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Reading assignment: read chapter 4.5-4.6 of Mathematics for

Machine Learning book.
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https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf


LOW-RANK MATRIX
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Applications

Data compression

Feature learning
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Data compression

The size of the four compressed images is 45Kb, 345Kb, 1.1Mb and

3.4Mb1.
1Multivariate Statistics, Richard Wilkinson
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Feature representation learning
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Let’s review the concept of matrix rank.

Rank-0 matrix There is only one rank-zero matrix of a given size, namely

the all-zero matrix.



Rank-1 matrix all rows are multiples of each other. In the example in (4),

all columns are also multiples of each other; this is not an accident.

An equivalent definition of a rank-1 m × n matrix is as the outer product

uv
⊤ of an m-vector u and an n-vector v.

A = uv
⊤
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u1v
⊤

u2v
⊤

⋮

umv
⊤

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ( v1u v2u ⋯ vnu )

Note that each row is a multiple of v⊤
, and each column is multiple of u.
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Rank-2 matrix A rank-two matrix is just a sum of two rank-1 matrices

A = u1v
⊤
1 + u2v

⊤
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u11v
⊤
1 + u21v

⊤
2

u12v
⊤
1 + u22v

⊤
2

⋮

u1mv
⊤
1 + u2mv

⊤
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣
u1 u2

∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜
⎝
− v

⊤
1 −

− v
⊤
2 −

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣
u1 u2

∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣
v1 v2

∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⊤

Note: a rank-2 matrix is one that can be written as the sum of two rank-1

matrices and is not itself a rank-0 or rank-1 matrix.
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Rank-r matrix A rank-r matrix can be written as the sum of r rank-1

matrices, and cannot be written as the sum of r − 1 or fewer rank-1

matrices.

A = u1v
⊤
1 +⋯+ urv

⊤
r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u11v
⊤
1 +⋯+ ur1v

⊤
r

u12v
⊤
1 +⋯+ ur2v

⊤
r

⋮

u1mv
⊤
1 +⋯+ urmv

⊤
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣
u1 ⋯ ur

∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

− v
⊤
1 −

⋮

− v
⊤
r −

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣
u1 ⋯ ur

∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
U

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∣ ∣
v1 ⋯ vr

∣ ∣

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⊤

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
V ⊤



Rank-r matrix A can be factored into the product of a “tall and skinny”

matrix U and a “short and fat” matrix V
⊤

A

m×n

= U

m×r

V
⊤

r×n

Equivalent definitions:

The largest linearly independent subset of columns of A has size r. i.e. ,

all n columns of A arise as linear combinations of only r of them.

The largest linearly independent subset of rows of A has size r.



r VT

n

A = U X

M
m

n r

'



Low-Rank Matrix Approximations: Motivation

Low-rank approximation: To approximate a rank-r matrix A with a

rank-k matrix A(k) (k ≤ r)

A ≈ A(k)

or

min
A(k)

∥A −A(k)∥

Applications:

Compression: m × n numbers in A; k(m + n) numbers in A(k)
De-noising

A = A(k) + error

13



SINGULAR VALUE DECOMPOSITION
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Singular Value Decomposition (SVD)

To solve low-rank matrix approximation problem, we apply the

singular value decomposition (SVD), a central matrix decomposition

method in linear algebra.

It applied to all matrices, not only to square matrices.
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Singular Value Decomposition (SVD)

Theorem 4.22 MML (SVD Theorem)

Let A ∈ Rm×n be a rectangular matrix. The SVD of A is a decomposition

of the form

A = UΣV
⊤

U = (u1,⋯,um) is an m ×m orthogonal matrix, U⊤
U = Im×m.

Columns of U are left singular vectors.

V = (v1,⋯,vn) is an n × n orthogonal matrix, V ⊤
V = In×n.

Columns of V are right singular vectors.

Σ is an m × n diagonal matrix with (ordered) nonnegative entries.

Diagonal entries σ1 ≥⋯ ≥ σn ≥ 0 are singular values.
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SVD (rank-r)
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SVD (full column rank rank(A) = n)

\
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n
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SVD vs Eigen-decomposition

In contrast to the eigen-decomposition

A = V ΛV
−1

in SVD:

Orthogonal matrices U and V are not the same, U and V need not

even have the same dimension.

A need not be square.



Reduced SVD (rank(A) = r ≤ n)
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Reduced SVD (full column rank rank(A) = n)

A U I VT
mxn

,

man
nxn

n

m m m

n

^

n m

=① ① n

n n

n
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Reduced SVD for Rank-r matrix

If rank(A) = r, the SVD expresses A as a nonnegative linear combination

of r rank-1 matrices,

A = UΣV
⊤
=

m

∑
i=1

n

∑
j=1

σijuiv
⊤
j (1)

=

r

∑
i=1

σiuiv
⊤
i =

r

∑
i=1

σiAi

where σij is the i-th row j-th column of Σ. ui and vi are the corresponding

left and right singular vectors.



Reduced SVD for Rank-r matrix

Eq. (1) can be further simplified

A =∑
i=j

σijuiv
⊤
j +∑

i≠j

σijuiv
⊤
j

= ∑
i=j≤r

σijuiv
⊤
j + ∑

i=j>r

σijuiv
⊤
j

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=0

+∑
i≠j

σijuiv
⊤
j

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=0

=

r

∑
i=1

σiuiv
⊤
i

≡

r

∑
i=1

σiAi

where σi ≡ σii and Ai = uiv
⊤
i is a rank-1 matrix.



Feature representation learning

Question: why we observe vertical and horizontal lines in A1,⋯,A5?



Reduced SVD for rank-r matrix

Let A ∈ Rm×n be a rank-r matrix, where 1 ≤ r ≤ min(n, p). The reduced

SVD of A is

A = U rΣrV
⊤
r =

r

∑
i=1

σiuiv
⊤
i

U r = (u1,⋯,ur) is an m × r orthogonal matrix, U⊤
r U r = Ir×r.

V r = (v1,⋯,vr) is an n × r orthogonal matrix, V ⊤
r V r = Ir×r.

Σr is an r × r diagonal matrix with singular values σ1 ≥⋯ ≥ σr > 0

(all positive).



LOW-RANK MATRIX APPROXIMATION
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Rank-k approximation

How do we approximate a rank-r matrix A by a rank-k matrix (k ≤ r)?

Recall that in reduced SVD, a rank-r matrix A can be expressed as

A = U rΣrV
⊤
r =

r

∑
i=1

σiuiv
⊤
i (2)

where σ1 ≥⋯ ≥ σr > 0

Rank-k approximation of A: keep only the first k terms in (2)

Â(k) =
k

∑
i=1

σiuiv
⊤
i

we see that rank(Â(k)) = k and

A − Â(k) =
r

∑
i=k+1

σiuiv
⊤
i



Algorithm

1 Compute the SVD A = UΣV
⊤, where Σ is a nonnegative m × n

diagonal matrix with diagonal entries sorted from high to low.

2 Keep only the top k right singular vectors: Set V ⊤
k equal to the first

k rows of V ⊤ (a k × n matrix)

3 Keep only the top k left singular vectors: Set Uk equal to the first k

rows of U (a m × k matrix)

4 Keep only the top k singular values: Set Σk equal to the first k rows

and columns of Σ (a k × k matrix)

5 The rank-k approximation is then

Â(k) = UkΣkV
⊤
k =

k

∑
i=1

σiuiv
⊤
i





The size of the four compressed images is 45Kb, 345Kb, 1.1Mb and

3.4Mb2. More demos are here. 3

2Multivariate Statistics, Richard Wilkinson
3https://timbaumann.info/svd-image-compression-demo/
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Quantifying approximation error

How to quantify the approximation error ∥A − Â(k)∥?

Need the notion of a matrix norm ∥ ⋅ ∥.

e.g. the Frobenious norm or the spectral norm.
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Frobenius norm

Let A ∈ Rm×n. The Frobenius norm of A is

∥A∥F =

√
√√√√√⎷

m

∑
i=1

n

∑
j=1

∣aij∣2 =
√

tr(A⊤A)

32



(Homework) Show that for any matrix A and orthogonal matrices U

and V :

∥U⊤
A∥2

F = ∥A∥2
F ∥AV ∥2

F = ∥A∥2
F (3)

(Homework) Combining the result in (3) and using the SVD

A = UΣV
⊤ to show that

∥A∥F =

√
√√√√√⎷

r

∑
i=1

σ2
i

where r ≡ rank(A) and σi are the singular values of A.
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Spectral norm

Let A ∈ Rm×n. The spectral norm of A is defined as

∥A∥2 = max
x

∥Ax∥2

∥x∥2
= max

x∶∥x∥=1
∥Ax∥2
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Spectral norm

(Homework) Let A ∈ Rm×n. Show that

∥A∥2 = σ1

where σ1 is the first (largest) singular value of A.
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Eckart-Young-Mirsky Theorem

For either the spectral norm ∥ ⋅∥2 or the Frobenious norm ∥ ⋅∥F , the rank-k

approximation

Â(k) = UkΣkV
⊤
k =

k

∑
i=1

σiuiv
⊤
i

minimizes the approximation error

∥A − Â(k)∥ ≤ ∥A −C∥ for all rank-k matrices C

In other words

Â(k) = argmin
rank(C)=k

∥A −C∥

Moreover,

∥A − Â(k)∥ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σk+1 for the ∥ ⋅ ∥2 norm
√
∑r

i=k+1 σ
2
i for the ∥ ⋅ ∥F norm
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RELATIONSHIP WITH EIGEN-DECOMPOSITION
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Relation to eigenvalue decomposition

Given X as a N × p matrix. If X has SVD

X

N×p

= U

N×N

Σ

N×p

V
⊤

p×p

Then it follows

S =
1

N
X

⊤
X =

1

N
(UΣV

⊤)⊤UΣV
⊤

=
1

N
V Σ

⊤
U

⊤
UΣV

⊤
= V

Σ
⊤
Σ

N
V

⊤

where Σ
⊤
Σ = diag(σ2

1 ,⋯, σ
2
r , 0,⋯, 0) ∈ Rp×p with r = rank(X).

Meanwhile, by the eigen-decomposition

S = V ΛV
⊤
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Relation to eigenvalue decomposition

Therefore

V (Σ
⊤
Σ

N
)V ⊤

= S = V ΛV
⊤

Right-singular vectors of X (the columns of V ) are eigenvectors of

S =
1
N
X

⊤
X.

The non-zero eigenvalues of S are related to the non-zero singular

values of X via

Λ =
Σ

⊤
Σ

N
i.e. λd =

σ
2
d

N
for d = 1,⋯, p
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Relation to eigenvalue decomposition

We also have

1

N
XX

⊤
=

1

N
UΣV

⊤(UΣV
⊤)⊤

=
1

N
UΣV

⊤
V Σ

⊤
U

⊤
=

1

N
UΣΣ

⊤
U

⊤

Therefore, left-singular vectors of X (the columns of U ) are

eigenvectors of 1
N
XX

⊤.
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PCA AS LOW-RANK MATRIX APPROXIMATION
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PCA as Low-rank Matrix Approximation

PCA solves

min
B

1

N
∥X⊤

−BB
⊤
X

⊤∥2
F ≡

1

N
ÂÂÂÂÂX −XBB

⊤ÂÂÂÂÂ
2

F

subject to B
⊤
B = Ik×k

On the other hand, rank-k matrix approximation of X solves

X̂(k) = argmin
rank(C)=k

∥X −C∥F where X̂(k) = UkΣkV
⊤
k

One can show that V k = B, UkΣk =XB and

UkΣkV
⊤
k =XBB

⊤
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PCA as Low-rank Matrix Approximation

This relation suggest that SVD can also be used to produce PCA for X

(k-dim. subspace), as follows

1 Perform rank-k matrix approximation of X ≈ X̂(k) = UkΣkV
⊤
k .

2 Let B denote the top k principal components of S =
1
N
X

⊤
X, set

B = V k = (v1,⋯,vk).

3 (Homework) The PC scores can be obtained by XB = UkΣk.

e.g. for the n-th observation, the projected coordinates on the subspace

spanned by v1,⋯,vk are

(zn1,⋯, znk) = (v⊤
1 xn,⋯,v

⊤
kxn) = x

⊤
nB

n-th row of XB

= [UkΣk]n•

n-th row of UkΣk
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Computation complexity

Computing PCA for X ∈ RN×p using SVD has less computation

complexity then using eigen-decomposition

Eigen-decomposition approach:

S covariance matrix computation O(Npmin(N, p))
Eigen-decomposition O(p3)
Total: O(Npmin(N, p)) +O(p3)

SVD approach:

SVD O(Npmin(N, p))
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MATRIX COMPLETION VIA LOW RANK

APPROXIMATION
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What Are The Missing Entries?

Consider the following matrix,

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 ? ?

? 8 ?

? 12 6

? ? 2

21 6 ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Matrix completion problem: What are the missing entries?
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Consider an extreme assumption: that all rows are multiples of each

other.

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 ? ?

? 8 ?

? 12 6

? ? 2

21 6 ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Under such assumption, here is the completed matrix

X̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 2 1

28 8 4

42 12 6

14 4 2

21 6 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

When you know something about the “structure” of a partially known

matrix, then sometimes it’s possible to recover all of the “lost”

information.
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Matrix completion using matrix approximation

Applications:

Matrix completion:

1 First impute X to obtain X
′. Fill the missing entries of X using one of

the following methods

0;

the average of the known entries in the same column;

the average of the known entries in the same row;

the average of the known entries of the matrix.

2 Compute the best rank-k approximation to X
′

X̂(k) = argmin
rank(C)=k

∥X ′
−C∥

Why not we just do the first step to use X
′?
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SVD FOR HIGH-DIMENSIONAL DATA
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SVD (m < n, rank-r)
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SVD (m < n, rank(A) = m)
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Reduced SVD (m < n, rank-r)
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Reduced SVD (m < n, rank(A) = m)
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