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1 Moreau decomposition

In this section, we will explore some applications of duality in settings related to proximal

gradient methods. First, recall the definition of a proximal operator:

1
prox ;(v) = arg min <§||x — |3 + f(x)) :

A useful fact for manipulating and extending proximal operators is known as Moreau de-

composition. It states that the following relationship always holds:
v = prox;(v) + prox ;. (v),
where

F(y) = max (y Tz — ().

Moreau’s decomposition is “the main relationship between proximal operators and duality”
and follows from the properties of sub-gradients and conjugate functions.

Notice that this is a generalization of orthogonal decomposition. Let L be a subspace



of a vector space U. For any v € U, we have
v=1II(v) + 1 . (v).

To illustrate the usefulness of this decomposition, we review a simple example. If
f(z) = ||z||, then f*(y) = Ip(y), where B = {z: ||z||« < 1} is a unit ball according

to the dual norm. By Moreau decomposition,

v = prox;(v) + prox ;. (v)

= prox(v) + prox;, (v),

where
(1 )
prox,, (v) = argmin ( -} — vlf3 + In(z)
1 )
= argm1n§||:n —v|3st.x€B
= HB(U>.
It follows that

prox; (v) = v — prox;, (v) = v — IIp(v).

2 Extending the Moreau Decomposition

Starting from the identity

prox;(v) = v — prox .. (v).



we want to derive a similar identity when we replace f by A f for some A > 0. We want to

show that
Prox, ;(v) = v — prox, ;. (v) = v — Aprox ., (v/A).

First, we find the convex conjugate of \f:

= max A (%Ty - f(y)>
= Amax (;Ty - f(y)>

Then, we get
: [ * 1 2
prox, ) (v) = arg min A () + 5 lly = vl

Yy

NN AR
= argmin |\f (X)+§Hy—vH§1

Y

= arg min f (/\ + o ly UH2] :
Now, we write y = Az to get

) . 1
pros - (0) = axgagin | 1 2) + 5 A ol

— \arg min [f* (2) + % H ;| Hj

S
= AproX .,y (;) .



Finally, we have the identity

Prox, ;(v) = v — prox, sy« (v) = v — Aprox ., (v/A) .
If f = - | is a general norm on R”, then

0 ifflofl. <1,
f*(w) = Ip(v) =

oo otherwise.

where B = {z : ||z||« < 1} is the unit-ball in (R™, || - ||.). Observe that
FIN=Tg/\ = Ip.

Then by Moreau decomposition, we get:

()
prOX)\H.”(U) =V — )\HB (X) .

3 From Proximal to Projection

Euclidean norm penalty. Here, f = f* = || - ||o. We project v onto the Euclidean unit

ball B as follows:

v/|[vllaif[Jufls > 1
p(v) =
0 if o2 < 1.



We get:
v
Prox, ., (v) = v — Allg <X)
(L= vllz) v if ffofla > A

= (1 =M lvll2) , v,
where
z ifz>0
(Z)+ =
0 ifz<O0.

Group lasso penalty. This is how you compute proximal for each group in group lasso.

For x € RP,

G
f(z) = ngnng?
g=1

where {1, ..., p} is partitioned into G groups. We get

1
prox, ;(v) = argmin —lv — z[|3 + Af ()
€]

o1
= argmin [lu — 2] + 2 " wgllzy
g=1



So, for g € {1, ..., G},

1
[PrOX/\f(U>]g = argnglcln %HUQ - J"gH; + Awg |z y[2
g

= PYOXAwgumgHQ(Ug)
= (1 - M) Vg.
lvgll2/
Sparse group lasso penalty. For x € RP”, the sparse group lasso penalty is
G
f(x) =) wy[(1 = a)llagll2 + al|z,1]

g=1

where {1, ..., p} is partitioned into G groups. This is how you compute proximal for each

group in sparse group lasso. We get
1 9
pros, (v) = sugmin - v — o[ + Af(z)
So, for g € {1, ..., G}, define 7 = t w,

.1
[prox, ¢ (v)]y = argmin o lv, — ]|y + Xwy [(1 = a)llzglls + allzgl]

:PTOXAf(Ug)
B B (1—a)r ;
- <1 usmwg)rrz)f“( 2

where

Sar(vg) = sgn(vy)(Jvg| — at)4.



[' and [* norms penalty. When f = || - ||1, then f* = Ip, B = {z : ||z]|oc < 1}. We

project onto the co-norm unit ball B as follows:

1 cy; > 1
M), =Sw  : |u <1

-1 v <-—1

We get an alternative way of getting the proximal operator of lasso

v
prox, ;(v) = prox, ., (v) =v — Allp <X> :

So
v — A v > A
[PTOX,\f(U)L =40 Dol <A
v+ Ay <A
When f = || - ||, then f* = Ip, B = {z : ||z]|; < 1}. See paper for how to project
on B.

Hierarchical grouped norms. Assume the variables X, ..., X}, have a hierarchical struc-

ture. The variables are selected according to the following rule, fori € {1, ..., p}:
if 5; # 0, then j3; # 0 for all 3; € ancestors([3;).

We define the following penalty:

QB) =D wyll (B, descendents(8,)) 2,

geG



where G is the set of all nodes. The proximal operator for this penalty is:
= in + 24+ AQ
prox,q(v) = arg min o f|v — ull; + AQ(u)

Dual of the proximal problem. Let v € RP. Consider

1
- o 2 : g\ |[|2 _ 2
561131?;3\%\ 2 (H(U <l “UH2>

gelG

such that for all g € G, [|£7]|. < Mwg and & = 0if j ¢ g.

4 Applications

4.1 Multitask sparse learning

Data: K data sources {y*), X®)} K k-th data has n;, observations

e Response: y®) = (y{¥ .y
e Predictors: X*) = (ng), e ,x,(i))T

- xM =W ,ZL‘l(-]’;))T e Rr

Model: For continuous data, assume

E(yPxFy = xPTg®

?



and for binary outcome use logistic regression setting

i

logit [P <y(k) = 1|x§k))} = xgk)TB(k),
where yi(k) ={-1,1},i=1,...,n4. Here

Y = (8", BT

is the coefficient vector for task k. Here 6](-k) is the j-th element of B(k), forj=1,...,p.

And the vector

ﬁj = (/8(1)7 e 7ﬁ(‘K))T7

contains the j-th elements of task 1 to task /&'. The whole coefficient can be written as a

p X K matrix

B (@7, B])7 e R

To estimate 3, for continuous outcome we minimize an aggregated least squares loss func-
tion

(8) = XK: [yw) X ﬁw)r [y<k> _ X 5(1@)} 7 0
k—

1

S|

for binary outcome, we use

()= 3 [+ exp (= x T80 @
k=1 1

To consider structural sparsity
¢ Common relevant covariates across data sources

* Source-specific relevant covariates



'50) 8% ... B(K)'

K sources
[ i e 2 K) |
I Vs B
2 2

T (1) 552) 5(1{)

(a) Sparse (b) Group sparse (¢) Group sparse
plus sparse

We use composite L, /L, penalty
p
Par(B) =AY v [(1 = a)lIB;ll + al[B;1]1]
j=1
Lasso: when o =1

* Group lasso: when o = 0

 Sparse group lasso: when 0 < av < 1
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