Lasso Screening

October 9, 2024

1 Screening

Let f be differentiable and strictly convex, let $X \in \mathbb{R}^{n \times p}$, $\lambda > 0$. Consider

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

The KKT conditions are

$$\begin{cases} X_j^T(y - X\beta^*) = \lambda \cdot \operatorname{sgn}(\beta_j^*) & \beta_j^* \neq 0\\ |X_j^T(y - X\beta^*)| \le \lambda & \beta_j^* = 0 \end{cases}$$

which implies that

$$|X_j^T(y - X\beta^*)| < \lambda \implies \beta_j^* = 0 \tag{1}$$

Suppose that the dual solution is $u^\star.$ Then β^\star, z^\star must minimize $L(\beta, z, u^\star)$

$$\nabla_z L(\beta, z, u^*) = 0$$

$$\iff \nabla_z \left\{ \frac{1}{2} \|y - z\|_2^2 + u^\top z \right\} = 0$$

$$\iff - (y - z^*) + u^* = 0$$

$$\iff y - X\beta^* = u^*$$

Replace $y-X\beta^{\star}$ using u^{\ast} in (1) we get

$$|X_j^T u^*| < \lambda \implies \beta_j^* = 0.$$

This is when u^* is in the interior of the slab defined by the feature X_j .

2 SAFE Rule

Assume all data are normalized ||y|| = 1 and $||X_j|| = 1$ for j = 1, ..., p. The lasso dual is equivalent to

$$\min_{u} \|\frac{y}{\lambda} - u\|_{2}^{2}$$

subject to $\|X^{\top}u\|_{\infty} \le 1$ (2)

where

$$X\beta^\star = y - \lambda u^\star$$

and

$$X_j^{\top} u^* = \begin{cases} \operatorname{sgn} \left(\beta_j^*\right) & \text{if } \beta_j^* \neq 0\\ [-1,1] & \text{if } \beta_j^* = 0 \end{cases}$$
(3)

Since $||y||_2^2 = 1$ and $||X_j||_2^2 = 1$, y and X_j lie on the unit sphere S^{p-1} . For y on S^{p-1} , the function of the sphere is $f(y) = ||y||_2^2 = 1$, the normal to the surface is

$$\nabla_y f(y) = \nabla_y \|y\|_2^2 = 2y$$

thus at point y of the sphere S^{p-1} , the tangent hyperplane is

$$\nabla_y f(y)^\top (z-y) = 0 \Longleftrightarrow y^\top (z-y) = 0 \Longleftrightarrow y^\top z = 1$$

Thus we denote this tangent hyperplane at y by

$$P(y) = \{ z : z^{\top}y = 1 \}$$

And we denote

$$H(y) = \{z : z^\top y \le 1\}$$

the corresponding closed half space containing the origin. The constraints in (2) indicate that feasible u must be in $H(X_j)$ and $H(-X_j)$ for all j. To find u^* that minimizes the objective in (2), we must find a feasible u that is closest to y/λ .

If u^* is not on $P(X_j)$ or $P(-X_j)$, then $\beta_j^* = 0$ and we can safely discard X_j from the problem. Now let $\lambda_{\max} = \max_j |X_j^\top y|$ and $X_{j'}$ be selected so that $\lambda_{\max} = |X_{j'}^\top y|$. Note that $u' = y/\lambda_{\max}$ is a feasible solution for (2), so that u' must be in the polyhedron, since

$$|X_j^{\top} u'| = \frac{|X_j^{\top} y|}{\lambda_{\max}} = \frac{|X_j^{\top} y|}{\max_j |X_j^{\top} y|} \le 1 \qquad \forall j$$

 λ_{\max} is also the smallest λ for which the primal problem has zero solution. If $\lambda > \lambda_{\max}$, then y/λ itself is feasible, making it the optimal solution. Since it is not on any hyperplane $P(X_j)$ or $P(-X_j)$, $\beta_j^* = 0$ for j = 1, ..., p. Hence we assume that $\lambda \leq \lambda_{\max}$.

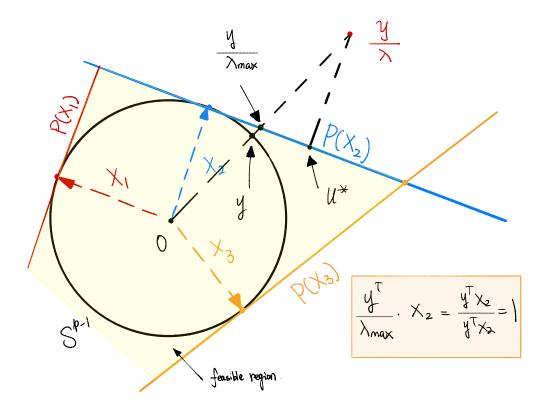


Figure 1: Geometry of the dual problem.

These observations can be used for screening as follows. If we know that u is within a region \mathcal{R} , then we can discard those X_j for which the tangent hyperplanes $P(X_j)$ or $P(-X_j)$ don't intersect \mathcal{R} , since by (3) the corresponding $\beta_j = 0$. Moreover, if the region \mathcal{R} is contained in a closed ball centered at q with radius r

$$\{u : ||u - q||_2 \le r\}$$

then one can discard all X_j for which $|X_j^{\top}q|$ is smaller than a threshold determined by the common tangent hyperplanes of the spheres $||u - q||_2 = r$ and S^{p-1} . This "sphere test" is

made precise in the following lemma

Lemma 1. If the solution u^* of (2) satisfies $||u^* - q||_2 \le r$, then $|X_j^\top q| < (1 - r) \Longrightarrow \beta_j^* = 0$.

Proof of Lemma 1. Assume that we have $|X_j^{\top}q| < (1-r)$. According to (3), in order to assert that $\beta_j = 0$, we only need to prove that for the optimal solution u^* of (3): $|X_j^{\top}u^*| < 1$, which can be proved by:

$$|X_{j}^{\top}u^{*}| = |X_{j}^{\top}(u^{*} - q) + X_{j}^{\top}q|$$

$$\leq |X_{j}^{\top}(u^{*} - q)| + |X_{j}^{\top}q|$$

$$\leq ||X_{j}||_{2}||u^{*} - q||_{2} + |X_{j}^{\top}q|$$

$$< r + (1 - r)$$

$$= 1$$

L	 	

El Ghaoui's SAFE rule is a sphere test of the simplest form. To see this, note that y/λ_{max} is a feasible point of (2), so the optimal u^* cannot be further away from y/λ than y/λ_{max} from y/λ . Therefore we have the constraint:

$$\|u - \frac{y}{\lambda}\|_2 \le \|\frac{y}{\lambda} - \frac{y}{\lambda_{\max}}\|_2 \le \left(\frac{1}{\lambda} - \frac{1}{\lambda_{\max}}\right) \|y\|_2 \le \frac{1}{\lambda} - \frac{1}{\lambda_{\max}}.$$

Plugging in $q = y/\lambda$ and $r = 1/\lambda - 1/\lambda_{max}$ into Lemma 1 yields El Ghaoui's SAFE rule.

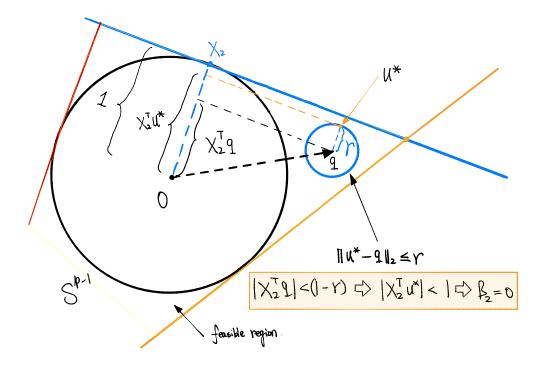


Figure 2: Illustration of a sphere test.

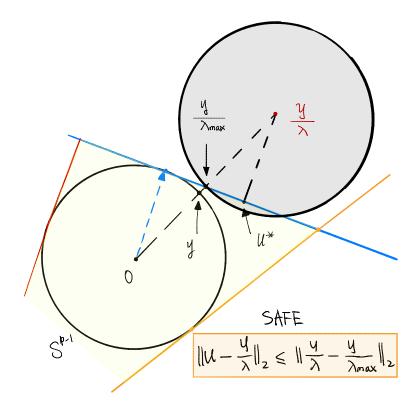


Figure 3: The solid red circles leading to sphere tests SAFE