Matrix Factorization and Completion

Archer Yang

McGill University

October 8, 2024

References ¹²

 Reading assignment: Probabilistic Machine Learning: An Introduction (PML) Chapter 22

¹ https://developers.google.com/machine-learning/recommendation/collaborative/basics ² CSC 311, University of Toronto

Netflix Prize

- In 2006, Netflix released a large dataset of 100,480,507 movie ratings (on a scale of 1 to 5) from 480,189 users of 17,770 movies.
- The ratings matrix is 99% sparse (unknown).
- A prize of \$1M, known as the **Netflix Prize**.
- The prize claimed on September 21, 2009 by a team known as "BellKor's Pragmatic Chaos"
- They proposed an ensemble of different methods³. We describe a key component in their ensemble.

³https://www.jstor.org/stable/41714795

MATRIX FACTORIZATION

A Movie Recommendation Example

Consider a feedback data matrix $X \in \mathbb{R}^{N \times p}$:

- N rows, each row represents a user.
- p columns, each column represents a movie.
- Binary feedback

$$x_{ij} = [\mathbf{X}]_{ij} = \begin{cases} 1 & \text{user } i \text{ interested in movie } j \\ 0 & \text{otherwise} \end{cases}$$

for $i = 1, \dots, N$ and $j = 1, \dots, p$.

A Movie Recommendation Example

		IRIPLETTES ** BELLEVILLE		THE REPORTED FOR	
	Harry Potter	The Triplets of Belleville	Shrek	The Dark Knight Rises	Memento
	4		4	4	
		4			4
000	4	4	4		
2				4	4

1D feature

In a simplest example, the user feedback is explained by the product of 1D user feature and 1D movie feature

 $x_{ij} \approx u_{1i}v_{1j}$

■ User feature: u_{1i} ∈ [-1,1] describes user i's interest in children's movies (closer to -1) or adult movies (closer to +1).

■ Movie feature: $v_{1j} \in [-1, 1]$ describes whether movie *j* is for children (closer to -1) or adults (closer to +1).

In a simplest example, the user feedback is approximated by the product of

1D user feature and 1D movie feature

$$x_{ij} \approx u_{1i}v_{1j}$$

However 1D feature might not be sufficient enough to explain users' preferences. e.g. the first and second users' preferences

2D feature

- If one feature was not enough, let's add a second one!
- Addl. user feature: $u_{2i} \in [-1, 1]$ describes user *i*'s interest in arthouse movies (closer to -1) or blockbuster movies (closer to +1).
- Addl. movie feature: $v_{2j} \in [-1, 1]$ describes whether movie *j* is arthouse (closer to -1) or blockbuster (closer to +1).

With a second feature, the user and movie feature are two dimensional

- User *i*: column vector $U_i = (u_{1i}, u_{2i})^{\mathsf{T}}$
- Movie *j*: column vector $V_j = (v_{1j}, v_{2j})^{\top}$

- Features of users with similar preferences will be close together.
- Features of movies liked by similar users will be close in the feature space.

The user feedback is explained by 2D user feature and movie feature

$$x_{ij} = [\mathbf{X}]_{ij} \approx u_{1i}v_{1j} + u_{2i}v_{2j} = U_i^{\top}V_j$$



Inner product $U_i^{\mathsf{T}} V_j$ measures similarity

Inner product $U_i^{\mathsf{T}} V_j = u_{1i} v_{1j} + u_{2i} v_{2j}$ measures similarity between U_i and V_j , measures how much user *i* likes movie *j*

Users and their liked movies will be close in the feature space.



Matrix factorization

- In this example, we hand-engineered the features. In practice, the latent features can be learned automatically.
- Matrix factorization solves

$$\min_{\{U_i, V_j\}} \sum_{(i,j)} (x_{ij} - U_i^{\mathsf{T}} V_j)^2$$
(1)

Ex. Collaborative Filtering

Collaborative filtering:

- Uses similarities between users and items simultaneously to provide recommendations.
- Recommend an item to user A based on the interests of a similar user B.
- The embeddings can be learned automatically, without relying on hand-engineering of features.

Connection to rank-k matrix approximation

■ The matrix factorization problem (with *k*-dimensional feature)

$$\min_{\{U_i, V_j\}} \sum_{(i,j)} (x_{ij} - U_i^{\top} V_j)^2$$

can also be written as

$$\min_{\boldsymbol{U},\boldsymbol{V}} \|\boldsymbol{X} - \boldsymbol{U}\boldsymbol{V}^{\top}\|_{F}^{2} \implies \boldsymbol{X} \approx \boldsymbol{U}\boldsymbol{V}^{\top}$$
(2)

where

$$\boldsymbol{U} = \left(\begin{array}{ccc} U_1 & \cdots & U_N \end{array} \right)^\top \in \mathbb{R}^{N \times k} \qquad \boldsymbol{V}^\top = \left(\begin{array}{ccc} V_1 & \cdots & V_p \end{array} \right) \in \mathbb{R}^{k \times p}$$

Connection to rank-k matrix approximation

One the other hand, the rank-k matrix approximation of X considers

$$\widehat{X}(k) = \underset{\mathsf{rank}(C)=k}{\operatorname{arg\,min}} \|X - C\|_{F}^{2} \implies X \approx \widehat{X}(k) = U_{k} \Sigma_{k} V_{k}^{\top}$$
(3)

Unlike U_k and V_k in (3), U and V in (2) are not necessarily orthonormal.

MATRIX COMPLETION VIA FACTORIZATION

Matrix completion via factorization

- Sometimes, some entries of the matrix are missing, matrix completion can predict the missing values using the observed ones.
- Let $O = \{(i, j) : \text{entry } (i, j) \text{ of matrix } X \text{ is observed} \}$
- Matrix completion solves

$$\min_{U_i, V_j: (i,j) \in O} \sum_{(i,j) \in O} (x_{ij} - U_i^{\top} V_j)^2$$

	Harry Potter	The Triplets of Belleville	Shrek	The Dark Knight Rises	Memento				.9 2	-1 8	1 -1	1 .9	9 1
	1		*	4			1	.1	.88	-1.08	0.9	1.09	-0.8
7		4			4	≈	-1	0	-0.9	1.0	-1.0	-1.0	0.9
00	4	4	*				.2	-1	0.38		1.2	-0.7	-1.18
2				*	4		.1	1	-0.11	-0.9	-0.9	1.0	0.91

Matrix completion via factorization

The dimension of U_i and V_j can be generalized to k in

$$\min_{U_i, V_j: (i,j) \in O} \sum_{(i,j) \in O} (x_{ij} - U_i^{\mathsf{T}} V_j)^2$$

with
$$U_i = (u_{1i}, u_{2i}, \dots, u_{ki})^{\top}$$
 and $V_j = (v_{1j}, v_{2j}, \dots, v_{kj})^{\top}$

- The objective is non-convex in U_i and V_j jointly, and hard to find the global minimum.
- However, as a function of either U_i and V_j individually, the problem is convex and easy to optimize.

Use alternating minimization to solve

$$\min_{U_i, V_j: (i,j) \in O} \sum_{(i,j) \in O} (x_{ij} - U_i^{\top} V_j)^2$$

Alternating Least Squares (ALS): fix V_j and optimize U_i, followed by fix U_i and optimize V_j, and so on until convergence.

 $\sum_{(i,j)\in O} (x_{ij} -$

Decompose the cost into a sum of independent terms:

only depends on U_i , fixing V_j

$$U_{i}^{\mathsf{T}}V_{j})^{2} = \sum_{i:(i,j)\in O} \sum_{j:(i,j)\in O} (x_{ij} - U_{i}^{\mathsf{T}}V_{j})^{2}$$
(4)

only depends on V_j , fixing U_i

$$= \sum_{j:(i,j)\in O} \left(\sum_{i:(i,j)\in O} (x_{ij} - U_i^{\top} V_j)^2 \right)$$
(5)

■ Assume values of V_j are fixed (known), (4) can be minimized independently for U_i for each observed row $i : (i, j) \in O$

$$\min_{U_i:(i,j)\in O} \sum_{(i,j)\in O} (x_{ij} - U_i^{\top} V_j)^2 = \min_{U_i:(i,j)\in O} \sum_{i:(i,j)\in O} \sum_{j:(i,j)\in O} (x_{ij} - U_i^{\top} V_j)^2$$
$$= \sum_{i:(i,j)\in O} \min_{U_i} \sum_{j:(i,j)\in O} (x_{ij} - U_i^{\top} V_j)^2$$

This can be minimized independently for U_i for each observed row $i : (i, j) \in O$

$$U_{i}^{+} = \arg \min_{U_{i}} \sum_{j:(i,j) \in O} (x_{ij} - U_{i}^{\top} V_{j})^{2}$$

This is essentially a linear regression problem. Its optimal solution is:

$$U_{i}^{+} = \left(\sum_{j:(i,j)\in O} V_{j}V_{j}^{\top}\right)^{-1} \sum_{j:(i,j)\in O} x_{ij}V_{j}$$
(6)

Proof of (6)

Compute the derivative of the objective function in (6) and set it to zero

$$\frac{\partial}{\partial U_i^{\top}} \sum_{j:(i,j)\in O} (x_{ij} - U_i^{\top} V_j)^2 = -2 \sum_{j:(i,j)\in O} V_j (x_{ij} - U_i^{\top} V_j)$$
$$= -2 \sum_{j:(i,j)\in O} V_j (x_{ij} - V_j^{\top} U_i) = 0$$

which gives the equation

$$\sum_{j:(i,j)\in O} V_j x_{ij} = \sum_{j:(i,j)\in O} V_j V_j^{\mathsf{T}} U_i$$

Therefore the solution of (6) is

$$U_i = \left(\sum_{j:(i,j)\in O} V_j V_j^{\mathsf{T}}\right)^{-1} \sum_{j:(i,j)\in O} x_{ij} V_j$$

Similarly, assuming values of U_i are known, (5) can be minimized independently for V_j for each observed column $j : (i, j) \in O$

$$V_j^+ = \arg \min_{V_j} \sum_{i:(i,j) \in O} (x_{ij} - U_i^\top V_j)^2$$

Its optimal solution is:

$$V_j^+ = \left(\sum_{i:(i,j)\in O} U_i U_i^\top\right)^{-1} \sum_{i:(i,j)\in O} x_{ij} U_i$$

ALS for matrix completion problem

- **1** Initialize U_i and V_j randomly, for $(i, j) \in O$
- 2 Repeat step 3 and 4 until convergence
- 3 for $i = 1, \dots, N$ do

$$U_i = \left(\sum_{j:(i,j)\in O} V_j V_j^{\top}\right)^{-1} \sum_{j:(i,j)\in O} x_{ij} V_j$$

4 for $j = 1, \dots, p$ do

$$V_j = \left(\sum_{i:(i,j)\in O} U_i U_i^{\mathsf{T}}\right)^{-1} \sum_{i:(i,j)\in O} x_{ij} U_j^{\mathsf{T}}$$

MATRIX COMPLETION IN HIGH-DIMENSION

Matrix completion in high-dimension

There might be an overfitting issue when the dimensions of U_i and V_j are very high. To overcome overfitting, we consider the regularized problem

$$\min_{U_i, V_j: (i,j) \in O} \sum_{(i,j) \in O} (x_{ij} - U_i^\top V_j)^2 + \lambda \sum_{i: (i,j) \in O} ||U_i||^2 + \lambda \sum_{j: (i,j) \in O} ||V_j||^2$$

with $U_i = (u_{1i}, u_{2i}, \dots, u_{ki})^\top$ and $V_j = (v_{1j}, v_{2j}, \dots, v_{kj})^\top$.

- Here λ > 0 is a tuning parameter for controlling strength of regularization.
- We use Alternating Least Squares (ALS): fix V_j and optimize U_i, followed by fix U_i and optimize V_j, and so on until convergence.

This can be minimized independently for U_i for each observed row $i: (i, j) \in O$

$$U_{i}^{+} = \arg\min_{U_{i}} \sum_{j:(i,j)\in O} (x_{ij} - U_{i}^{\top}V_{j})^{2} + \lambda ||U_{i}||^{2}$$

This is essentially a linear regression problem. Its optimal solution is:

$$U_i^+ = \left(\sum_{j:(i,j)\in O} V_j V_j^\top + \lambda \boldsymbol{I}_k\right)^{-1} \sum_{j:(i,j)\in O} x_{ij} V_j \tag{7}$$

where I_k is a $k \times k$ identity matrix. Here k is the dimension of U_i and V_j .

Proof of (7)

Compute the derivative of the objective function in (7) and set it to zero

$$\frac{\partial}{\partial U_i^{\mathsf{T}}} \sum_{j:(i,j)\in O} (x_{ij} - U_i^{\mathsf{T}} V_j)^2 + \lambda ||U_i||^2$$
$$= -2 \sum_{j:(i,j)\in O} V_j (x_{ij} - V_j^{\mathsf{T}} U_i) + 2\lambda U_i = 0$$

which gives the equation

$$\sum_{j:(i,j)\in O} V_j V_j^{\mathsf{T}} U_i + \lambda U_i = \left(\sum_{j:(i,j)\in O} V_j V_j^{\mathsf{T}} + \lambda \mathbf{I}_k\right) U_i = \sum_{j:(i,j)\in O} V_j x_{ij}$$

Therefore the solution of (6) is

$$U_i = \left(\sum_{j:(i,j)\in O} V_j V_j^\top + \lambda \boldsymbol{I}_k\right)^{-1} \sum_{j:(i,j)\in O} x_{ij} V_j$$

Similarly, assuming values of U_i are known, (5) can be minimized independently for V_j for each observed column $j : (i, j) \in O$

$$V_{j}^{+} = \arg\min_{V_{j}} \sum_{i:(i,j)\in O} (x_{ij} - U_{i}^{\top}V_{j})^{2} + \lambda \sum_{j:(i,j)\in O} \|V_{j}\|^{2}$$

Its optimal solution is:

$$V_j^+ = \left(\sum_{i:(i,j)\in O} U_i U_i^\top + \lambda \boldsymbol{I}_k\right)^{-1} \sum_{i:(i,j)\in O} x_{ij} U_i$$

ALS for high-dimensional matrix completion problem

- **1** Initialize U_i and V_j randomly, for $(i, j) \in O$
- 2 Repeat step 3 and 4 until convergence
- 3 for $i = 1, \dots, N$ do

$$U_i = \left(\sum_{j:(i,j)\in O} V_j V_j^\top + \lambda \boldsymbol{I}_k\right)^{-1} \sum_{j:(i,j)\in O} x_{ij} V_j$$

4 for $j = 1, \dots, p$ do

$$V_j = \left(\sum_{i:(i,j)\in O} U_i U_i^{\mathsf{T}} + \lambda \mathbf{I}_k\right)^{-1} \sum_{i:(i,j)\in O} x_{ij} U_j^{\mathsf{T}}$$

CONNECTION TO MATRIX FACTORIZATION

Connection to matrix factorization

The matrix completion problem minimizes

$$\sum_{(i,j)\in O} (x_{ij} - U_i^\top V_j)^2$$

On the other hand, the matrix factorization problem minimizes

$$\sum_{(i,j)} (x_{ij} - U_i^{\mathsf{T}} V_j)^2 = \sum_{(i,j) \in O} (x_{ij} - U_i^{\mathsf{T}} V_j)^2 + \sum_{(i,j) \notin O} (x_{ij} - U_i^{\mathsf{T}} V_j)^2$$
(8)

CASE STUDY: NETFLIX PRIZE

BellKor's approach

The team proposed an approximate \tilde{x}_{ij} that also allows for **user-specific** and **item-specific baselines**

$$x_{ij} \approx \tilde{x}_{ij} = \mu + b_i + c_j + U_i^\top V_j$$

This can capture:

- Some users might always tend to give low ratings and others may give high ratings;
- Some items (e.g., very popular movies) might have unusually high ratings.

BellKor's approach

To avoid overfitting, they also added ℓ_2 regularization to the parameters to get the objective

$$L = \sum_{(i,j)\in O} [x_{ij} - \tilde{x}_{ij}]^2 + \lambda (b_i^2 + c_j^2 + ||U_i||^2 + ||V_j||^2)$$

The resulting optimization problem is

$$\min_{\mu, b_i, c_j, U_i, V_j: (i,j) \in O} L \tag{9}$$

Algorithm⁴

They solve problem (9) by use stochastic gradient descent (SGD).

- **1** Initialize μ, b_i, c_j, U_i, V_j randomly for $(i, j) \in O$
- 2 Repeat step 3 8 until convergence
- **3** Randomly sample an entry $(i, j) \in O$.

4
$$b_i = b_i + \eta(e_{ij} - \lambda b_i)$$

5 $c_j = c_j + \eta(e_{ij} - \lambda c_j)$
6 $U_i = U_i + \eta(e_{ij}V_j - \lambda U_i)$
7 $V_j = V_j + \eta(e_{ij}U_j - \lambda V_j)$
8 $\mu = \sum_{(i,j) \in O} (x_{ij} - (b_i + c_j + U_i^{\top}V_j)) / \sum_{(i,j) \in O} 1$

where $e_{ij} = x_{ij} - \tilde{x}_{ij}$ is the error term, and $\eta > 0$ is the learning rate.

⁴https://sifter.org/~simon/journal/20061211.html