solution of (6) is
-1
UF( > Vij+A1k) Y Y

J:(4,5)€0 3:(4,5)€0

32



Alternating Least Squares

m Similarly, assuming values of U; are known, (5) can be minimized

independently for V; for each observed column j : (i,j) € O

. T2 2
Vj+ = arg min Z (x5 =U; V;)"+ A Z 1V
7 :(i,5)e0 Ji(i,5)€0

m lts optimal solution is:

-1
vj:( ) UiUiT+>\Ik) Y U

i:(i,5)€O i:(,7)€0
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ALS for high-dimensional matrix completion problem

Bl Initialize U; and V; randomly, for (4, j) € O

H Repeat step 3 and 4 until convergence

A fori:=1,---, N do
=i

Ui = ( Z ‘/JVJT+)\I]€) Z l'ij‘/j
§:(4,)€0 §:(5,4)€0
A forj=1,---,pdo

-1
vj=( 5y UiUiT+)\Ik) Y U

i:(4,5)€O i:(4,7)€O
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CONNECTION TO MATRIX FACTORIZATION



Connection to matrix factorization

m The matrix completion problem minimizes

Z (w5 — UiTVj)2
(4,5)e0

m On the other hand, the matrix factorization problem minimizes

Y (@i —UT V)P = Y (- UV Y (- U Vi) (8

(4,5) (i,5)€0 (i,5)¢0
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CASE STUDY: NETFLIX PRIZE



BellKor’s approach

The team proposed an approximate Z;; that also allows for user-specific
and item-specific baselines

1'7] ziﬁlj =/,L+bl+C]+U,L V7
This can capture:

m Some users might always tend to give low ratings and others may give

high ratings;

m Some items (e.g., very popular movies) might have unusually high
ratings.
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BellKor’s approach

To avoid overfitting, they also added ¢, regularization to the parameters to
get the objective

~ 2 2 2 2 2
L= Z [@ij — Ti5]7 + A(b; +c; + U™+ |[V5I7)
(4,4)€0
The resulting optimization problem is

min L (9)
w,bi,e;,U;,V;:(i,5)€0
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Algorithm4

They solve problem (9) by use stochastic gradient descent (SGD).
B Initialize p, b;, ¢;, U;, V; randomly for (i, j) € O
B Repeat step 3 — 8 until convergence
B Randomly sample an entry (i,7) € O.
A b, = b; +n(e;; — Ab;)
B ¢; = c; +n(e;; — A¢j)
B U; = U; + (e V; = \U;)
Vi = Vi +nle;;U; — AVj)

-
Hu= Z(m)eo(ﬂﬁij —(bi+¢; +U; V}))/ Z(i,j)eo 1

where e;; = z;; — I;; is the error term, and > 0 is the learning rate.

4https://sifter.0rg/~simon/journal/20061 211.html
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