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Reading assignment: read chapter 10 of Mathematics for Machine

Learning book.
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https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf


Dimension reduction

High-dimensional data is very common in real-life applications, e.g. in

genomics, finance, e-commerce etc.

Dimensions in high-dimensional data are often correlated — it has an

embedded lower-dimensional structure.

Dimensionality reduction exploits such low dimensional structure

Compression

Visualization

Data generation

We study principal component analysis (PCA) – linear

dimensionality reduction by Pearson (1901) and Hotelling (1933).

One of the most commonly used techniques for compression and

visualization.
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Dimension reduction

4



DERIVE PCA FROM FIRST PRINCIPLES
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Problem Setting

Consider an i.i.d. dataset

X = {x1,⋯,xN}

where xn = (xn1,⋯, xnp)⊤ ∈ Rp for n = 1,⋯, N .

For simplicity, we assume that the data is centered such that

µ̂ =
1

N

N

∑
n=1

xn = 0

To achieve this, set

xn ← xn − µ̂

Find projections x̃n of data points xn

Similar to the original data points as possible

But have a significantly lower intrinsic dimensionality.
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PROJECTION PERSPECTIVE: ONE-DIMENSIONAL

PROJECTION
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Minimizing reconstruction error

We’ll start by looking for a one-dimensional projection.

Project N points xn ∈ Rp, n = 1,⋯, N on to a line through the origin.

We specify the line by a unit column vector

b1 = (b11,⋯, b1p)⊤ ∈ Rp, with ∥b1∥ = 1, which forms a subspace U

U = {z1b1 ∶ ∀z1 ∈ R}

The coordinate of the orthogonal projection of xn onto the line U

(one-dimensional subspace spanned by b1) is

z1n = b
⊤
1 xn

The orthogonal projection x̃n is

x̃n ≡ πU(xn) = b1ÍÑÏ
direction of proj.

⋅ b
⊤
1 xnÍ ÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÏ

z1n∶coordinate of proj.
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Minimizing reconstruction error

If we approximate xn using x̃n, the squared approximation error is

∥xn − x̃n∥2
= ∥xn − πU(xn)∥2

= ∥xn − b1b
⊤
1 xn∥2

If average those ∥xn − x̃n∥2 over all the points n = 1,⋯, N , we get

the average squared approximation error, i.e. reconstruction error

J1 ≡
1

N

N

∑
n=1

∥xn−x̃n∥2
=

1

N

N

∑
n=1

∥xn−b1b
⊤
1 xn∥2 (reconstruction err.)

How to choose a good subspace U in PCA? – find b1 such that the

reconstruction error is minimized

min
b1

J1 ⟺ min
b1

1

N

N

∑
n=1

∥xn − b1b
⊤
1 xn∥2
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Minimizing reconstruction error

Here is an amazing result that bridges together two perspectives of

PCA

1

N

N

∑
n=1

∥xn − b1b
⊤
1 xn∥2

=
1

N

N

∑
n=1

∥xn∥2
−

1

N

N

∑
n=1

∥b⊤1 xn∥2

which essentially claiming that

1

N

N

∑
n=1

∥xn − x̃n∥2

reconstruction err.

=
1

N

N

∑
n=1

∥xn∥2

const.

−
1

N

N

∑
n=1

z
2
1n

projected variance



Proof

The squared approximation error for point xn can be rewritten as

∥xn − x̃n∥2
= ∥xn − b1b

⊤
1 xn∥2

= (xn − b1b
⊤
1 xn)⊤(xn − b1b

⊤
1 xn)

= x
⊤
nxn − x

⊤
nb1b

⊤
1 xn − x

⊤
nb1b

⊤
1 xn + x

⊤
nb1b

⊤
1 b1b

⊤
1 xn

(i)
= x

⊤
nxn − x

⊤
nb1b

⊤
1 xn

= ∥xn∥2
− ∥b⊤1 xn∥2

= const − z2
1n

where (i) follows by x⊤nb1b
⊤
1 b1b

⊤
1 xn

b
⊤
1 b1=1
= x

⊤
nb1b

⊤
1 xn and (ii)

follows by z1n = b
⊤
1 xn.



Sample variance of projected coordinates

(Homework) Show that the term 1
N
∑N

n=1 z
2
1n indeed is equal to the

sample variance of the coodinates {z11,⋯, z1N} of N projections.

1

N

N

∑
n=1

z
2
1n =

1

N

N

∑
n=1

(z1n −
1

N

N

∑
n=1

z1n)
2

≡ V̂ar(z11,⋯, z1N)

Hint: recall that the data is centered; also note that we use factor 1
N

instead of 1
N−1

in the sample variance.

Note that V̂ar stands for the sample variance, rather than the

population variance Var.



(Homework) Show that we also have

1

N

N

∑
n=1

∥xn − x̃n∥2
=

1

N

N

∑
n=1

∥xn∥2
−

1

N

N

∑
n=1

∥x̃n∥2

i.e. norm of reconstruction is equal to norm of coordinate. (If you draw

it, this is obvious).



Yin and Yang阴阳 – data’s duality

Minimizing the average squared reconstruction error is equivalent to

maximizing the variance of the projection.

min
b1

J1 ⟺ max
b1

V̂ar(z11,⋯, z1N)

i.e.

min
b1

1

N

N

∑
n=1

∥xn − b1b
⊤
1 xn∥2

⟺ max
b1

1

N

N

∑
n=1

∥b⊤1 xn∥2

Choosing a subspace to maximize the projected variance, or minimize

the reconstruction error, is called principal component analysis (PCA).



ChatGPT: (experience PCA in a dual light) – one side radiates with the

expansion of variance, while the other elegantly narrows down

reconstruction errors. A visual symphony of data’s duality.



Archer: (poor man’s version?) – these figures show that maximizing the

variance of the projection is equivalent to minimizing the average squared

reconstruction error.



MAXIMUM VARIANCE PERSPECTIVE
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Direction with maximal variance

Accordingly, let’s find the projection direction b1 that maximizes the

variance!

V1 ≡ V̂ar(z11,⋯, z1N) = 1

N

N

∑
n=1

z
2
1n =

1

N

N

∑
n=1

∥b⊤1 xn∥2

The corresponding optimization problem is

max
b1

V1 ≡
1

N

N

∑
n=1

∥b⊤1 xn∥2 (1)
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Direction with maximal variance

For simplicity, rewrite the problem in a matrix format

V1 =
1

N

N

∑
n=1

∥b⊤1 xn∥2

=
1

N

N

∑
n=1

b
⊤
1 xnx

⊤
nb1 =

1

N

N

∑
n=1

b
⊤
1 xnx

⊤
nb1

= b
⊤
1 ( 1

N

N

∑
n=1

xnx
⊤
n) b1

= b
⊤
1 ( 1

N
X
⊤
X) b1

= b
⊤
1 Sb1
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Direction with maximal variance

Here S is the sample (data) covariance matrix

S =
1

N

N

∑
n=1

xnx
⊤
n =

1

N
X
⊤
X

where

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
⊤
1

x
⊤
2

⋮

x
⊤
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋮

xN1 xN2 ⋯ xNp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Direction with maximal variance

Written in the matrix format, the optimization problem (1) becomes

max
b1

b
⊤
1 Sb1

Note that arbitrarily increasing the magnitude of the vector b1

increases b⊤1 Sb1. Thus we have to restrict b1 to be a unit vector, i.e.

∥b1∥ = 1

max
b1

b
⊤
1 Sb1

subject to ∥b1∥ = 1

(2)

To solve problem (2), we introduce the Lagrangian

L(b1, λ1) = b⊤1 Sb1 + λ1(1 − b⊤1 b1)

The partial derivatives of L are

∂L
∂b1

= 2b
⊤
1 S − 2λ1b

⊤
1

∂L
∂λ1

= 1 − b
⊤
1 b1

24



Setting these partial derivatives to 0 gives

Sb1 = λ1b1 b
⊤
1 b1 = 1

We see that

b1 is an eigenvector of the sample covariance matrix S.

The Lagrange multiplier λ1 is the corresponding eigenvalue, it is also

the variance of the resulting projected coordinates

V1 = b
⊤
1 Sb1 = λ1b

⊤
1 b1 = λ1

Therefore, to maximize the variance V1, we choose the basis vector b1

associated with the largest eigenvalue of the data covariance matrix

S.

The eigenvector b1 is called the 1st principal component.
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We can get the coordinate of the projection

z1n = b
⊤
1 xn ∈ R

We can also get the approximation of xn by mapping the coordinate

z1n back into data space

x̃n = b1z1n = b1b
⊤
1 xn ∈ Rp

which gives us the projected data point x̃n in the original data space.

Remark: Although x̃n is a p-dimensional vector, it only requires a

single coordinate z1n to represent it with respect to the basis vector

b1 ∈ Rp.
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If we project the data to the first principal component b1, combining

equation

J1 ≡
1

N

N

∑
n=1

∥xn − x̃n∥2
=

1

N

N

∑
n=1

∥xn∥2
−

1

N

N

∑
n=1

z
2
1n

and
1

N

N

∑
n=1

z
2
1n =

1

N

N

∑
n=1

∥b⊤1 xn∥2
= b

⊤
1 Sb1 = λ1

we see that the corresponding reconstruction error is

J1 =
1

N

N

∑
n=1

∥xn∥2
− λ1
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DATA CENTERING AND SCALING
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Data centering and scaling

In PCA, the centering and scaling of data are important steps.

But their necessity depends on the context and nature of your data.

The original data matrix is

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 ⋯ x1p

x21 x22 ⋯ x2p

⋮ ⋮ ⋮

xN1 xN2 ⋯ xNp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Centering is almost always necessary in PCA.

Involves substracting each entry by the corresponding column mean:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 − x̄1 x12 − x̄2 ⋯ x1p − x̄p

x21 − x̄1 x22 − x̄2 ⋯ x2p − x̄p

⋮ ⋮ ⋮

xN1 − x̄1 xN2 − x̄2 ⋯ xNp − x̄p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The column mean of each column after centering becomes zero.

Ensures that each variable contributes equally to the analysis so that

PCA focuses on the variance of the data.

Without, PCA might be influenced by variables that are on a larger

scale.
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Scaling - aka standardization

Involves dividing each entry by the corresponding column standard

deviation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11−x̄1√
V̂ar(x11,⋯,xN1)

x12−x̄2√
V̂ar(x12,⋯,xN2)

⋯
x1p−x̄p√

V̂ar(x1p,⋯,xNp)
x21−x̄1√

V̂ar(x11,⋯,xN1)
x22−x̄2√

V̂ar(x12,⋯,xN2)
⋯

x2p−x̄p√
V̂ar(x1p,⋯,xNp)

⋮ ⋮ ⋮
xN1−x̄1√

V̂ar(x11,⋯,xN1)
xN2−x̄2√

V̂ar(x12,⋯,xN2)
⋯

xNp−x̄p√
V̂ar(x1p,⋯,xNp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The column variance of each column after centering becomes one.

Crucial when the variables in data are on different scales (e.g., kg,

km, F, C) or have different units of measurement.

Scaling ensures that PCA gives equal weight to each variable,

preventing variables with larger scales from dominating the PCA.
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Always center the data;

Scale the data when variables are on different scales or units;

In imaging — where all coordinates are in the same units, namely pixel

intensities — there is no need to do such coordinate scaling.

Be cautious with scaling for interpretability.
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WHY USE ORTHOGONAL PROJECTION IN

RECONSTRUCTION?
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Why orthogonal projection is optimal?

Recall that orthogonal projection is adopted to get reconstruction x̃n

in

J1 ≡
1

N

N

∑
n=1

∥xn − x̃n∥2
=

1

N

N

∑
n=1

∥xn − b1b
⊤
1 xn∥2

But why use orthogonal projection?

Consider an unknown linear projection method, the resulting

coordinate of the projection for data point xn is z1n

The corresponding reconstruction error is

J1 =
1

N

N

∑
n=1

∥xn − b1z1n∥2
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Assume b1 is given, find z1n that minimize the reconstruction error

min
z11,⋯,z1N

1

N

N

∑
n=1

∥xn − b1z1n∥2

To solve this problem, compute the partial derivative and set it to zero

∂J1

∂z1n
= −

2

N
(xn − b1z1n)⊤b1 = −

2

N
(b⊤1 xn − b

⊤
1 b1z1n) = 0

Since b⊤1 b1 = 1, the equation yields

z1n = b
⊤
1 xn

Consequently,

The optimal linear projection x̃n of xn is an orthogonal projection.

Optimal coordinates z1n of the projection x̃n are the coordinates of the

orthogonal projection of the original data point xn.
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