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1 Proof of gradient descent

The method described in this section require a suitable starting point x(0). The starting

point must lie in domf , and in addition the sublevel set

S =
{
x ∈ domf : f(x) ≤ f(x(0))

}
must be closed. This condition is satisfied for all x(0) ∈ domf if the function f is closed.

Continuous functions with dom(f) = Rn are closed, so if dom(f) = Rn, the initial sub-

level set condition is satisfied by any x(0).

Theorem 1. Assume that f convex and differentiable, with dom(f) = Rn and∇f is Lips-

chitz continuous with constant L > 0, i.e.

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀x, y

then the gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f ? ≤ ‖x
(0) − x?‖

2tk
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We say that the gradient descent has convergence rate O(1/k).

Proof. Part I: With ∇f Lipschitz constant L, we have that

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖x− y‖22 ∀x, y (1)

Suppose we are at x in the gradient descent and the next iteration go to

x+ = x− t∇f(x)

We can use the above inequality with y = x+ and

f(x+) ≤ f(x) +∇f(x)T (−t∇f(x)) +
L

2
‖ − t∇f(x)‖22

= f(x)− t‖∇f(x)‖22 +
Lt2

2
‖∇f(x)‖22

= f(x)−
(

1− Lt

2

)
t‖∇f(x)‖22

If 0 ≤ t ≤ 1/L, we get −t+ Lt2

2
≤ −t

2
which gives us that

f(x+) ≤ f(x)− t

2
‖∇f(x)‖22. (2)

This result also implies the descent property of the gradient descent algorithm

f(x+) ≤ f(x).

Part II: Use convexity of f , we know that

f(x?) ≥ f(x) +∇f(x)T (x? − x)
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f(x) ≤ f(x?)−∇f(x)T (x? − x) (3)

Plugin (3) into (2) and you get

f(x+) ≤ f(x?) +∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

f(x+)− f(x?) ≤ ∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

=
1

2t

(
‖x− x?‖22 − ‖x+ − x?‖22

)
The last equality is true because

1

2t

(
‖x− x?‖22 − ‖x− t∇f(x)− x?‖22

)
=

1

2t

(
‖x− x?‖22 − ‖x− x?‖22 + 2t∇f(x)T (x− x?)− t2‖∇f(x)‖22

)
= ∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

Finally,

f(x(i))− f(x?) ≤ 1

2t

(
‖x(i−1) − x?‖22 − ‖x(i) − x?‖

)
k∑
i=1

(
f(x(i))− f(x?)

)
≤ 1

2t

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)
≤ 1

2t
‖x(0) − x?‖22

because we’ve proved that f(x(0)) ≥ f(x(1)) ≥ . . . ≥ f(x(k)). Thus

f(x(k))− f(x?) ≤ 1

k

k∑
i=1

(
f(x(i))− f(x?)

)
≤ ‖x

(0) − x?‖22
2tk

Remark 1. We can show that in Theorem 1, the assumption that∇f is Lipschitz continuous

with constantL > 0 can be relaxed to that we only need Lipschitz gradient over the sublevel
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set

S =
{
x ∈ domf : f(x) ≤ f(x(0))

}
.

Theorem 2. If the sublevel sets contained in S are bounded, so in particular, if S is

bounded. Then ∇f is Lipschitz continuous with constant L > 0 over S.

Proof. If S is bounded, then the maximum eigenvalue of ∇2f(x), which is a continuous

function of x on S, is also bounded above on S. i.e., there exist a constant L such that

∇2f(x) � LI ∀x ∈ S.

This upper bound on the Hessian implies for any x, y ∈ S

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22

Therefore we get a similar condition to the original Lipschitz continuous assumption (1)

except that it is on the sublevel set S, which is sufficient to prove Theorem 1 since this

condition can also lead to the descent property on the sublevel set

f(x(1)) ≤ f(x(0))− t

2
‖∇f(x(0))‖22 ∀x ∈ S

Remark. For example, if f is strongly convex then S is bounded

f(y) ≥ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖22

at x = 0

f(y) ≥ f(0) +∇f(0)T (y − 0) +
M

2
‖y‖22
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we can see that if ‖y‖2 →∞ then f(y)→∞, so f(y) is bowl-shaped.

2 Convergence analysis for backtracking

The backtracking exit inequality:

f(x+ t∆x) ≤ f(x) + αt ∇f(x)T∆x α <
1

2

By Lipschetz continuous gradient, we can show that:

f(x+ t∆x) ≤ f(x) +
1

L
∇f(x)T∆x0

≤ f(x) +
α

L
∇f(x)T∆x

.
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The backtracking exit inequality (∗) holds for t ≥ 0 in an interval (0, 1
L

)

The backtracking line search stops with a stepsize of length t that satisfies:

t = 1 or t ∈ (
β

L
,

1

L
)

Case 1:
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t = 1 already satisfies the (∗) i.e. t = 1 ≤ 1
L

Case 2: Otherwise 1 > t then the stepsize t ∈ ( β
L
, 1
L

)

Therefore, the step length t ≥ min
{

1, β
L

}
Iterative method, updates x(k) by:

x(1) = x(0) + t∇f(x(0))

x(2) = x(1) + t∇f [x(0) + t∇f(x(0))]

3 How to choose stepsize t

Gradient Descent with constant t = 1
L

converge rate = O( 1
k
) Gradient Descent with

Backtracking t = min
{

1, β
L

}
converge rate = O( 1

k
) Gradient Descent with constant

t = 1
L
for strongly convex, converge rate = O(ck).
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