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m Reading assignment: read chapter 10 of Mathematics for Machine

Learning book.


https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf

Dimension reduction

m High-dimensional data is very common in real-life applications, e.g. in

genomics, finance, e-commerce etc.
m Dimensions in high-dimensional data are often correlated — it has an
embedded lower-dimensional structure.
m Dimensionality reduction exploits such low dimensional structure
m Compression
m Visualization
m Data generation
m We study principal component analysis (PCA) — linear

dimensionality reduction by Pearson (1901) and Hotelling (1933).

m One of the most commonly used techniques for compression and

visualization.



Dimension reduction
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(a) Dataset with x; and x2 coordinates. (b) Compressed dataset where only the z; coor-
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dinate is relevant.



DERIVE PCA FROM FIRST PRINCIPLES



Problem Setting
m Consider an i.i.d. dataset
X = {wla “'7ZBN}

-
where z,, = (2,1, . 2p) €Rforn=1,---,N.

m For simplicity, we assume that the data is centered such that

1 N
ﬂ=Nzwn=0
n=1

m To achieve this, set

Ly & LTpn — Y

m Find projections x,, of data points x,,

m Similar to the original data points as possible

m But have a significantly lower intrinsic dimensionality.



PROJECTION PERSPECTIVE: ONE-DIMENSIONAL

PROJECTION
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Minimizing reconstruction error

m We'll start by looking for a one-dimensional projection.
m Project N points «,, € R”, n = 1, -+-, N on to a line through the origin.
m We specify the line by a unit column vector

b, = (byy, -~-,l)1p)T € R”, with ||b,|| = 1, which forms a subspace U
U = {Zlbl : VZI € R}

m The coordinate of the orthogonal projection of x,, onto the line U

(one-dimensional subspace spanned by b,) is
T
21 = by,
m The orthogonal projection x,, is

- T
Ly = ﬂ—U(wn) = bl : bl Ly
~ —
direction of proj.  z;,, :coordinate of proj.









Minimizing reconstruction error

m If we approximate x,, using x,,, the squared approximation error is
~ 2 2 T 2
”mn_$n,|| = ”mn_ﬂ-U(mn)” = ”wn_blbl wn”

m If average those ||z, — @, || over all the points n = 1, ---, N, we get

the average squared approximation error, i.e. reconstruction error

IS 2 1 g T 2
5 2 M@=zl = 5 ) llwa=bibi |
n=1 n=1

m How to choose a good subspace U in PCA? — find b; such that the

reconstruction error is minimized

N
1
min ./, & min — Z |z, — blblTﬂlan2
b, b, Nn=1



Minimizing reconstruction error

m Here is an amazing result that bridges together two perspectives of
PCA

& . X 1 &
2 2 2
g ||2L‘,, _blbl "L'NH =75 ||"Bn” NG ”bl :13,””
N n=1 N n=1 N n=1
m which essentially claiming that

reconstruction err.

const. projected variance
1 1
1 s 1 & ) 1 &,
N 2 Mz =@l = ) el = )t
n=1 n=1 n=1




Proof

m The squared approximation error for point x,, can be rewritten as

~ 2 T 2
”mn - wn“ = ”mn - blbl "Bn”

(%, = bibi @) (x,, — bib] x,)

= w:wn - wzblb;ra:n - wlblbl—wn + wl—blblTblblTwn
© wlwn - wl—blb;r:vn

= ll2ull* = 116] 2, I

2
= const — zi,

bl b =1

where (4) follows by z, b,b; b,b; z,, z, bb, z,, and (ii)

follows by z1,, = blT:cn.



Sample variance of projected coordinates

m (Homework) Show that the term % ZnN=1 zfn indeed is equal to the

sample variance of the coodinates {z;1, -:-, 21y} of N projections.

1L, o1& 1 & L
Nzlzln = NZI(ZM_NZ'ZM) = Var(z11, '+, 21n)

m Hint: recall that the data is centered; also note that we use factor %

instead of in the sample variance.

1
N-1
= Note that Var stands for the sample variance, rather than the

population variance Var.



m (Homework) Show that we also have

1< s 1 s 1 & 2
T2 Mz = 2ll” = 5 ) llzall® = 5 Y Nl
n=1 n=1 n=1

i.e. norm of reconstruction is equal to norm of coordinate. (If you draw

it, this is obvious).



Yin and Yang FHFH - data’s duality

m Minimizing the average squared reconstruction error is equivalent to

maximizing the variance of the projection.

rrgin = rr})axVar(zu, < 21N)
1 1

mln— Z ||, — blbl :I:n|| — rnax— Z ||b1

m Choosing a subspace to maximize the projected variance, or minimize

the reconstruction error, is called principal component analysis (PCA).



ChatGPT: (experience PCA in a dual light) — one side radiates with the
expansion of variance, while the other elegantly narrows down

reconstruction errors. A visual symphony of data’s duality.



Archer: (poor man’s version?) — these figures show that maximizing the
variance of the projection is equivalent to minimizing the average squared

reconstruction error.



MAXIMUM VARIANCE PERSPECTIVE



Direction with maximal variance

m Accordingly, let’s find the projection direction b; that maximizes the

variance!

N

N

— 1 9 1 T 2

Vi = Var(zyq, -+, 218) = N Z Zin = 3 Z b1 . ||
n=1

m The corresponding optimization problem is

maxV1 = Z ||b1 (1)
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Direction with maximal variance

m For simplicity, rewrite the problem in a matrix format

1 T 2
Vl N Z ”bl wn”
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Direction with maximal variance

m Here S is the sample (data) covariance matrix

1 & T 1 7
S=N;mnmn=ﬁX X

where
T
T T11 T12 ot Typ
T
T2 T21 Taz2 ot Ty

TN N1 IN2 - TNp
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Direction with maximal variance

m Written in the matrix format, the optimization problem (1) becomes
max blT Sb,
m Note that arbitrarily increasing the magnitude of the vector b,
increases blTSbl. Thus we have to restrict b; to be a unit vector, i.e.

b, =1
max bISbl
subjectto ||by|| = 1
m To solve problem (2), we introduce the Lagrangian
L£(by, A1) = by Sby + Ay (1 - b by)

m The partial derivatives of £ are

oL
0b,

oL

_ _T
oy =1-bib

=2b, S - 2\;b,

24



m Setting these partial derivatives to 0 gives

Sb, = A\ b, bib =1

m We see that

m b; is an eigenvector of the sample covariance matrix S.
m The Lagrange multiplier \; is the corresponding eigenvalue, it is also

the variance of the resulting projected coordinates
V,=b) Sby = \bi b, =\,

m Therefore, to maximize the variance V;, we choose the basis vector b;
associated with the largest eigenvalue of the data covariance matrix
S.

m The eigenvector b, is called the 1st principal component.

25



m We can get the coordinate of the projection
Z1n = wan e R

m We can also get the approximation of «,, by mapping the coordinate

z1, back into data space

~ T
Ty = blzln = b1b1 T, € Rp

which gives us the projected data point x,, in the original data space.

m Remark: Although «,, is a p-dimensional vector, it only requires a
single coordinate z;,, to represent it with respect to the basis vector
b, € R?.
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m If we project the data to the first principal component b;, combining

equation

N 3 9 1 N 9 1 N 9
Z 12, — &, =N;||wn|| -5 2 “in

n=1
and
i 2 i) T 2 T
N Z “in = 7 Z by, [|” = by Sby = Ay
n=1 n=1

we see that the corresponding reconstruction error is

N
Z [T



DATA CENTERING AND SCALING



Data centering and scaling

m In PCA, the centering and scaling of data are important steps.
m But their necessity depends on the context and nature of your data.

m The original data matrix is

29



m Centering is almost always necessary in PCA.

m Involves substracting each entry by the corresponding column mean:

T11 —x1 Tipa—Tp 0 Ty — Ty
To1p — X1 Tog — Do o0 Top — Ty
TN1—T1 TN2— Ty ot TNp—Tp

m The column mean of each column after centering becomes zero.

m Ensures that each variable contributes equally to the analysis so that
PCA focuses on the variance of the data.
m Without, PCA might be influenced by variables that are on a larger

scale.



m Scaling - aka standardization

m Involves dividing each entry by the corresponding column standard

deviation:
i T11—% Ti2=To Tip=Tp ]
\/V3r(1'117"'»3’3N1) \/Vﬁr(m127"'7$N2) Var(ajlp)"'wwNp)
To1—T) T2~ T . Zap—Tp
\/V3«r(x111"'»zN1) \/V&r(TIQH"vaQ) Var(z1p,TNp)
TN1=Ty TN2—T3 . INp~Zp
L \/Var(w11,~-~,:cN1) \/V&r(x121"'7$N2) Var(l’lp,"wwNp) .

m The column variance of each column after centering becomes one.

m Crucial when the variables in data are on different scales (e.g., kg,
km, F, C) or have different units of measurement.

m Scaling ensures that PCA gives equal weight to each variable,

preventing variables with larger scales from dominating the PCA.
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m Always center the data;
m Scale the data when variables are on different scales or units;

m In imaging — where all coordinates are in the same units, namely pixel

intensities — there is no need to do such coordinate scaling.

m Be cautious with scaling for interpretability.
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WHY USE ORTHOGONAL PROJECTION IN

RECONSTRUCTION?



Why orthogonal projection is optimal?

m Recall that orthogonal projection is adopted to get reconstruction x,,
in
1 & 2 1 & T 2
=5 2 llzn—2l” = 5 Z 12, = biby @, |
n=1 n=1
m But why use orthogonal projection?

m Consider an unknown linear projection method, the resulting

coordinate of the projection for data point x,, is z1,,

m The corresponding reconstruction error is

1 & )
= N Z ||, — b121,,]|
n=1
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m Assume b, is given, find zq,, that minimize the reconstruction error

1 N

. 2

min N § ”mn_blzln”
n=1

Z11,""H21N
m To solve this problem, compute the partial derivative and set it to zero

o.J 2 2 T T
8211 =~ (@n - bi21,) by = 5 (0120 = b1b121,) = 0

m Since blTbl = 1, the equation yields

T
Rn = bl Ty

m Consequently,
m The optimal linear projection &,, of x,, is an orthogonal projection.
m Optimal coordinates z,,, of the projection z,, are the coordinates of the

orthogonal projection of the original data point x,,.
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