Gradient Descent

October 8, 2024

1 Proof of gradient descent

The method described in this section require a suitable starting point $x^{(0)}$. The starting point must lie in dom f, and in addition the sublevel set

$$S = \{x \in \text{dom}f : f(x) \le f(x^{(0)})\}$$

must be closed. This condition is satisfied for all $x^{(0)} \in \text{dom} f$ if the function f is closed. Continuous functions with $\text{dom}(f) = \mathbb{R}^n$ are closed, so if $\text{dom}(f) = \mathbb{R}^n$, the initial sublevel set condition is satisfied by any $x^{(0)}$.

Theorem 1. Assume that f convex and differentiable, with $dom(f) = \mathbb{R}^n$ and ∇f is Lipschitz continuous with constant L > 0, i.e.

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2 \qquad \forall x, y$$

then the gradient descent with fixed step size $t \leq 1/L$ satisfies

$$f(x^{(k)}) - f^{\star} \le \frac{\|x^{(0)} - x^{\star}\|}{2tk}$$

We say that the gradient descent has convergence rate O(1/k).

Proof. **Part I:** With ∇f Lipschitz constant L, we have that

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||_2^2 \qquad \forall x, y$$
(1)

Suppose we are at x in the gradient descent and the next iteration go to

$$x^+ = x - t\nabla f(x)$$

We can use the above inequality with $y = x^+$ and

$$\begin{aligned} f(x^{+}) &\leq f(x) + \nabla f(x)^{T} (-t \nabla f(x)) + \frac{L}{2} \| - t \nabla f(x) \|_{2}^{2} \\ &= f(x) - t \| \nabla f(x) \|_{2}^{2} + \frac{Lt^{2}}{2} \| \nabla f(x) \|_{2}^{2} \\ &= f(x) - \left(1 - \frac{Lt}{2} \right) t \| \nabla f(x) \|_{2}^{2} \end{aligned}$$

If $0 \le t \le 1/L$, we get $-t + \frac{Lt^2}{2} \le \frac{-t}{2}$ which gives us that

$$f(x^{+}) \leq f(x) - \frac{t}{2} \|\nabla f(x)\|_{2}^{2}.$$
 (2)

This result also implies the descent property of the gradient descent algorithm

$$f(x^+) \leq f(x).$$

Part II: Use convexity of *f*, we know that

$$f(x^{\star}) \geq f(x) + \nabla f(x)^T (x^{\star} - x)$$

$$f(x) \leq f(x^*) - \nabla f(x)^T (x^* - x) \tag{3}$$

Plugin (3) into (2) and you get

$$f(x^{+}) \leq f(x^{\star}) + \nabla f(x)^{T}(x - x^{\star}) - \frac{t}{2} \|\nabla f(x)\|_{2}^{2}$$

$$f(x^{+}) - f(x^{\star}) \leq \nabla f(x)^{T}(x - x^{\star}) - \frac{t}{2} \|\nabla f(x)\|_{2}^{2}$$
$$= \frac{1}{2t} \left(\|x - x^{\star}\|_{2}^{2} - \|x^{+} - x^{\star}\|_{2}^{2} \right)$$

The last equality is true because

$$\frac{1}{2t} \left(\|x - x^{\star}\|_{2}^{2} - \|x - t\nabla f(x) - x^{\star}\|_{2}^{2} \right) = \frac{1}{2t} \left(\|x - x^{\star}\|_{2}^{2} - \|x - x^{\star}\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} - \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)^{T}(x - x^{\star}) - t^{2} \|\nabla f(x)\|_{2}^{2} + 2t\nabla f(x)\|_{2}^{2} + 2$$

Finally,

$$f(x^{(i)}) - f(x^{\star}) \leq \frac{1}{2t} \left(\|x^{(i-1)} - x^{\star}\|_{2}^{2} - \|x^{(i)} - x^{\star}\| \right)$$
$$\sum_{i=1}^{k} \left(f(x^{(i)}) - f(x^{\star}) \right) \leq \frac{1}{2t} \left(\|x^{(0)} - x^{\star}\|_{2}^{2} - \|x^{(k)} - x^{\star}\|_{2}^{2} \right) \leq \frac{1}{2t} \|x^{(0)} - x^{\star}\|_{2}^{2}$$

because we've proved that $f(x^{(0)}) \ge f(x^{(1)}) \ge \ldots \ge f(x^{(k)})$. Thus

$$f(x^{(k)}) - f(x^*) \le \frac{1}{k} \sum_{i=1}^k \left(f(x^{(i)}) - f(x^*) \right) \le \frac{\|x^{(0)} - x^*\|_2^2}{2tk}$$

Remark 1. We can show that in Theorem 1, the assumption that ∇f is Lipschitz continuous with constant L > 0 can be relaxed to that we only need Lipschitz gradient over the sublevel

set

$$S = \{x \in \text{dom}f : f(x) \le f(x^{(0)})\}.$$

Theorem 2. If the sublevel sets contained in S are bounded, so in particular, if S is bounded. Then ∇f is Lipschitz continuous with constant L > 0 over S.

Proof. If S is bounded, then the maximum eigenvalue of $\nabla^2 f(x)$, which is a continuous function of x on S, is also bounded above on S. i.e., there exist a constant L such that

$$\nabla^2 f(x) \preceq LI \qquad \forall x \in S.$$

This upper bound on the Hessian implies for any $x, y \in S$

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|_2^2$$

Therefore we get a similar condition to the original Lipschitz continuous assumption (1) except that it is on the sublevel set S, which is sufficient to prove Theorem 1 since this condition can also lead to the descent property on the sublevel set

$$f(x^{(1)}) \leq f(x^{(0)}) - \frac{t}{2} \|\nabla f(x^{(0)})\|_2^2 \qquad \forall x \in S$$

Remark. For example, if f is strongly convex then S is bounded

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} \|y - x\|_2^2$$

at x = 0

$$f(y) \ge f(0) + \nabla f(0)^T (y - 0) + \frac{M}{2} \|y\|_2^2$$

we can see that if $\|y\|_2 \to \infty$ then $f(y) \to \infty,$ so f(y) is bowl-shaped.

2 Convergence analysis for backtracking

The backtracking exit inequality:

$$f(x + t\Delta x) \le f(x) + \alpha t \nabla f(x)^T \Delta x$$
 $\alpha < \frac{1}{2}$

By Lipschetz continuous gradient, we can show that:

$$f(x + t\Delta x) \le f(x) + \frac{1}{L} \nabla f(x)^T \Delta x_0$$
$$\le f(x) + \frac{\alpha}{L} \nabla f(x)^T \Delta x$$

The backtracking exit inequality (*) holds for $t \ge 0$ in an interval $(0, \frac{1}{L})$ The backtracking line search stops with a stepsize of length t that satisfies:

$$t = 1$$
 or $t \in (\frac{\beta}{L}, \frac{1}{L})$

Case 1:

t=1 already satisfies the (*) i.e. $t=1\leq \frac{1}{L}$

Case 2: Otherwise 1 > t then the stepsize $t \in \left(\frac{\beta}{L}, \frac{1}{L}\right)$ Therefore, the step length $t \ge \min\left\{1, \frac{\beta}{L}\right\}$ Iterative method, updates $x^{(k)}$ by:

$$x^{(1)} = x^{(0)} + t\nabla f(x^{(0)})$$
$$x^{(2)} = x^{(1)} + t\nabla f[x^{(0)} + t\nabla f(x^{(0)})]$$

3 How to choose stepsize t

Gradient Descent with constant $t = \frac{1}{L}$ converge rate $= O(\frac{1}{k})$ Gradient Descent with Backtracking $t = min \{1, \frac{\beta}{L}\}$ converge rate $= O(\frac{1}{k})$ Gradient Descent with constant $t = \frac{1}{L}$ for strongly convex, converge rate $= O(c^k)$.