Subgradient Methods
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1 Step size choices

Step size on the k-th iteration, ¢;, must satisfy the following conditions:
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i.e. step sizes should go to zero but not too fast.

2 Fixed step size

Theorem 1. Let f be a Lipschitz continous function with constant G. For a fixed step size
tr = t Vk, the subgradient method satisfies:
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We can interpret GTQt as a bias. (Recall xl(,’;gt is the best x found by the subgradient

method after k iterations)



3 Diminishing step sizes

Theorem 2. For diminishing step sizes, the subgradient method satisfies:

lim f(zpe,) = f(z*)
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We now proceed to prove this theorem. We make an assumption on f that the subgra-

dient is bounded:

Yz Vg € 0f 3G such that ||¢™®]||, < G (1)

Note that this is a necessary condition. If f is Lipschitz continuous, then we automati-

cally have that f satisfies Eqn 1.

Proof. Let f* = f(x*) = min, f(z) be the optimal value. Now consider:

a2 — 272 = [|]2®) — .9 — 2¥||2 (Gradient Descent Update)
= |z® — 2*]|2 — 2t,g®T (™ — 2*) +2||g™||? (Expanding brackets)

< lz® — 2*| 2 = 2t (f (™) — %) +£2]]g®||2 (Definition of subgradient)

We iteratively apply these steps to get:
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Verifying that ||2*+Y) — 2*||2 > 0 we have that:
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Now note that
k
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Recall the definition of fé:q)t from the subgradient algorithm:
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(By applying fact 2)

Note that this is why we required the conditions shown in Section 1

3.1 Special cases

1. If we have a constant step size we get that

(1) _ x[]2 k21100012 G*t
||z o ||2+Zz:1 illg1ls — 5 as k— oo

2 Zf:l ti

2. “Square summable by not summable" (i.e. conditions in Section 1):
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4 Comparison to Gradient Descent

In gradient descent we converge in O(%) iterations. In the subgradient method we converge

. N . . .
in O(£”) iterations. We can see this when we assuming step size t; = %E:
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Which means we need O(%Q) iterations to converge.

S Polyak Step size

What happens if you knew z*? Then the optimal step size is:

f(kfl) . f*
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An example of this is when we consider the distance to the intersection of sets problem.

Let f;(x) = dist(x, C;) be the distance to set C;. Let f(x) = max f;(x) be the worst case

maximum distance. We want to find z* such that min f(x) (i.e. the minimum worst case
distance).

Note that here we know f(z*) =0 = z* € C1N...NC,.
Recall that Odist(z, ) = —=2<%)_ By the subgradient rule we know 8 f = Conv[Ud fi(x))].

T lz=Pe(@)ll3”
Let g; = Vfi(x) = %. We know that ||g®*~1||2 = 1. The Polyak Step size
becomes:
ty = f(z")

Now notice that when we substitute this into the update rule:



pk-1 — Pei(x)
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5.1 Projected Subgradient Method

The above exploration leads us to the projected subgradient method. Consider the problem

min, f(x) stz € C. We then have the update rule:
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