
Proximal Methods

October 9, 2024

1 Moreau decomposition

In this section, we will explore some applications of duality in settings related to proximal

gradient methods. First, recall the definition of a proximal operator:

proxf (v) = arg min
x

(
1

2
‖x− v‖2

2 + f(x)

)
.

A useful fact for manipulating and extending proximal operators is known asMoreau de-

composition. It states that the following relationship always holds:

v = proxf (v) + proxf∗(v),

where

f ∗(y) = max
x

(
y>x− f(x)

)
.

Moreau’s decomposition is “the main relationship between proximal operators and duality”

and follows from the properties of sub-gradients and conjugate functions.

Notice that this is a generalization of orthogonal decomposition. Let L be a subspace

1

of a vector space U . For any v ∈ U , we have

v = ΠL(v) + ΠL⊥(v).

To illustrate the usefulness of this decomposition, we review a simple example. If

f(x) = ‖x‖, then f ∗(y) = IB(y), where B = {z : ‖z‖∗ ≤ 1} is a unit ball according

to the dual norm. By Moreau decomposition,

v = proxf (v) + proxf∗(v)

= prox‖·‖(v) + proxIB(v),

where

proxIB(v) = arg min
x

(
1

2
‖x− v‖2

2 + IB(x)

)
= arg min

x

1

2
‖x− v‖2

2 s.t. x ∈ B

= ΠB(v).

It follows that

prox‖·‖(v) = v − proxIB(v) = v − ΠB(v).

2 Extending the Moreau Decomposition

Starting from the identity

proxf (v) = v − proxf∗(v).

2

we want to derive a similar identity when we replace f by λf for some λ > 0. We want to

show that

proxλf (v) = v − prox(λf)∗(v) = v − λproxf∗/λ (v/λ) .

First, we find the convex conjugate of λf :

(λf)∗(v) = max
y

(
v>y − λf(y)

)
= max

y
λ

(
v

λ

>
y − f(y)

)
= λmax

y

(
v

λ

>
y − f(y)

)
= λf ∗

(v
λ

)
.

Then, we get

prox(λf)∗(v) = arg min
y

[
(λf)∗(y) +

1

2
‖y − v‖2

2

]
= arg min

y

[
λf ∗

(y
λ

)
+

1

2
‖y − v‖2

2

]
= arg min

y

[
f ∗
(y
λ

)
+

1

2λ
‖y − v‖2

2

]
.

Now, we write y = λz to get

prox(λf)∗(v) = arg min
λz

[
f ∗ (z) +

1

2λ
‖λz − v‖2

2

]
= λ arg min

z

[
f ∗ (z) +

λ

2

∥∥∥z − v

λ

∥∥∥2

2

]
= λproxf∗/λ

(v
λ

)
.

3

Finally, we have the identity

proxλf (v) = v − prox(λf)∗(v) = v − λproxf∗/λ (v/λ) .

If f = ‖ · ‖ is a general norm on Rn, then

f ∗(v) = IB(v) =

0 if ‖v‖∗ ≤ 1,

∞ otherwise.

where B = {x : ‖x‖∗ ≤ 1} is the unit-ball in (Rn, ‖ · ‖∗). Observe that

f ∗/λ = IB/λ = IB.

Then by Moreau decomposition, we get:

proxλ‖·‖(v) = v − λΠB

(v
λ

)
.

3 From Proximal to Projection

Euclidean norm penalty. Here, f = f ∗ = ‖ · ‖2. We project v onto the Euclidean unit

ball B as follows:

ΠB(v) =

v/‖v‖2 if ‖v‖2 > 1

0 if ‖v‖2 ≤ 1.

4

We get:

proxλ‖·‖2(v) = v − λΠB

(v
λ

)
=

(1− λ/‖v‖2) v if ‖v‖2 ≥ λ

0 if ‖v‖2 < λ

= (1− λ/‖v‖2)+ v,

where

(z)+ =

z if z > 0

0 if z ≤ 0 .

Group lasso penalty. This is how you compute proximal for each group in group lasso.

For x ∈ Rp,

f(x) =
G∑
g=1

wg‖xg‖2

where {1, ..., p} is partitioned into G groups. We get

proxλf (v) = arg min
x

1

2t
‖v − x‖2

2 + λf(x)

= arg min
x

1

2t
‖v − x‖2

2 + λ
G∑
g=1

wg‖xg‖2.

5

So, for g ∈ {1, ..., G},

[proxλf (v)]g = arg min
xg

1

2t
‖vg − xg‖2

2 + λwg‖xg‖2

= proxλwg‖xg‖2(vg)

=

(
1− tλwg
‖vg‖2

)
+

vg.

Sparse group lasso penalty. For x ∈ Rp, the sparse group lasso penalty is

f(x) =
G∑
g=1

wg [(1− α)‖xg‖2 + α‖xg‖1]

where {1, ..., p} is partitioned into G groups. This is how you compute proximal for each

group in sparse group lasso. We get

proxλf (v) = arg min
x

1

2t
‖v − x‖2

2 + λf(x)

So, for g ∈ {1, ..., G}, define τ = tλwg

[proxλf (v)]g = arg min
xg

1

2t
‖vg − xg‖2

2 + λwg [(1− α)‖xg‖2 + α‖xg‖1]

= proxλf (vg)

=

(
1− (1− α)τ

‖Sατ (vg)‖2

)
+

Sατ (vg),

where

Sατ (vg) = sgn(vg)(|vg| − ατ)+.

6

l1 and l∞ norms penalty. When f = ‖ · ‖1, then f ∗ = IB, B = {x : ‖x‖∞ ≤ 1}. We

project onto the∞-norm unit ball B as follows:

(ΠB(v))i =

1 : vi > 1

v1 : |vi| ≤ 1

−1 : vi < −1.

We get an alternative way of getting the proximal operator of lasso

proxλf (v) = proxλ‖·‖1(v) = v − λΠB

(v
λ

)
.

So

[
proxλf (v)

]
i

=

vi − λ : vi > λ

0 : |vi| ≤ λ

vi + λ : vi < λ.

When f = ‖ · ‖∞, then f ∗ = IB, B = {x : ‖x‖1 ≤ 1}. See paper for how to project

on B.

Hierarchical grouped norms. Assume the variablesX1, ..., Xp have a hierarchical struc-

ture. The variables are selected according to the following rule, for i ∈ {1, ..., p}:

if βi 6= 0, then βj 6= 0 for all βj ∈ ancestors(βi).

We define the following penalty:

Ω(β) =
∑
g∈G

wg ‖ (βg, descendents(βg)) ‖2,

7

where G is the set of all nodes. The proximal operator for this penalty is:

proxλΩ(v) = arg min
u∈Rp

1

2
‖v − u‖2

2 + λΩ(u)

Dual of the proximal problem. Let v ∈ Rp. Consider

max
ξ∈Rp×|G|

−1

2

(
‖(v −

∑
g∈G

ξg)‖2
2 − ‖v‖2

2

)

such that for all g ∈ G, ‖ξg‖∗ ≤ λwg and ξgj = 0 if j /∈ g.

4 Applications

4.1 Multitask sparse learning

Data: K data sources {y(k),X(k)}Kk=1: k-th data has nk observations

• Response: y(k) = (y
(k)
1 , . . . , y

(k)
nk)ᵀ

• Predictors: X(k) = (x
(k)
1 , . . . ,x

(k)
nk)ᵀ

– x
(k)
i = (x

(k)
i1 , . . . , x

(k)
ip)ᵀ ∈ Rp

Model: For continuous data, assume

E(y
(k)
i |x

(k)
i) = x

(k)>
i β(k),

8

and for binary outcome use logistic regression setting

logit
[
P
(
y

(k)
i = 1|x(k)

i

)]
= x

(k)>
i β(k),

where y(k)
i = {−1, 1}, i = 1, . . . , nk. Here

β(k) = (β
(k)
1 , · · · , β(k)

p)>

is the coefficient vector for task k. Here β(k)
j is the j-th element of β(k), for j = 1, . . . , p.

And the vector

βj = (β
(1)
j , · · · , β(K)

j)>,

contains the j-th elements of task 1 to task K. The whole coefficient can be written as a

p×K matrix

β = (β>1 , · · · ,β>p)> ∈ Rp×K

To estimate β, for continuous outcome we minimize an aggregated least squares loss func-

tion

`(β) =
1

n

K∑
k=1

[
y(k) −X(k)β(k)

]> [
y(k) −X(k)β(k)

]
, (1)

for binary outcome, we use

`(β) =
1

n

K∑
k=1

nk∑
i=1

[
1 + exp

(
−y(k)

i x
(k)>
i β(k)

)]
(2)

To consider structural sparsity

• Common relevant covariates across data sources

• Source-specific relevant covariates

9

βᵀ

1

βᵀ
2

...

βᵀ
p

 =

[
β(1) β(2) · · · β(K)

]
K sources−−−−−−−−−−−−−−−−−−→

β
(1)
1 β

(2)
1 · · · β

(K)
1

β
(1)
2 β

(2)
2 · · · β(K)

...

β
(1)
p β

(2)
p · · · β

(K)
p

bounds are derived for general loss functions, and its consistency is shown for squared error loss.
Experiments with real and synthetic data demonstrate the advantages of SOSlasso relative to lasso
and Glasso.

1.1 Sparse Overlapping Sets

SOSlasso encourages sparsity patterns that are similar, but not identical, across tasks. This is ac-
complished by decomposing the features of each task into groups G1 . . . GM , where M is the same
for each task, and Gi is a set of features that can be considered similar across tasks. Conceptually,
SOSlasso first selects subsets that are most useful for all tasks, and then identifies a unique sparse
solution for each task drawing only from features in the selected subsets. In the fMRI application
discussed later, the subsets are simply clusters of adjacent spatial data points (voxels) in the brains of
multiple subjects. Figure 1 shows an example of the patterns that typically arise in sparse multitask
learning applications, where rows indicate features and columns correspond to tasks.

Past work has focused on recovering variables that exhibit within and across group sparsity, when
the groups do not overlap [14], finding application in genetics, handwritten character recognition
[15] and climate and oceanography [2]. Along related lines, the exclusive lasso [21] can be used
when it is explicitly known that variables in certain sets are negatively correlated.

(a) Sparse (b) Group sparse (c) Group sparse
plus sparse

(d) Group sparse
and sparse

Figure 1: A comparison of different sparsity patterns. (a) shows a standard sparsity pattern. An
example of group sparse patterns promoted by Glasso [19] is shown in (b). In (c), we show the
patterns considered in [6]. Finally, in (d), we show the patterns we are interested in this paper.

1.2 fMRI Applications

In psychological studies involving fMRI, multiple participants are scanned while subjected to ex-
actly the same experimental manipulations. Cognitive Neuroscientists are interested in identifying
the patterns of activity associated with different cognitive states, and construct a model of the activity
that accurately predicts the cognitive state evoked on novel trials. In these datasets, it is reasonable
to expect that the same general areas of the brain will respond to the manipulation in every partici-
pant. However, the specific patterns of activity in these regions will vary, both because neural codes
can vary by participant [4] and because brains vary in size and shape, rendering neuroanatomy only
an approximate guide to the location of relevant information across individuals. In short, a voxel
useful for prediction in one participant suggests the general anatomical neighborhood where useful
voxels may be found, but not the precise voxel. While logistic Glasso [17], lasso [13], and the elas-
tic net penalty [12] have been applied to neuroimaging data, these methods do not exclusively take
into account both the common macrostructure and the differences in microstructure across brains.
SOSlasso, in contrast, lends itself well to such a scenario, as we will see from our experiments.

1.3 Organization

The rest of the paper is organized as follows: in Section 2, we outline the notations that we will
use and formally set up the problem. We also introduce the SOSlasso regularizer. We derive cer-
tain key properties of the regularizer in Section 3. In Section 4, we specialize the problem to the
multitask linear regression setting (2), and derive consistency rates for the same, leveraging ideas
from [9]. We outline experiments performed on simulated data in Section 5. In this section, we also
perform logistic regression on fMRI data, and argue that the use of the SOSlasso yields interpretable
multivariate solutions compared to Glasso and lasso.

2

We use composite L1/L2 penalty

Pα,λ(β) = λ

p∑
j=1

vj
[
(1− α)||βj||2 + α||βj||1

]
Lasso: when α = 1

• Group lasso: when α = 0

• Sparse group lasso: when 0 < α < 1

10

	Moreau decomposition
	Extending the Moreau Decomposition
	From Proximal to Projection
	Applications
	Multitask sparse learning

