Dual Problems
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1 Dual Norm

* Let ||z|| be a norm, e.g.,

- Ly norm: ||z|l, = (301, |z;[P)1/P, for p > 1.

— Trace norm: || X ||, = >, 0:(X)
* Dual norm: for a vector z, we define its dual norm ||z||, as

]l = max 2"z,
=<1

where || - || is the original norm.

We have the inequality (Cauchy-schwarz like)

|2 " < 2]l [l

-
This is because ||z, = max),j<; 2 @ > <L> T

II=l




The dual norm of the ¢; norm is the /., norm. Let ||z]| =

norm).

Zﬁgl}él ZiYi
= max[y] = [y

The dual norm of the /5 norm is the /5 norm. Since ||z][s < 1,

max z'y < [|zla[lyll2 < llyll2,
lela<1

“__ 9

where the “="" is taken when

lyllz" -y, y#0

0, y=0.

Y lzl = 2l

The dual norm of the ¢, norm (p > 1) is the ¢, norm (¢ > 1)and 1 + 1 = 1. Since

layhy + -+ agby| < (@b + -+ + ai)l/p(b‘{ 4t bZ)l/q

1

for}—j+$:1,p>1,andq>1.

Trace norm dual: (|| X ||¢)s = [| X||op = 01(X).

Dual norm of dual norm: can show that ||z||.. = ||z||
Proof. consider the (trivial-looking) problem

min |ly|| subjectto y==x
Yy



whose optimal value is ||x||. Lagrangian:
Ly, u) = lyll +u" (z —y) = Iyl = y"u+ 2" u
Lagrange dual function:
— i i T T
g(u) =minL(z,u) =min |y]|—y v+ 2z u
v v

— If ||u||« < 1, which means that for any y, we have %u < 1, thus ||y|| —y"u > 0.

However, if y = 0, ||y|| — y"u = 0.Thus we have that

minlly]| - " = 0

— If ||lul|« > 1, then there exists , ||| < 1suchthaty”u > 1. Then fort — +oo,

y = ty, we have
Iyl = y"w = 1tgll = t§"w = t(|[§ll = §"u) — —o0
Thus we can see that
min - {[ly] - y"u} = —oc
Therefore Lagrange dual problem is
m;lxg(u) = mgqux subject to  ||ulj. <1

whose optimal value is ||z||.. based on the definition of the dual norm. Then

by strong duality f* = g%, i.e., ||z|| = ||%]|«



2 Conjugate Function

» Conjugate function: given f : R" — R, the function
f*(y) = maxy 'z — f(z)

is called its conjugate.

Proposition 1. f* is always convex.
Proof. For any y1,y2 and 0 < v < 1, let y,, = a3 + (1 — «)ys. Then,
F* (o) = maxy, x — f(2).

Note that
Yoz — f(z) =a(ylz - f(2)) + (1 = a) (g2 = = f(2))

which implies that

[ Wa) < af(y1) + (1 — ) f*(y2).

« Fenchel’s inequality: f(z) + f*(y) >y .

* Conjugate of conjugate f** satisfies f** < f



Proof. We have

[y =y z— f(x)
— f(x) >y z— f*(y)

— f(x) > m;XyTw — fy) = f"

so f > f*.



If f is closed (continuous) and convex, then f** = f. Also for any x, y.

y € 0f(r) =z edf(y)

<=1 € argmin f(z) —y'z <= 2 € argmaxy 'z — f(2)
=fla)+fy) =y

If f is strictly convex, then V f*(y) = argmin, f(z) —y'z.

Proof. We can easily see that

y € 0f(x)
=0€(f(zx) —y'x)
=g € argmin f(z) —y' 2

<=1 € argmaxy 'z — f(2)

=y'r— fz) =max(y'z — f(2)) = f*(y)
Now we just need to prove ' x — f*(y) = f(x) <= x € df*(y). Since

y'z—f*(y) = f(x)
=y'e—[y) =maxz'z— () (f=[7)
<=y € argmax zlr — f*(2)
<=y € argmin f*(2) — 2z

=0 I(f(y)—y' )

<z € df*(y)




o If f(u,v) = fi(u) + f2(v), then (u € R, v € R™),
frw,z) = fi(w) + f3(2)
* Example: f(z) = 12"Qz, Q - 0.
f'(y) = maxy'z — %xTQ:c

= — H%Tin %ITQI‘ —y'z (taking r = Q™ 'y)

= —min J(Q7)TQQ ) ~yTQ My

= %yTQ‘ly-
* Fenchel’s inequality gives

f@)+ fy) =22’y = %xTQx + %yTQly >y

 Conjugate of indicator function: if f(z) = I.(x), then its conjugate is

* _T* _ T
fily) = Ie(y) = maxy

Since f*(y) = max, y'z — Io(z) = max,ecy' 2.

 Conjugate of norm: If f(x) = ||z|| (any norm), then its conjugate is

0 [yl <1
fy) =
oo yll« > 1



or can be written as

W) = Iz <3 (v)
Proof. recall the definition of dual norm

lyll« = max z'y
Izl <1

to evaluate

f*(y) = maxy'z — |lz]|
we distinguish two cases L

- If ||y||« < 1, then by definition of dual norm
y'o < alllylls < floll - Vo

and equality holds if x = 0; Therefore f*(y) = max,y'z — ||z| = 0.

— If ||y|l« > 1, by the definition of dual norm ||y||. = maxj,<;z'y > 1, there

exists an z with [|z]| < 1, 2Ty > 1, then

t—o00

Fry) =y (te) = |tall = ty "z — fJz]l) = oo



3 Conjugates and Dual Problems

Conjugates appear frequently in derivation of dual problems, via

Therefore

in minimization of the Lagrangian.

E.g. consider

min f(2) + g(z)

<= min f(z) + g(z) subject tox = z
Lagrange dual function is
g(u) = min f(2) + g(2) +u' (z — 2) = = f*(u) - g"(~)

Hence the dual problem is

max —f*(u) — g"(~u)

4 Lasso Dual (through duality)

The Lasso primal is

1
min < ly = X813 + A8l



Introduce z = X3, and the dual variable «

1 2
in =y — A
min Sy = 2|+ Bl

st. X6 —z2=0.
Then we have Lagrangian
LB, %) = 5lly = 2l + Al + (= — X5)
and Lagrange dual function
g(u) = min L(B,z,u)

. ) 1
= {181~ (XT0) 78+ min { = 213 + oz

(XTu)" 1 1
= v (S5 ) + 5l - 3l - ol

XTu) 1 1
= ~Megarwen (Z50) + gl = -l

Thus the dual problem is

1 XTU
mgx—§|!y—UH§—M{z:z||oo31}( \ )

which is equivalent to

1
ma —— 1y — ul}
-

A

subject to|| UHOO <1
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which is equivalent to

min [ly — ul/3
u

subject to|| X Tul| < A

Note that the problem now becomes solving v € R" instead of solving 5 € RP. Suppose

now we have solve the dual problem and the solution is u*. Then £*, z* must minimize
L(5, z,u*)
V.L(B,z,u") =0<= "=y —u" <= X[ =y —u"

The optimality condition is

1
€0 (Gl = X515+ Aislh )

—=0ec X (y—XpB) =

where v € 0|5 is

which is equivalent to

Xj(y—Xp)=X\-sgn(f;) ifp;#0

XT(y— XB)| < A i3 =0
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Therefore if

T * T % _
1X; (y = XB)| < A= [ Xju'|| < A= ;=0

S Lasso Dual (through KKT)

Recall the definition of polyhedron. A set C' C R" is called a convex Polyhedron if C'is

the intersection of many half-spaces:

C=nf {zcR":az<b}

Where aq,...,a, € R" and by,...,0p € R

The aim of this section is to show that the LASSO problem can be formulated as a
projection onto a polyhedron. Before we delve into the details of the derivation, we state a

couple of preliminary results that will be used in later proofs:
* A polyhedron is a closed and convex set.
* For any closed and convex set C' C R" and point x € R", there is a unique point

u € C minimizing ||z — u|]2. This point is a projection of = onto set C', which we

denote by I (x).

In the linear regression setting, with response variable y € R" and design matrix X &
R™*P_if we regress Y on X using the LASSO, the optimal model parameters X B can be

written as:

XB=y-Te(y) = (I -1c) (y),

where C' is a polyhedron
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Proof. Given y € R".
0 =Tc(y)

onto a closed convex set C' C R"™ can be characterised as the unique point satisfying
(y—0,0 —u) >0, YueC. (1)
where (-, -) denotes the inner product. Based on this, if we define

0=y—XBy),

or equivalently:

Xpr=y—10

can be regarded as a function of y, We want to show that the inequality (1) holds for all

u € C, where C is defined as
P
C::m({UGR”:X]-Tug)\}ﬂ{ueR”:XjTuZ—)\}),
j=1

which is equivalent to

{ueR": || XTul| <A},

To show this, we can see that

(y—0,0 —u) = (XB",y - XB" —u)
= (XB"y — XB") — (X Tu, 57).
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From the KKT conditions for LASSO, we know that the optimization problem

min g(3) + h(B) = min - ly — XI5 + A || 8],
B B N——
9(B) h(B)

satisfies the stationarity condition, which can be stated as:

0€d(g(B)+h(BY))
= Vyg(B") + 0h(3")
= X" (y—Xp*) + OB, -

Thus
X (y—XB") =M\,

where
sgn (ﬁj*) if 57 # 0

= (O8], = :

Taking the inner product with 8* on both sides of (2), we always have

(X3 y— XB) = \||B"]l, = max w'p".

lwll oo <A

0 =0
The RH S holds since 7, = ’ . Therefore,

35| otherwise

(y —0,0 —u) = max (X'Tu,B") —(X"u,B)>0 VucC,

[T =2

14

)



which implies that 6 is indeed a projection of y onto C,

0=y— XB"(y) =Tc(y).
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