
Matrix Factorization and Completion

Archer Yang

McGill University

October 8, 2024

1



References 12

Reading assignment: Probabilistic Machine Learning: An

Introduction (PML) Chapter 22

1https://developers.google.com/machine-learning/recommendation/collaborative/basics
2CSC 311, University of Toronto
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Netflix Prize

In 2006, Netflix released a large dataset of 100,480,507 movie ratings

(on a scale of 1 to 5) from 480,189 users of 17,770 movies.

The ratings matrix is 99% sparse (unknown).

A prize of $1M, known as the Netflix Prize.

The prize claimed on September 21, 2009 by a team known as

“BellKor’s Pragmatic Chaos”

They proposed an ensemble of different methods3. We describe a key

component in their ensemble.

3https://www.jstor.org/stable/41714795
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MATRIX FACTORIZATION
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A Movie Recommendation Example

Consider a feedback data matrix X ∈ RN×p:

N rows, each row represents a user.

p columns, each column represents a movie.

Binary feedback

xij = [X]ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 user i interested in movie j

0 otherwise

for i = 1,⋯, N and j = 1,⋯, p.
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A Movie Recommendation Example
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1D feature

In a simplest example, the user feedback is explained by the product

of 1D user feature and 1D movie feature

xij ≈ u1iv1j

User feature: u1i ∈ [−1, 1] describes user i’s interest in children’s

movies (closer to -1) or adult movies (closer to +1).

Movie feature: v1j ∈ [−1, 1] describes whether movie j is for

children (closer to -1) or adults (closer to +1).
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In a simplest example, the user feedback is approximated by the product of

1D user feature and 1D movie feature

xij ≈ u1iv1j



However 1D feature might not be sufficient enough to explain users’

preferences. e.g. the first and second users’ preferences



2D feature

If one feature was not enough, let’s add a second one!

Addl. user feature: u2i ∈ [−1, 1] describes user i’s interest in

arthouse movies (closer to -1) or blockbuster movies (closer to +1).

Addl. movie feature: v2j ∈ [−1, 1] describes whether movie j is

arthouse (closer to -1) or blockbuster (closer to +1).
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With a second feature, the user and movie feature are two dimensional

User i: column vector Ui = (u1i, u2i)⊤

Movie j: column vector Vj = (v1j , v2j)⊤



Features of users with similar preferences will be close together.

Features of movies liked by similar users will be close in the feature

space.
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The user feedback is explained by 2D user feature and movie feature

xij = [X]ij ≈ u1iv1j + u2iv2j = U
⊤
i Vj
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Inner product U⊤
i Vj measures similarity

Inner product U⊤
i Vj = u1iv1j + u2iv2j measures similarity between Ui

and Vj , measures how much user i likes movie j

Users and their liked movies will be close in the feature space.
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Matrix factorization

In this example, we hand-engineered the features. In practice, the

latent features can be learned automatically.

Matrix factorization solves

min
{Ui,Vj}

∑
(i,j)

(xij − U
⊤
i Vj)2 (1)
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Ex. Collaborative Filtering

Collaborative filtering:

Uses similarities between users and items simultaneously to provide

recommendations.

Recommend an item to user A based on the interests of a similar

user B.

The embeddings can be learned automatically, without relying on

hand-engineering of features.
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Connection to rank-k matrix approximation

The matrix factorization problem (with k-dimensional feature)

min
{Ui,Vj}

∑
(i,j)

(xij − U
⊤
i Vj)2

can also be written as

min
U ,V

∥X −UV
⊤∥2

F ⟹ X ≈ UV
⊤ (2)

where

U = ( U1 ⋯ UN )
⊤

∈ RN×k
V

⊤
= ( V1 ⋯ Vp ) ∈ Rk×p
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Connection to rank-k matrix approximation

One the other hand, the rank-k matrix approximation of X considers

X̂(k) = argmin
rank(C)=k

∥X −C∥2
F ⟹ X ≈ X̂(k) = UkΣkV

⊤
k

(3)

Unlike Uk and V k in (3), U and V in (2) are not necessarily

orthonormal.
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MATRIX COMPLETION VIA FACTORIZATION
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Matrix completion via factorization

Sometimes, some entries of the matrix are missing, matrix completion

can predict the missing values using the observed ones.

Let O = {(i, j) ∶ entry (i, j) of matrix X is observed}

Matrix completion solves

min
Ui,Vj ∶(i,j)∈O

∑
(i,j)∈O

(xij − U
⊤
i Vj)2
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Matrix completion via factorization

The dimension of Ui and Vj can be generalized to k in

min
Ui,Vj ∶(i,j)∈O

∑
(i,j)∈O

(xij − U
⊤
i Vj)2

with Ui = (u1i, u2i,⋯, uki)⊤ and Vj = (v1j , v2j ,⋯, vkj)⊤

The objective is non-convex in Ui and Vj jointly, and hard to find the

global minimum.

However, as a function of either Ui and Vj individually, the problem is

convex and easy to optimize.



Alternating Least Squares

Use alternating minimization to solve

min
Ui,Vj ∶(i,j)∈O

∑
(i,j)∈O

(xij − U
⊤
i Vj)2

Alternating Least Squares (ALS): fix Vj and optimize Ui, followed by

fix Ui and optimize Vj , and so on until convergence.



Alternating Least Squares

Decompose the cost into a sum of independent terms:

∑
(i,j)∈O

(xij − U
⊤
i Vj)2 = ∑

i∶(i,j)∈O
∑

j∶(i,j)∈O
(xij − U

⊤
i Vj)2

only depends on Ui, fixing Vj

(4)

= ∑
j∶(i,j)∈O

∑
i∶(i,j)∈O

(xij − U
⊤
i Vj)2

only depends on Vj , fixing Ui

(5)

Assume values of Vj are fixed (known), (4) can be minimized

independently for Ui for each observed row i ∶ (i, j) ∈ O

min
Ui∶(i,j)∈O

∑
(i,j)∈O

(xij − U
⊤
i Vj)2 = min

Ui∶(i,j)∈O
∑

i∶(i,j)∈O
∑

j∶(i,j)∈O
(xij − U

⊤
i Vj)2

= ∑
i∶(i,j)∈O

min
Ui

∑
j∶(i,j)∈O

(xij − U
⊤
i Vj)2
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Alternating Least Squares

This can be minimized independently for Ui for each observed row

i ∶ (i, j) ∈ O

U
+
i = argmin

Ui

∑
j∶(i,j)∈O

(xij − U
⊤
i Vj)2

This is essentially a linear regression problem. Its optimal solution is:

U
+
i =

⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

xijVj (6)
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Proof of (6)

Compute the derivative of the objective function in (6) and set it to zero

∂

∂U⊤
i

∑
j∶(i,j)∈O

(xij − U
⊤
i Vj)2 = −2 ∑

j∶(i,j)∈O
Vj(xij − U

⊤
i Vj)

= −2 ∑
j∶(i,j)∈O

Vj(xij − V
⊤
j Ui) = 0

which gives the equation

∑
j∶(i,j)∈O

Vjxij = ∑
j∶(i,j)∈O

VjV
⊤
j Ui

Therefore the solution of (6) is

Ui =
⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

xijVj
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Alternating Least Squares

Similarly, assuming values of Ui are known, (5) can be minimized

independently for Vj for each observed column j ∶ (i, j) ∈ O

V
+
j = argmin

Vj

∑
i∶(i,j)∈O

(xij − U
⊤
i Vj)2

Its optimal solution is:

V
+
j =

⎛
⎜
⎝

∑
i∶(i,j)∈O

UiU
⊤
i

⎞
⎟
⎠

−1

∑
i∶(i,j)∈O

xijUi
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ALS for matrix completion problem

1 Initialize Ui and Vj randomly, for (i, j) ∈ O

2 Repeat step 3 and 4 until convergence

3 for i = 1,⋯, N do

Ui =
⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

xijVj

4 for j = 1,⋯, p do

Vj =
⎛
⎜
⎝

∑
i∶(i,j)∈O

UiU
⊤
i

⎞
⎟
⎠

−1

∑
i∶(i,j)∈O

xijUi
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MATRIX COMPLETION IN HIGH-DIMENSION
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Matrix completion in high-dimension

There might be an overfitting issue when the dimensions of Ui and Vj

are very high. To overcome overfitting, we consider the regularized

problem

min
Ui,Vj ∶(i,j)∈O

∑
(i,j)∈O

(xij − U
⊤
i Vj)2 + λ ∑

i∶(i,j)∈O
∥Ui∥2

+ λ ∑
j∶(i,j)∈O

∥Vj∥2

with Ui = (u1i, u2i,⋯, uki)⊤ and Vj = (v1j , v2j ,⋯, vkj)⊤.

Here λ > 0 is a tuning parameter for controlling strength of

regularization.

We use Alternating Least Squares (ALS): fix Vj and optimize Ui,

followed by fix Ui and optimize Vj , and so on until convergence.



Alternating Least Squares

This can be minimized independently for Ui for each observed row

i ∶ (i, j) ∈ O

U
+
i = argmin

Ui

∑
j∶(i,j)∈O

(xij − U
⊤
i Vj)2 + λ∥Ui∥2

This is essentially a linear regression problem. Its optimal solution is:

U
+
i =

⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j +λIk

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

xijVj (7)

where Ik is a k × k identity matrix. Here k is the dimension of Ui and

Vj .
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Proof of (7)

Compute the derivative of the objective function in (7) and set it to zero

∂

∂U⊤
i

∑
j∶(i,j)∈O

(xij − U
⊤
i Vj)2 + λ∥Ui∥2

= − 2 ∑
j∶(i,j)∈O

Vj(xij − V
⊤
j Ui) + 2λUi = 0

which gives the equation

∑
j∶(i,j)∈O

VjV
⊤
j Ui + λUi =

⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j +λIk

⎞
⎟
⎠
Ui = ∑

j∶(i,j)∈O
Vjxij

Therefore the solution of (6) is

Ui =
⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j +λIk

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

xijVj
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Alternating Least Squares

Similarly, assuming values of Ui are known, (5) can be minimized

independently for Vj for each observed column j ∶ (i, j) ∈ O

V
+
j = argmin

Vj

∑
i∶(i,j)∈O

(xij − U
⊤
i Vj)2 + λ ∑

j∶(i,j)∈O
∥Vj∥2

Its optimal solution is:

V
+
j =

⎛
⎜
⎝

∑
i∶(i,j)∈O

UiU
⊤
i +λIk

⎞
⎟
⎠

−1

∑
i∶(i,j)∈O

xijUi
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ALS for high-dimensional matrix completion problem

1 Initialize Ui and Vj randomly, for (i, j) ∈ O

2 Repeat step 3 and 4 until convergence

3 for i = 1,⋯, N do

Ui =
⎛
⎜
⎝

∑
j∶(i,j)∈O

VjV
⊤
j +λIk

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

xijVj

4 for j = 1,⋯, p do

Vj =
⎛
⎜
⎝

∑
i∶(i,j)∈O

UiU
⊤
i +λIk

⎞
⎟
⎠

−1

∑
i∶(i,j)∈O

xijUi
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CONNECTION TO MATRIX FACTORIZATION
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Connection to matrix factorization

The matrix completion problem minimizes

∑
(i,j)∈O

(xij − U
⊤
i Vj)2

On the other hand, the matrix factorization problem minimizes

∑
(i,j)

(xij −U⊤
i Vj)2 = ∑

(i,j)∈O
(xij −U⊤

i Vj)2 + ∑
(i,j)∉O

(xij −U⊤
i Vj)2 (8)
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CASE STUDY: NETFLIX PRIZE
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BellKor’s approach

The team proposed an approximate x̃ij that also allows for user-specific

and item-specific baselines

xij ≈ x̃ij = µ + bi + cj + U
⊤
i Vj

This can capture:

Some users might always tend to give low ratings and others may give

high ratings;

Some items (e.g., very popular movies) might have unusually high

ratings.
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BellKor’s approach

To avoid overfitting, they also added `2 regularization to the parameters to

get the objective

L = ∑
(i,j)∈O

[xij − x̃ij]2 + λ(b2i + c
2
j + ∥Ui∥2

+ ∥Vj∥2)

The resulting optimization problem is

min
µ,bi,cj ,Ui,Vj ∶(i,j)∈O

L (9)
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Algorithm4

They solve problem (9) by use stochastic gradient descent (SGD).

1 Initialize µ, bi, cj , Ui, Vj randomly for (i, j) ∈ O

2 Repeat step 3 – 8 until convergence

3 Randomly sample an entry (i, j) ∈ O.

4 bi = bi + η(eij − λbi)

5 cj = cj + η(eij − λcj)

6 Ui = Ui + η(eijVj − λUi)

7 Vj = Vj + η(eijUj − λVj)

8 µ = ∑(i,j)∈O(xij − (bi + cj + U
⊤
i Vj))/∑(i,j)∈O 1

where eij = xij − x̃ij is the error term, and η > 0 is the learning rate.

4https://sifter.org/~simon/journal/20061211.html
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