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1 Step size choices

Step size on the k-th iteration, tk, must satisfy the following conditions:

1.
∑∞

k=1 t
2
k <∞

2.
∑∞

k=1 tk =∞

i.e. step sizes should go to zero but not too fast.

2 Fixed step size

Theorem 1. Let f be a Lipschitz continous function with constant G. For a fixed step size

tk = t ∀k, the subgradient method satisfies:

lim
k→∞

f(x
(k)
best) ≤ f(x∗) +

G2t

2

We can interpret G2t
2

as a bias. (Recall x(k)best is the best x found by the subgradient

method after k iterations)
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3 Diminishing step sizes

Theorem 2. For diminishing step sizes, the subgradient method satisfies:

lim
k→∞

f(x
(k)
best) = f(x∗)

We now proceed to prove this theorem. We make an assumption on f that the subgra-

dient is bounded:

∀x ∀g ∈ ∂f ∃G such that ||g(k)||2 ≤ G (1)

Note that this is a necessary condition. If f is Lipschitz continuous, then we automati-

cally have that f satisfies Eqn 1.

Proof. Let f ∗ = f(x∗) = minx f(x) be the optimal value. Now consider:

||x(k+1) − x∗||22 = ||x(k) − tkg(k) − x∗||22 (Gradient Descent Update)

= ||x(k) − x∗||22 − 2tkg
(k)T (x(k) − x∗) + t2k||g(k)||22 (Expanding brackets)

≤ ||x(k) − x∗||22 − 2tk(f(x
(k))− f ∗) + t2k||g(k)||22 (Definition of subgradient)

We iteratively apply these steps to get:

||x(k+1) − x∗||22 ≤ ||x(1) − x∗||22 − 2
k∑
i=1

ti(f(x
(i))− f ∗) +

k∑
i=1

t2i ||g(i)||22

Verifying that ||x(k+1) − x∗||22 ≥ 0 we have that:

2
k∑
i=1

ti

(
f(x(i))− f ∗

)
≤ ||x(1) − x∗||22 +

k∑
i=1

t2i ||g(i)||22
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Now note that

k∑
i

ti

(
f(x(i) − f ∗)

)
≥

(
k∑
i=1

ti

)
min
i=1,...k

(
f(x(i) − f ∗)

)
(2)

Recall the definition of f (k)
best from the subgradient algorithm:

f
(k)
best − f ∗ = min

i=1,...k

(
f
(k)
best − f ∗

)
≤ ||x

(1) − x∗||22 +
∑k

i=1 t
2
i ||g(i)||22

2
∑k

i=1 ti
(By applying fact 2)

Note that this is why we required the conditions shown in Section 1

3.1 Special cases

1. If we have a constant step size we get that

||x(1) − x∗||22 +
∑k

i=1 t
2
i ||g(i)||22

2
∑k

i=1 ti
−→ G2t

2
as k →∞

2. “Square summable by not summable" (i.e. conditions in Section 1):

||x(1) − x∗||22 +
∑k

i=1 t
2
i ||g(i)||22

2
∑k

i=1 ti
−→ 0 as k →∞
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4 Comparison to Gradient Descent

In gradient descent we converge inO(1
ε
) iterations. In the subgradient method we converge

in O(1
ε

2
) iterations. We can see this when we assuming step size ti = R

G
√
k
:

f
(k)
best − f ∗ ≤

R2 +G2
∑k

i=1 t
2
i

2
∑k

i=1 ti
=
RG√
k
≤ ε

Which means we need O(1
ε

2
) iterations to converge.

5 Polyak Step size

What happens if you knew x∗? Then the optimal step size is:

tk =
f (k−1) − f ∗

||g(k−1)||22
An example of this is when we consider the distance to the intersection of sets problem.

Let fi(x) = dist(x,Ci) be the distance to set Ci. Let f(x) = max fi(x) be the worst case

maximum distance. We want to find x∗ such that min f(x) (i.e. the minimum worst case

distance).

Note that here we know f(x∗) = 0 =⇒ x∗ ∈ C1 ∩ . . . ∩ Cn.

Recall that ∂dist(x,C) = x−Pc(x)

||x−Pc(x)||22
. By the subgradient rulewe know ∂f = Conv[∪∂fi(x)].

Let gi = ∇fi(x) = x−PCi(x)
||x−PCi(x)||2 . We know that ||g(k−1)||22 = 1. The Polyak Step size

becomes:

tk = f(xk−1)

Now notice that when we substitute this into the update rule:
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x(k) = x(k−1) − f(x(k−1)) x(k−1) − PCi(x)
||x(k−1) − PCi(x)||2

= Pc(x
(k−1))

since f(x(k−1)) = x(k−1)−PCi(x)

||x(k−1)−PCi(x)||2

5.1 Projected Subgradient Method

The above exploration leads us to the projected subgradient method. Consider the problem

minx f(x) st x ∈ C. We then have the update rule:

x(k) = PC
(
x(k−1) − tkg(k−1)

)
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