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1 KKT conditions

Definition: given general problem

min /()

subjectto h;(x) <0,i=1,...,m

and corresponding dual problem

max g(u,v)
u,v

subject to u > 0.

The KKT conditions for x, u, v are:

1. Stationarity:

m s

0€0f(x)+ Y wdhi(z)+ > v;00()

i=1 j=1



2. Complementary slackness:

3. Primal feasibility:

4. Dual feasibility:



Necessity of KKT conditions: If z* and v*, v* are primal and dual solutions, with strong

duality holds (with zero duality gap), then 2* and v*, v* satisfy the KKT conditions.

Proof. We have

f@®) = g(u”,v7)

= min f(z) + Z wihi(z) + Y _vili(x) (%)

j=1
< f@”) + i uihi(z”) + Z vili(e) (%)
i=1 Jj=1
< fla*). (5% )
Thus all these inequalities are actually equalities. [

e from (%) to (%*), we see that L(x* u*,v*) = min, L(z,u*,v*). The point z*

minimizes L(x, u*,v*) over x € R". Hence we have the stationarity

0€0f(x")+ > udh(x*) + > vidl;(a)
i=1 j=1

Sometimes this can be used to characterize or compute primal solutions

o from (%) to (x x x), we must have ) ", u’h;(z*) = 0, and since each term here

is < 0, this implies u}h;(z*) = 0 for every 7. This is complementary slackness.




Sufficiency of KKT conditions: When the primal problem is convex, and if 2* and

u*, v* satisfy the KKT conditions, then z* and uv*, v* are primal and dual solutions.

Proof. We have
(by definition) g(u*,v*) = mzin f(x) + Z uihi(x) + Z vl (
i J
(by convexity+stationarity) = f(z*) + Z ufhi(x*) + Z vil;(x*)
i J
(by comp. slackness and prime/dual feasibility) = f(z*).

The second line follows since L(z,u*,v*) is convex in z and therefore the stationarity
condition 0 € Of (z*) + 2%, uiOh;(x*) + Y77 _, v;0¢;(x*) implies that z* is the mini-
mizer of L(x,u*,v*). Therefore the duality gap is zero (and z* and u*, v* are primal and

dual feasible), thus by Proposition 3 of Duality notes, * and u*, v* are primal and dual

optimal. [

2 Constrained and Lagrange forms

Often in statistics and machine learning we will switch back and forth between constrained

form, where ¢ € R is a tuning parameter,

min f(x) subject to h(z) <t (@)

xT

and Lagrange form, where A > 0 is a tuning parameter,

min f(2) + Ah(z) (L)



and claim these are equivalent. Now we prove the equivalence solution z of (C') and Z of
(L)-

Proof. Denote the solution of (C') as & and the solution of (L) as 7.

To show (C) to (L). If problem (C) is strictly feasible (satisfies Slate’s condition —

there exists at least one strictly feasible = such that h(x) < t), then strong duality holds,

then Z should satisfy the KKT conditions of (C')

0€0f(z)+ NO(h(z) —t) (stationarity of C)

<= 0€ 0f(z)+ \oh(z) (stationarity of L)

which implies z satisfies the KKT condition of (L), so  is also a solution in (L).

To show (L) to (C). if & is a solution of (L), then we can show that Z satisfies the KKT

conditions for (C'), since

0 € df(z)+ \NOh(T) (stationarity of L)

<=0€df(z)+NO(h(z)—1t) (stationarity of C)

which is the stationarity condition for (C'). The complementary slackness condition

Ah(Z)—t) =0 (complementary slackness of C)

is also satisfied if we set ¢ = h(Z). Or if ¢ is large enough so that 2(Z) < ¢, in order for
both to be equivalent one must set A = 0. Taking ¢ = h(z*) in (C'), we see that (i.e. ” ="
strictly holds in h(z*) < t). Therefore all the KKT conditions for (C') are satisfied and x*

is a solution in (C'). O



3 Uniqueness in /; Penalized Problems

Using the KKT conditions and simple probability arguments, we have the following (per-

haps surprising) result:
Theorem. Let f be differentiable and strictly convex, let X € R"*P, X > 0. Consider

min F(X5) + A8

If the entries of X are drawn from a continuous probability distribution (on R™"*P), then

w.p. 1 there is a unique solution and it has at most min(n, p) nonzero components

Remark: here f must be strictly convex, but no restrictions on the dimensions of X (we

could have p > n)

Proof. the KKT conditions are
_Xva(XIB> = )‘87

where

{sign(s;)} B; #0 .
s; € 7=1...,p
[—1,1] f;=0

Define the equicorrelation set
S={j: [XjVI(XB)| = A}

The equicorrelation set S is named as such because when y, X have been standardized, S
contains the variables that have equal (and maximal) absolute correlation with the residual
—V f(XB) = r. Note that for any solution j ¢ .S, 3; = 0.

First assume that Xg is not full column rank, i.e. rank(Xg) < |S|. (here Xg € R™*I9l,

6



submatrix of X corresponding to columns in S). Then for some £ € .S, X; can be expressed

as the linear combination of other X}’s where k € S\{j}:

Xj: Z Cka

keS\{7}

for constants c¢; € R, so that

5; X; = s, Z X = Z s Xk = Z (sjskck) (s, Xk) since sgs = 1, s = sign(Fx)
keS\{j} kesS\{j} kes\{j}

By definition of the equicorrelation set, X,/ r = s;A forany j € S. =XV f(XB8) = Xs;.

Hence taking an inner product with —V f(X3),

—stjTVf(XB) = Z sjskcr(—skXp V(X))
keS\{j}

S;SjA = Z $;8kCk(SKSEN)

keS\{7}

A= Z 57 8KCEA
keS\{j}

1= Z (8jSKCk),
keS\{j}

assuming that A\ > 0. Therefore, we have shown that if null(Xg) # {0}, then for some
jes
s;X; = Z ar (s Xx)
keS\{j}
with 37, ¢\ ;3 @ = 1, which means that s; X lies in the affine span of s, X, k € S\{j}.
Ol
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