Low-Rank Matrix Approximations, SVD and

Connections to PCA

Archer Yang
McGill University

October 4, 2024



m Reading assignment: read chapter 4.5-4.6 of Mathematics for

Machine Learning book.


https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf

Low-RANK MATRIX



Applications

m Data compression

m Feature learning



Data compression

The size of the four compressed images is 45Kb, 345Kb, 1.1Mb and
3.4Mb".
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Feature representation learning

(a) Original image A. (b) A1, o1 =~ 228,052, (c) Ag, o2 = 40,647.

(d) As, o3 ~ 26,125. (€) A, 0q & 20,232, (0 As, o5 ~ 15, 436.



m Let’s review the concept of matrix rank.

Rank-0 matrix There is only one rank-zero matrix of a given size, namely

the all-zero matrix.



Rank-1 matrix all rows are multiples of each other. In the example in (4),
all columns are also multiples of each other; this is not an accident.
An equivalent definition of a rank-1 m X n matrix is as the outer product

-
uv of an m-vector u and an n-vector v.

unLU

Note that each row is a multiple of vT, and each column is multiple of w.



Rank-2 matrix A rank-two matrix is just a sum of two rank-1 matrices

T T
U1V + U21V2

T T
U12V1 + U2Vg

A= ulvlT + ungT =
T T
Uim U1 + U2, V2
T
| T . |
- v, -
= U Uo T = U Uo V1 Vg
- vy -

Note: a rank-2 matrix is one that can be written as the sum of two rank-1

matrices and is not itself a rank-0 or rank-1 matrix.



Rank-r matrix A rank-r matrix can be written as the sum of r rank-1
matrices, and cannot be written as the sum of » — 1 or fewer rank-1

matrices.

T T
U1V t+ oo F U Uy

T T
T T U207 + ot + Upa Uy
A=uv; +- +uv, =




m Rank-r matrix A can be factored into the product of a “tall and skinny”

matrix U and a “short and fat” matrix VT

mxn mxr xXn

5 - @l

m The largest linearly independent subset of columns of A has size r. i.e. ,

m Equivalent definitions:

all n columns of A arise as linear combinations of only r of them.

m The largest linearly independent subset of rows of A has size r.
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Low-Rank Matrix Approximations: Motivation

m Low-rank approximation: To approximate a rank-r matrix A with a

rank-k matrix A(k) (k < r)
A=~ A(k)

or
min ||A — A(k
A(lk) ” ( )”

m Applications:
m Compression: m X n numbers in A; k(m + n) numbers in A(k)
m De-noising
A = A(k) + error



SINGULAR VALUE DECOMPOSITION



Singular Value Decomposition (SVD)

m To solve low-rank matrix approximation problem, we apply the
singular value decomposition (SVD), a central matrix decomposition

method in linear algebra.

m It applied to all matrices, not only to square matrices.



Singular Value Decomposition (SVD)

Theorem 4.22 MML (SVD Theorem)

Let A € R™*" be a rectangular matrix. The SVD of A is a decomposition

of the form
A=UZV'

m U = (uy, -, u,,) is an m X m orthogonal matrix, U'U = I, sm-
Columns of U are left singular vectors.

BV = (vy,-,v,)isan n X n orthogonal matrix, Vvs= I,
Columns of V are right singular vectors.

m X is an m X n diagonal matrix with (ordered) nonnegative entries.

Diagonal entries 01 = -++ = g,, = 0 are singular values.



SVD (rank-r)
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SVD (full column rank rank(A) = n)




SVD vs Eigen-decomposition

In contrast to the eigen-decomposition
A=VAV™!

in SVD:

m Orthogonal matrices U and V' are not the same, U and V need not

even have the same dimension.

m A need not be square.



Reduced SVD (rank(A) = r < n)

A U =,
mxXn mxm mxn
r
~—

Ur Sy

MX Y rxyr




Reduced SVD (full column rank rank(A) = n)

A U = val

L XN wm X nxh
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m
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Reduced SVD for Rank-r matrix

If rank(A) = r, the SVD expresses A as a nonnegative linear combination

of r rank-1 matrices,

A=USV' = Z Z 4w, 1)

1=1j=

Zauv ZUA

where o;; is the i-th row j-th column of 3. u, and v; are the corresponding

left and right singular vectors.



Reduced SVD for Rank-r matrix

Eq. (1) can be further simplified

A= Zawuzv +ZO’U ,'v

i#]
T
= O U; 'v + O UW; v + O UV
i=j<r i=j>r z#]
=0 =0
r
T
=) o,
r
= UiAi

where o; = 0;; and A; = u; v is a rank-1 matrix.



Feature representation learning

(a) Original image A. (b) Ay, o1 ~ 228,052, (€) A, o2 ~ 40,647.

(d) Az, o3 =~ 26,125, (e) Ay, o4 = 20,232, (f) As, o5 ~ 15,436.

Question: why we observe vertical and horizontal lines in Aq, «--, A5?



Reduced SVD for rank-r matrix

|
Let A € R™" be a rank-r matrix, where 1 < < min(n, p). The reduced
SVD of A is
A=U3V/] =) quw,
=1

q q T
m U, = (uy,-,u,) is an m X r orthogonal matrix, U, U,. = I ...
g q T
mV, = (v, ,v,.)isan n X r orthogonal matrix, V,, V,. = I.,.
m X is an r X r diagonal matrix with singular values o1 > :-- 2 g, > 0

(all positive).



Low-RANK MATRIX APPROXIMATION



Rank-i approximation

m How do we approximate a rank-r matrix A by a rank-k matrix (k < r)?

m Recall that in reduced SVD, a rank-r matrix A can be expressed as
A=UZV] =) ouw, (@)
=1

where oy 2 -+ 20, >0

m Rank-k approximation of A: keep only the first k terms in (2)
. k
A(k) =y ciuw,
=1

we see that rank(A(k)) = k and

A-A(k) = Z Uiuiv;

i=k+1



Algorithm

E Compute the SVD A = UEVT, where X is a nonnegative m X n

diagonal matrix with diagonal entries sorted from high to low.

H Keep only the top & right singular vectors: Set V—kr equal to the first

k rows of V' (a k x n matrix)

H Keep only the top & left singular vectors: Set U, equal to the first k

rows of U (a m X k matrix)

A Keep only the top % singular values: Set 3, equal to the first k rows

and columns of 3 (a k X k matrix)

B The rank-k approximation is then

k
A(k) = UV = ) oum;
i=1



(a) Original image A. (b) Rank-1 approximation A(l ).(c) Rank-2 approximation A

(d) Rank-3 approximation A(3).(e) Rank-4 approximation A(4).(f) Rank-5 approximation A(5




The size of the four compressed images is 45Kb, 345Kb, 1.1Mb and

3.4Mb?. More demos are here. >

2 Multivariate Statistics, Richard Wilkinson
3https://timbaumann.info/svd—image—compression—demo/
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Quantifying approximation error

m How to quantify the approximation error || A — A(k)||?
m Need the notion of a matrix norm || - ||.

m e.g. the Frobenious norm or the spectral norm.

31



Frobenius norm

Let A € R™ ™. The Frobenius norm of A is

Al = | Y Y layl? = Vir(AT A)

i=1j=1
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m (Homework) Show that for any matrix A and orthogonal matrices U

and V:

IUTAllE = || All% IAV 7 = Al

m (Homework) Combining the result in (3) and using the SVD

A=UXV' to show that

Al = J;

where r = rank(A) and o; are the singular values of A.
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Spectral norm

Let A € R™"". The spectral norm of A is defined as

A
||A||2 = max ” 13”2 _

= max
e lzlls @)=t

|| Az

Il
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Spectral norm

(Homework) Let A € R™". Show that

lAllz = oy

where o is the first (largest) singular value of A.
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Eckart-Young-Mirsky Theorem

For either the spectral norm || - ||, or the Frobenious norm || - || 7, the rank-&

approximation

k
A(k) =UpSi Vi = ) o]
=1

minimizes the approximation error
|lA-AK)] < ||A-C] for all rank-k matrices C

In other words
A(k) = argmlnHA C||

rank(C)=k

Moreover,

Okt1 for the || - || norm

VEim ol forthe || - ||z norm

1A - ARl =
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RELATIONSHIP WITH EIGEN-DECOMPOSITION



Relation to eigenvalue decomposition

m Given X as a NV X p matrix. If X has SVD

NXp NxN Nxp PXp

X

1 o7
S—NX

m Then it follows

1
X = N(UEVT)TUEVT

1 T T 'y T

= VEUUSV VY
where &S = diag(o?, -+, 02,0, -+,0) € RP*P with r = rank(X).

m Meanwhile, by the eigen-decomposition

S=VAV'
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Relation to eigenvalue decomposition

m Therefore

.
'
V( ¥ )VT=S=VAVT

m Right-singular vectors of X (the columns of V') are eigenvectors of
— 1T
§S=5X X.
m The non-zero eigenvalues of S are related to the non-zero singular

values of X via

39



Relation to eigenvalue decomposition

m We also have

1 T _ 1 T T\ T

XX =zuzviusv)
1 T T,,7 1 T T
—NUEV VY U —NUEE U

m Therefore, left-singular vectors of X (the columns of U) are

eigenvectors of %XXT.

40



PCA As LOW-RANK MATRIX APPROXIMATION



PCA as Low-rank Matrix Approximation

m PCA solves
min <[|X" - BB'X"|} = | x - xBB"|;
B N FTN E
subject to B'B= Tk

m On the other hand, rank-k matrix approximation of X solves
X (k) = argmin|| X — C||» where X (k) = UkEka
rank(C)=k

m One canshow that V, = B, U X, = X B and

U,X. V. = XBB'

42



PCA as Low-rank Matrix Approximation

This relation suggest that SVD can also be used to produce PCA for X
(k-dim. subspace), as follows
I Perform rank-k matrix approximation of X = X (k) = U, X, V4.
A Let B denote the top k principal components of S = %XTX, set
B =V = (v, ,v;).
B (Homework) The PC scores can be obtained by X B = U .2,

m e.g. for the n-th observation, the projected coordinates on the subspace

spanned by v, -+, v, are

n-th row of X B n-th row of U, X,

(Znh "'aznk) = (v-lrwn,”'av;crwn) = = [Ukzk]nn

43



Computation complexity

Computing PCA for X € RYV*P using SVD has less computation
complexity then using eigen-decomposition
m Eigen-decomposition approach:
m S covariance matrix computation O(Npmin(N, p))
m Eigen-decomposition O(p®)
m Total: O(Npmin(N, p)) + O(p°)
m SVD approach:
= SVD O(Npmin(N,p))
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MATRIX COMPLETION VIA LOW RANK

APPROXIMATION



What Are The Missing Entries?

m Consider the following matrix,

m Matrix completion problem: What are the missing entries?

46



m Consider an extreme assumption: that all rows are multiples of each

other.

47



m Under such assumption, here is the completed matrix

7 2 1]
28 8 4
X=|42 12 6 (4)
14 4 2
|21 6 3 |

m When you know something about the “structure” of a partially known
matrix, then sometimes it's possible to recover all of the “lost”

information.
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Matrix completion using matrix approximation

m Applications:
= Matrix completion:

El Firstimpute X to obtain X'. Fill the missing entries of X using one of
the following methods
m 0
B the average of the known entries in the same column;
W the average of the known entries in the same row;

B the average of the known entries of the matrix.

H Compute the best rank-k approximation to X'

X (k) = argmin|| X' - C||
rank(C)=k

m Why not we just do the first step to use X'?
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SVD FOR HIGH-DIMENSIONAL DATA



SVD (m < n, rank-r)

L Xn
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SVD (m < n, rank(A) = m)




Reduced SVD (m < n, rank-r)

A U = val

MUXN wm X mx N nxhn
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Reduced SVD (m < n, rank(A) = m)

A U = vai
mxn mxm M N nxh
m m m\ n
n m n n
m
= n
m m
m m

WL X m ARt mxn,






