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m Reading assignment:
m Genes mirror geography within Europe, Novembre et al (2008). Nature.
m Chapter 12, Pattern Recognition and Machine Learning, Christopher

Bishop.


https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

HIGH-DIMENSIONAL PCA



PCA for high-dimensional data

m In some applications of PCA, the number of data points NV is smaller

than the dimensionality of the data space p.
m Need to deal with a p X p covariance matrix.

m Computation of eigenvalues and eigenvectors is computationally

expensive. Complexity O(p®).



Setup

m The data matrix (centered) is

T11 12 T1p
Ta1  Ta2 Zap

X = =
N1 IN2 ' TNp

m The sample covariance matrix S is

1 & T 17
S:N;w”w”zﬁx X



Low-dimensional case

m In PCA, we solve the eigenvector equation
Sbm =)‘mbm7 m = 15”'7M

where b,,, is a basis vector of the principal subspace.
m Computation complexity O(p>).

m In low-dimensional case N = p

rank(S) = # of nonzero eigenvalues of S = rank(X) < p



High-dimensional case

m (Homework) Show that when N < p, a general matrix X has
rank(X) < N.

m (Homework) Show that for a centered matrix X

rank(X) < N -1

centered matrix: each row of X is a:j, which is centered by applying

— e = 1 N
Ty~ T, —TWthE = ) @,

m What kind of X has strictly rank(X) < N —1?



High-dimensional case

m In high-dimensional case, since N < p or N < p, for centered X

rank(.S) = # of nonzero eigenvalues of S

=rank(X)< N -1

m Thus S as a p X p matrix has at least p — IV + 1 eigenvalues that are

Zero.



m Rewrite the equation as
1 7
NX Xb,, = Apbp,

m Multiply both sides by X to give

%XXTXbm = A\ (Xb,,)

m If we now define ¢,,, = Xb,,,, we obtain

1

T
N XX c?n = ATYI,CTYL

m What is the dimension of the matrix %XXT in the eigenvector

equation?



Procedure

If N < p, show that %XXT has the same N —1 eigenvalues as
the original covariance matrix %XTX, and also %XTX has an additional

p — N + 1 eigenvalues of value zero. In other words

m For N x N matrix %XXT, its N eigenvalues are

1 I I
A17A27 '”7AN—1aO
| ————

N-1

m For p X p matrix %XTX, its p eigenvalues are

>\17 )‘27 '“7>\N—170707 "'70
Ty Y——
N-1 p—-N+1

= We have

A’15)"27 ) A’]\771 = )‘17>‘27 '”7)‘N—l




Procedure

m Therefore instead we can solve

1
NXXTcm =\n.Cn form=1--N-1

with computational cost O(N?) instead of O(p).

m In order to determine the eigenvectors, multiply both sides by X'

(%XTX) (XTen) =M (X Ten)

m Therefore XTcm is an eigenvector of S with eigenvalue J,,.



. T .
m Note: eigenvector X "¢, form =1,---, N — 1 are not normalized, we
need to re-scale

by o< X ¢y,
by a constant such that ||b,,|| = 1.
® (Homework) Assume that c,,, has been normalized to unit length
lleq || = 1, show that

1
b, = X'e,,

VN,

has unit length. This provide us a way to obtain a unit-lengthed b,,.




Summary

m To apply PCA for high-dimensional data
m First evaluate X X .
m Then find its eigen-vectors and eigenvalues.

m Compute the eigenvectors in the original data space.



Application: population genetics

m Data matrix:
m Columns: Genetic variation were genotyped at 500,568 loci using the
SNP chip.
m Rows: 3,192 European individuals were genotyped.
m Use the country of origin of each individual’s grandparents to

determine the geographic location.

m Exclude individuals with grand-parental ancestry from more than

location



m Use PCA to produce a two-dimensional visual summary of the

observed genetic variation.
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Figure 1| Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from

a showing differentiation within Switzerland by language. ¢, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Results

m The resulting figure bears a notable resemblance to a geographic map
of Europe:
m Individuals from the same geographic region cluster together
m Major populations are distinguishable.

m A close correspondence between genetic and geographic distances.



Results

m For spatially structured data, theory predicts the top two principal
components (PCs 1 and 2) to be correlated with perpendicular
geographic axes.

m The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of

Europeans



SPARSE PCA









