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1 KKT conditions

Definition: given general problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

`j(x) = 0, j = 1, . . . , r,

and corresponding dual problem

max
u,v

g(u, v)

subject to u ≥ 0.

The KKT conditions for x, u, v are:

1. Stationarity:

0 ∈ ∂f(x) +
m∑
i=1

ui∂hi(x) +
r∑
j=1

vj∂`j(x)
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2. Complementary slackness:

ui · hi(x) = 0 ∀i

3. Primal feasibility:

hi(x) ≤ 0, `j(x) = 0 ∀i, j

4. Dual feasibility:

ui ≥ 0 ∀i
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Necessity of KKT conditions: If x? and u?, v? are primal and dual solutions, with strong

duality holds (with zero duality gap), then x? and u?, v? satisfy the KKT conditions.

Proof. We have

f(x?) = g(u?, v?)

= min
x
f(x) +

m∑
i=1

u?ihi(x) +
r∑
j=1

v?j `j(x) (?)

≤ f(x?) +
m∑
i=1

u?ihi(x
?) +

r∑
j=1

v?j `j(x
?) (??)

≤ f(x?). (? ? ?)

Thus all these inequalities are actually equalities.

• from (?) to (??), we see that L(x?, u?, v?) = minx L(x, u
?, v?). The point x?

minimizes L(x, u?, v?) over x ∈ Rn. Hence we have the stationarity

0 ∈ ∂f(x?) +
m∑
i=1

u?i∂hi(x
?) +

r∑
j=1

v?j∂`j(x
?)

Sometimes this can be used to characterize or compute primal solutions

• from (??) to (? ? ?), we must have
∑m

i=1 u
?
ihi(x

?) = 0, and since each term here

is ≤ 0, this implies u?ihi(x?) = 0 for every i. This is complementary slackness.
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Sufficiency of KKT conditions: When the primal problem is convex, and if x? and

u?, v? satisfy the KKT conditions, then x? and u?, v? are primal and dual solutions.

Proof. We have

(by definition) g(u?, v?) = min
x
f(x) +

∑
i

u?ihi(x) +
∑
j

v?j `j(x)

(by convexity+stationarity) = f(x?) +
∑
i

u?ihi(x
?) +

∑
j

v?j `j(x
?)

(by comp. slackness and prime/dual feasibility) = f(x?).

The second line follows since L(x, u?, v?) is convex in x and therefore the stationarity

condition 0 ∈ ∂f(x?) +
∑m

i=1 u
?
i∂hi(x

?) +
∑r

j=1 v
?
j∂`j(x

?) implies that x? is the mini-

mizer of L(x, u?, v?). Therefore the duality gap is zero (and x? and u?, v? are primal and

dual feasible), thus by Proposition 3 of Duality notes, x? and u?, v? are primal and dual

optimal.

2 Constrained and Lagrange forms

Often in statistics and machine learning we will switch back and forth between constrained

form, where t ∈ R is a tuning parameter,

min
x
f(x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter,

min
x
f(x) + λh(x) (L)
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and claim these are equivalent. Now we prove the equivalence solution x̂ of (C) and x̃ of

(L).

Proof. Denote the solution of (C) as x̂ and the solution of (L) as x̃.

To show (C) to (L). If problem (C) is strictly feasible (satisfies Slate’s condition –

there exists at least one strictly feasible x such that h(x) < t), then strong duality holds,

then x̂ should satisfy the KKT conditions of (C)

0 ∈ ∂f(x̂) + λ∂(h(x̂)− t) (stationarity of C)

⇐⇒ 0 ∈ ∂f(x̂) + λ∂h(x̂) (stationarity of L)

which implies x̂ satisfies the KKT condition of (L), so x̂ is also a solution in (L).

To show (L) to (C). if x̃ is a solution of (L), then we can show that x̃ satisfies the KKT

conditions for (C), since

0 ∈ ∂f(x̃) + λ∂h(x̃) (stationarity of L)

⇐⇒0 ∈ ∂f(x̃) + λ∂(h(x̃)− t) (stationarity of C)

which is the stationarity condition for (C). The complementary slackness condition

λ(h(x̃)− t) = 0 (complementary slackness of C)

is also satisfied if we set t = h(x̃). Or if t is large enough so that h(x̃) < t, in order for

both to be equivalent one must set λ = 0. Taking t = h(x?) in (C), we see that (i.e. ” = ”

strictly holds in h(x?) ≤ t). Therefore all the KKT conditions for (C) are satisfied and x?

is a solution in (C).
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3 Uniqueness in `1 Penalized Problems

Using the KKT conditions and simple probability arguments, we have the following (per-

haps surprising) result:
Theorem. Let f be differentiable and strictly convex, let X ∈ Rn×p, λ > 0. Consider

min
β
f(Xβ) + λ‖β‖1

If the entries ofX are drawn from a continuous probability distribution (on Rn×p), then

w.p. 1 there is a unique solution and it has at most min(n, p) nonzero components

Remark: here f must be strictly convex, but no restrictions on the dimensions ofX (we

could have p� n)

Proof. the KKT conditions are

−XT∇f(Xβ) = λs,

where

sj ∈

{sign(βj)} βj 6= 0

[−1, 1] βj = 0
j = 1, . . . , p

Define the equicorrelation set

S = {j : |XT
j ∇f(Xβ)| = λ}.

The equicorrelation set S is named as such because when y, X have been standardized, S

contains the variables that have equal (and maximal) absolute correlation with the residual

−∇f(Xβ) = r. Note that for any solution j /∈ S, βj = 0.

First assume thatXS is not full column rank, i.e. rank(XS) ≤ |S|. (hereXS ∈ Rn×|S|,
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submatrix ofX corresponding to columns inS). Then for some k ∈ S,Xj can be expressed

as the linear combination of other Xk’s where k ∈ S\{j}:

Xj =
∑

k∈S\{j}

ckXk

for constants cj ∈ R, so that

sjXj = sj
∑

k∈S\{j}

ckXk =
∑

k∈S\{j}

sjckXk =
∑

k∈S\{j}

(sjskck)·(skXk) since sksk = 1, sk = sign(βk)

By definition of the equicorrelation set, X>k r = sjλ for any j ∈ S. −XT
j ∇f(Xβ) = λsj .

Hence taking an inner product with −∇f(Xβ),

−sjXT
j ∇f(Xβ) =

∑
k∈S\{j}

sjskck(−skXT
k ∇f(Xβ))

sjsjλ =
∑

k∈S\{j}

sjskck(skskλ)

λ =
∑

k∈S\{j}

sjskckλ

1 =
∑

k∈S\{j}

(sjskck),

assuming that λ > 0. Therefore, we have shown that if null(XS) 6= {0}, then for some

j ∈ S

sjXj =
∑

k∈S\{j}

ak(skXk)

with
∑

k∈S\{j} ak = 1, which means that sjXj lies in the affine span of skXk, k ∈ S\{j}.
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