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Reading assignment:

Genes mirror geography within Europe, Novembre et al (2008). Nature.

Chapter 12, Pattern Recognition and Machine Learning, Christopher

Bishop.
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https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


HIGH-DIMENSIONAL PCA
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PCA for high-dimensional data

In some applications of PCA, the number of data points N is smaller

than the dimensionality of the data space p.

Need to deal with a p × p covariance matrix.

Computation of eigenvalues and eigenvectors is computationally

expensive. Complexity O(p3).
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Setup

The data matrix (centered) is

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋮

xN1 xN2 ⋯ xNp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
⊤
1

x
⊤
2

⋮

x
⊤
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The sample covariance matrix S is

S =
1

N

N

∑
n=1

xnx
⊤
n =

1

N
X
⊤
X
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Low-dimensional case

In PCA, we solve the eigenvector equation

Sbm = λmbm, m = 1,⋯,M

where bm is a basis vector of the principal subspace.

Computation complexity O(p3).

In low-dimensional case N ≥ p

rank(S) = # of nonzero eigenvalues of S = rank(X) ≤ p
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High-dimensional case

(Homework) Show that when N < p, a general matrix X has

rank(X) ≤ N .

(Homework) Show that for a centered matrix X

rank(X) ≤ N − 1

centered matrix: each row of X is x
⊤
n , which is centered by applying

xn ← xn − x̄ with x̄ = 1
N
∑N

n=1 xn.

What kind of X has strictly rank(X) < N − 1?



High-dimensional case

In high-dimensional case, since N < p or N ≪ p, for centered X

rank(S) = # of nonzero eigenvalues of S

= rank(X) ≤ N − 1

Thus S as a p × p matrix has at least p −N + 1 eigenvalues that are

zero.



Rewrite the equation as

1

N
X
⊤
Xbm = λmbm

Multiply both sides by X to give

1

N
XX

⊤
Xbm = λm(Xbm)

If we now define cm =Xbm, we obtain

1

N
XX

⊤
cm = λmcm

What is the dimension of the matrix 1
N
XX

⊤ in the eigenvector

equation?



Procedure

(Homework) IfN < p, show that 1
N
XX

⊤ has the sameN−1 eigenvalues as

the original covariance matrix 1
N
X
⊤
X, and also 1

N
X
⊤
X has an additional

p −N + 1 eigenvalues of value zero. In other words

For N ×N matrix 1
N
XX

⊤, its N eigenvalues are

λ
′
1, λ

′
2,⋯, λ

′
N−1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

N−1

, 0

For p × p matrix 1

N
X
⊤
X, its p eigenvalues are

λ1, λ2,⋯, λN−1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
N−1

, 0, 0,⋯, 0
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

p−N+1

We have

λ
′
1, λ

′
2,⋯, λ

′
N−1 = λ1, λ2,⋯, λN−1

10



Procedure

Therefore instead we can solve

1

N
XX

⊤
cm = λmcm for m = 1,⋯, N − 1

with computational cost O(N3) instead of O(p3).

In order to determine the eigenvectors, multiply both sides by X
⊤

( 1

N
X
⊤
X) (X⊤

cm) = λm (X⊤
cm)

Therefore X
⊤
cm is an eigenvector of S with eigenvalue λm.
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Note: eigenvector X⊤
cm for m = 1,⋯, N − 1 are not normalized, we

need to re-scale

bm ∝X
⊤
cm

by a constant such that ∥bm∥ = 1.

(Homework) Assume that cm has been normalized to unit length

∥cm∥ = 1, show that

bm =
1√
Nλm

X
⊤
cm

has unit length. This provide us a way to obtain a unit-lengthed bm.
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Summary

To apply PCA for high-dimensional data

First evaluate XX
⊤.

Then find its eigen-vectors and eigenvalues.

Compute the eigenvectors in the original data space.
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Application: population genetics

Data matrix:

Columns: Genetic variation were genotyped at 500,568 loci using the

SNP chip.

Rows: 3,192 European individuals were genotyped.

Use the country of origin of each individual’s grandparents to

determine the geographic location.

Exclude individuals with grand-parental ancestry from more than

location
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Use PCA to produce a two-dimensional visual summary of the

observed genetic variation.
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Results

The resulting figure bears a notable resemblance to a geographic map

of Europe:

Individuals from the same geographic region cluster together

Major populations are distinguishable.

A close correspondence between genetic and geographic distances.



Results

For spatially structured data, theory predicts the top two principal

components (PCs 1 and 2) to be correlated with perpendicular

geographic axes.

The direction of the PC1 axis and its relative strength may reflect a

special role for this geographic axis in the demographic history of

Europeans



SPARSE PCA
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