Gradient Descent

October 8, 2024

1 Proof of gradient descent

The method described in this section require a suitable starting point (*). The starting

point must lie in dom f, and in addition the sublevel set

S = {x € domf : f(z) < f($(0))}

must be closed. This condition is satisfied for all z(*) € dom f if the function f is closed.
Continuous functions with dom(f) = R™ are closed, so if dom(f) = R", the initial sub-

level set condition is satisfied by any z(?).

Theorem 1. Assume that f convex and differentiable, with dom(f) = R™ and V f is Lips-

chitz continuous with constant L > 0, i.e.

IVf(@) = VfWlz < Lllz =yl Va,y

then the gradient descent with fixed step size t < 1/L satisfies
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We say that the gradient descent has convergence rate O(1/k).

Proof. Part I: With V f Lipschitz constant L, we have that
T L 2
fy) < f@) + V@) (y—2)+Sllz —yly  Vay
Suppose we are at x in the gradient descent and the next iteration go to
zt =1 —tVf(z)
We can use the above inequality with y = z+ and

F) < @)+ V@) (V@) + o~ 1973
= (@)~ tIVF@)B+ o IV @)l

Lt
— 1) - (1- 5 ) AV s@IE
Lt2 — . .
If0 <t <1/L, weget —t+ £- < 5! which gives us that

ft) < fl@) - IV

This result also implies the descent property of the gradient descent algorithm

fa™) < fo).
Part II: Use convexity of f, we know that

fl@*) = flz)+ V(@) (@ )
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fl@) < f(=") = V() (@ - ) 3)

Plugin (3) into (2) and you get
Ft) < J@) + VI @ -2~ LIV @3

Fat) = £ < VI @ -0~ LIV

1 * *
= 57 (e = 2"z = ll=* — 2*[13)

The last equality is true because

1 * * 1 * * * \
5 (lz =23 = e =tV f(z) = 2*[3) = 57 ([l — 2*[3 — = — 2*[3 + 2tV f(2)" (z — 2*) = 2|V f(2)]3
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Finally,
i * 1 i— * i *
fa®) = f@) < o (10 =25 = [l = 2*]))
: 1 1
S ()~ 1) < o (le® =2 — o~ 2*[3) < o — a3
i=1
because we’ve proved that f(z(?) > f(2™M)) > ... > f(z®). Thus
) - 1) < L3 (169) - o)) < 120l
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k - 2tk
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Remark 1. We can show that in Theorem 1, the assumption that V f is Lipschitz continuous

with constant L > 0 can be relaxed to that we only need Lipschitz gradient over the sublevel



set

S = {x € domf: f(z) < f(:c(o))}.

Theorem 2. If the sublevel sets contained in S are bounded, so in particular, if S is

bounded. Then V f is Lipschitz continuous with constant L > 0 over S.

Proof. If S is bounded, then the maximum eigenvalue of V2 f(z), which is a continuous

function of x on .9, is also bounded above on S. i.e., there exist a constant L such that
Vif(x) = LI VxS

This upper bound on the Hessian implies for any x,y € S

F) < F(@) + VIl — )+ 5y — 73

Therefore we get a similar condition to the original Lipschitz continuous assumption (1)
except that it is on the sublevel set S, which is sufficient to prove Theorem 1 since this

condition can also lead to the descent property on the sublevel set

D) < fE®) - VIO vees

Remark. For example, if f is strongly convex then S is bounded

F(w) > @)+ V) (= 2)+ 5 ly

atz =0

F(w) = F0) + VO~ 0) + 3 o]



we can see that if ||y||, — oo then f(y) — oo, so f(y) is bowl-shaped.
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2 Convergence analysis for backtracking

The backtracking exit inequality:
1
flz+tAz) < f(2) + at Vf(z) Ax a<sy
By Lipschetz continuous gradient, we can show that:

fla +tha) < () + 7V (@)" Ay

a Ta
< fla) + TV (@) A



The backtracking exit inequality (*) holds for ¢ > 0 in an interval (0, 1)

The backtracking line search stops with a stepsize of length t that satisfies:

g1

t=1 or t€<z,z)

wsel

Case 1:



t = 1 already satisfies the (%) i.e. t =1 <

=

(ase 2
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Case 2: Otherwise 1 > t then the stepsize t € (

)

-
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Therefore, the step length ¢ > min {1, £

Iterative method, updates z*) by:

W =20 44V f(2)
2® = 2O 11V f[2© + 1V f (2]

3 How to choose stepsize ¢

Gradient Descent with constant ¢ = % converge rate = O(%) Gradient Descent with

Backtracking ¢ = min {1, % converge rate = O(%) Gradient Descent with constant

t = 7 for strongly convex, converge rate = O(c").
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