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Reading assignment: Chapter 3.2-3.4 The Elements of Statistical

Learning
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EFFICIENT COMPUTATION OF RIDGE REGRESSION
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Ridge regression

The ridge penalized least squares estimator of β̂
(λ)

is defined by

β̂
(λ)

= argmin
β

∥y −Xβ∥2
+ λ∥β∥2

2, (1)

where λ ≥ 0

Solve ∂f(β(λ)) = 0 for β(λ), which is

−2X
⊤
y + 2X

⊤
Xβ

(λ)
+ 2λβ

(λ)
= 0

(X⊤
X + λIp)β(λ)

= X
⊤
y (2)

β
(λ)

= (X⊤
X + λIp)−1X⊤

y, (3)
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Efficient computation

(2) can be solved with a linear system solver

Or use the less efficient closed-form solution in (3)

Both methods have to be recomputed for a different value of λ,

computationally expensive when p is large and inefficient if we wish to

compute β(λ) for multiple values of λ.
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Efficient computation

Using the full SVD of X = UDV
⊤, where U = Rn×p, V ∈ Rp×p and

D = Rp×p

X
⊤
X = V D

⊤
U

⊤
UDV

⊤
= V D

⊤
DV

⊤

So write (2) as

(V D⊤
DV

⊤
+ λIp)β(λ)

= V D
⊤
U

⊤
y

and replacing Ip with V V ⊤ gives

V (D⊤
D + λIp)V ⊤

β
(λ)

= V D
⊤
U

⊤
y

V (D⊤
D + λIp)V ⊤ is the eigen-decomposition of X⊤

X + λIp,

which is positive semi-definite.
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Efficient computation

Assuming that λ > 0,

β
(λ)

= V (D⊤
D + λIp)−1V ⊤

V D
⊤
U

⊤
y

= V (D⊤
D + λIp)−1D⊤

U
⊤
y

= VMU
⊤
y

where M = (D⊤
D + λIp)−1D⊤

= diag(m1,⋯,mp) ∈ Rp×p is

diagonal where

mj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dj/(d2j + λ) j = 1,⋯, r

0 j = r,⋯, p
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Efficient computation

We can use the reduced SVD on X, for rank(X) = r ≤ min(n, p),

X = U rDrV
⊤
r

where U r = U [,1,⋯,r] and V r = V [,1,⋯,r], therefore

β
(λ)

= V rM rU
⊤
r y

where M r = diag(m1,⋯,mr) ∈ Rr×r with diagonal values

mj = dj/(d2j + λ).
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CONNECTION BETWEEN RIDGE REGRESSION AND

PCA
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OLS solution

Using the SVD we can write the OLS fitted vector as

ŷ
OLS

=Xβ̂
OLS

= X(X⊤
X)−1X⊤

y

= UDV
⊤(V DU⊤

UDV
⊤)−1V DU⊤

y

= UU
⊤
y.

U
⊤
y are the coordinates of y with respect to the basis U .

We see that XV =X(v1,⋯,vr) = (u1,⋯,ur)D = UD.

uj can be viewed as scaled version of the coordinates zj , because

zj =Xvj = ujdj Var(zj) = Var(Xvj) =
d
2
1

N

Can view ŷOLS is a reconstruced version of y
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Ridge solutions

On the other hand, the ridge solutions are

Xβ̂
ridge

= X(X⊤
X + λIp)−1X⊤

y

= UD(D2
+ λIp)−1DU⊤

y

=

p

∑
j=1

uj
d
2
j

d2j + λ
uj

⊤
y

= UHU
⊤
y

where

H =D(D⊤
D + λIp)−1D

is diagonal with

hj = d
2
j/(d2j + λ) j = 1,⋯, p



Ridge solutions

Like β̂
OLS

, β̂
ridge

projects y to U
T
y with respect to the orthonormal

basis U.

It then shrinks these projected y by the factors d2j/(d2j + λ).

And then reconstructs y using UHU
T
y = ∑p

j=1 uj
d
2
j

d2j+λ
uj

⊤
y. This

means that a greater amount of shrinkage is applied to the

coordinates of basis vectors with smaller d2j .


