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1 Dual Norm

• Let ‖x‖ be a norm, e.g.,

– `p norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p, for p ≥ 1.

– Trace norm: ‖X‖tr =
∑r

i=1 σi(X)

• Dual norm: for a vector x, we define its dual norm ‖x‖∗ as

‖x‖∗ = max
‖z‖≤1

z>x,

where ‖ · ‖ is the original norm.

We have the inequality (Cauchy-schwarz like)

|z>x| ≤ ‖z‖‖x‖∗.

This is because ‖x‖∗ = max‖z‖≤1 z
>x ≥

(
z
‖z‖

)>
x
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• The dual norm of the `1 norm is the `∞ norm. Let ‖z‖ =
∑p

i=1 |zi| = ‖z‖1 (`1
norm).

max∑
i |zi|≤1

∑
i

ziyi

= max
i
|yi| = ‖y‖∞.

• The dual norm of the `2 norm is the `2 norm. Since ‖z‖2 ≤ 1,

max
‖z‖2≤1

z>y ≤ ‖z‖2‖y‖2 ≤ ‖y‖2,

where the “=” is taken when

z =

‖y‖
−1
2 · y, y 6= 0

0, y = 0.

• The dual norm of the `p norm (p > 1) is the `q norm (q > 1) and 1
p

+ 1
q

= 1. Since

|a1b1 + · · ·+ akbk| ≤ (ap1 + · · ·+ apk)
1/p(bq1 + · · ·+ bqk)

1/q

for 1
p

+ 1
q

= 1, p > 1, and q > 1.

• Trace norm dual: (‖X‖tr)∗ = ‖X‖op = σ1(X).

• Dual norm of dual norm: can show that ‖x‖∗∗ = ‖x‖

Proof. consider the (trivial-looking) problem

min
y

‖y‖ subject to y = x
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whose optimal value is ‖x‖. Lagrangian:

L(y, u) = ‖y‖+ uT (x− y) = ‖y‖ − yTu+ xTu

Lagrange dual function:

g(u) = min
y
L(x, u) = min

y
‖y‖ − yTu+ xTu

– If ‖u‖∗ ≤ 1, whichmeans that for any y, we have yT

‖y‖u ≤ 1, thus ‖y‖−yTu ≥ 0.

However, if y = 0, ‖y‖ − yTu = 0.Thus we have that

min
y
‖y‖ − yTu = 0

– If ‖u‖∗ > 1, then there exists ỹ, ‖ỹ‖ ≤ 1 such that ỹTu > 1. Then for t→ +∞,

y = tỹ, we have

‖y‖ − yTu = ‖tỹ‖ − tỹTu = t(‖ỹ‖ − ỹTu)→ −∞

Thus we can see that

min
y

{‖y‖ − yTu} = −∞

Therefore Lagrange dual problem is

max
u
g(u) ≡ max

u
uTx subject to ‖u‖∗ ≤ 1

whose optimal value is ‖x‖∗∗ based on the definition of the dual norm. Then

by strong duality f ∗ = g∗, i.e., ‖x‖ = ‖x‖∗∗
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2 Conjugate Function

• Conjugate function: given f : Rn → R, the function

f ∗(y) = max
x

y>x− f(x)

is called its conjugate.

Proposition 1. f ∗ is always convex.

Proof. For any y1, y2 and 0 ≤ α ≤ 1, let yα = αy1 + (1− α)y2. Then,

f ∗(yα) = max
x

y>α x− f(x).

Note that

y>α x− f(x) = α
(
y>1 x− f(x)

)
+ (1− α)

(
y>2 x− f(x)

)
which implies that

f ∗(yα) ≤ αf ∗(y1) + (1− α)f ∗(y2).

• Fenchel’s inequality: f(x) + f ∗(y) ≥ y>x.

• Conjugate of conjugate f ∗∗ satisfies f ∗∗ ≤ f

4



Proof. We have

f ∗(y) ≥ y>x− f(x)

=⇒ f(x) ≥ y>x− f ∗(y)

=⇒ f(x) ≥ max
y
y>x− f ∗(y) = f ∗∗,

so f ≥ f ∗∗.
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If f is closed (continuous) and convex, then f ∗∗ = f . Also for any x, y.

y ∈ ∂f(x)⇐⇒ x ∈ ∂f ∗(y)

⇐⇒x ∈ arg min
z
f(z)− y>z ⇐⇒ x ∈ arg max

z
y>z − f(z)

⇐⇒f(x) + f ∗(y) = y>x

If f is strictly convex, then ∇f ∗(y) = arg minz f(z)− y>z.

Proof. We can easily see that

y ∈ ∂f(x)

⇐⇒0 ∈ ∂(f(x)− y>x)

⇐⇒x ∈ arg min
z
f(z)− y>z

⇐⇒x ∈ arg max
z
y>z − f(z)

⇐⇒y>x− f(x) = max
z

(y>z − f(z)) = f ∗(y)

Now we just need to prove y>x− f ∗(y) = f(x)⇐⇒ x ∈ ∂f ∗(y). Since

y>x− f ∗(y) = f(x)

⇐⇒y>x− f ∗(y) = max
z
z>x− f ∗(z) (f = f ∗∗)

⇐⇒y ∈ arg max
z
z>x− f ∗(z)

⇐⇒y ∈ arg min
z
f ∗(z)− z>x

⇐⇒0 ∈ ∂(f ∗(y)− y>x)

⇐⇒x ∈ ∂f ∗(y)
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• If f(u, v) = f1(u) + f2(v), then (u ∈ Rn, v ∈ Rm),

f ∗(w, z) = f ∗1 (w) + f ∗2 (z)

• Example: f(x) = 1
2
xTQx, Q � 0.

f ∗(y) = max
x

y>x− 1

2
x>Qx

= −min
x

1

2
x>Qx− y>x (taking x = Q−1y)

= −min
x

1

2
(Q−1y)>Q(Q−1y)− y>Q−1y

=
1

2
y>Q−1y.

• Fenchel’s inequality gives

f(x) + f ∗(y) ≥ x>y =⇒ 1

2
x>Qx+

1

2
y>Q−1y ≥ x>y

• Conjugate of indicator function: if f(x) = Ic(x), then its conjugate is

f ∗(y) = I∗C(y) = max
x∈C

y>x

Since f ∗(y) = maxx y
>x− IC(x) = maxx∈C y

>x.

• Conjugate of norm: If f(x) = ‖x‖ (any norm), then its conjugate is

f ∗(y) =

0 ‖y‖∗ ≤ 1

+∞ ‖y‖∗ > 1
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or can be written as

f ∗(y) = I{z:‖z‖∗≤1}(y)

Proof. recall the definition of dual norm

‖y‖∗ = max
‖x‖≤1

x>y

to evaluate

f ∗(y) = max
x

y>x− ‖x‖

we distinguish two cases

– If ‖y‖∗ ≤ 1, then by definition of dual norm

y>x ≤ ‖x‖‖y‖∗ ≤ ‖x‖ ∀x

and equality holds if x = 0; Therefore f ∗(y) = maxx y
>x− ‖x‖ = 0.

– If ‖y‖∗ > 1, by the definition of dual norm ‖y‖∗ = max‖x‖≤1 x
>y > 1, there

exists an x with ‖x‖ ≤ 1, x>y > 1, then

f ∗(y) ≥ y>(tx)− ‖tx‖ = t(y>x− ‖x‖) t→∞−→ ∞

8



3 Conjugates and Dual Problems
Conjugates appear frequently in derivation of dual problems, via

f ∗(u) = max
x

u>x− f(x)

= −min
x
f(x)− u>x

Therefore

−f ∗(u) = min
x
f(x)− u>x

in minimization of the Lagrangian.

E.g. consider

min
x
f(x) + g(x)

⇐⇒min
x
f(x) + g(z) subject to x = z

Lagrange dual function is

g(u) = min f(x) + g(z) + u>(z − x) = −f ∗(u)− g∗(−u)

Hence the dual problem is

max
u
−f ∗(u)− g∗(−u)

4 Lasso Dual (through duality)

The Lasso primal is

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.
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Introduce z = Xβ, and the dual variable u

min
β

1

2
‖y − z‖2 + λ‖β‖1

s.t. Xβ − z = 0.

Then we have Lagrangian

L(β, z, u) =
1

2
‖y − z‖2 + λ‖β‖1 + u>(z −Xβ)

and Lagrange dual function

g(u) = min
β,z

L(β, z, u)

= min
β

{
λ‖β‖1 − (X>u)>β

}
+ min

z

{
1

2
‖y − z‖22 + u>z

}
= −λmax

β

(
(X>u)>

λ
β − ‖β‖1

)
+

1

2
‖y‖22 −

1

2
‖y − u‖22

= −λI{z:‖z‖∞≤1}
(
X>u

λ

)
+

1

2
‖y‖22 −

1

2
‖y − u‖22

Thus the dual problem is

max
u
−1

2
‖y − u‖22 − λI{z:‖z‖∞≤1}

(
X>u

λ

)
which is equivalent to

max
u
−1

2
‖y − u‖22

subject to‖X
>u

λ
‖∞ ≤ 1
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which is equivalent to

min
u
‖y − u‖22

subject to‖X>u‖∞ ≤ λ

Note that the problem now becomes solving u ∈ Rn instead of solving β ∈ Rp. Suppose

now we have solve the dual problem and the solution is u?. Then β?, z? must minimize

L(β, z, u?)

∇zL(β, z, u?) = 0⇐⇒ z? = y − u? ⇐⇒ Xβ? = y − u?

The optimality condition is

0 ∈ ∂
(

1

2
‖y −Xβ‖22 + λ‖β‖1

)
⇐⇒0 ∈ XT (y −Xβ) = λv

where v ∈ ∂‖β‖1 is

vj ∈


1 if βj > 0

−1 if βj < 0

[−1, 1] if βj = 0

j = 1, . . . , p

which is equivalent to X
T
j (y −Xβ) = λ · sgn(βj) if βj 6= 0

|XT
j (y −Xβ)| ≤ λ if βj = 0
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Therefore if

‖X>j (y −Xβ∗)‖ < λ⇐⇒ ‖X>j u∗‖ < λ =⇒ βj = 0

5 Lasso Dual (through KKT)

Recall the definition of polyhedron. A set C ⊆ Rn is called a convex Polyhedron if C is

the intersection of many half-spaces:

C = ∩ki=1{x ∈ Rn : a>i x ≤ bi}

Where a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R

The aim of this section is to show that the LASSO problem can be formulated as a

projection onto a polyhedron. Before we delve into the details of the derivation, we state a

couple of preliminary results that will be used in later proofs:

• A polyhedron is a closed and convex set.

• For any closed and convex set C ⊆ Rn and point x ∈ Rn, there is a unique point

u ∈ C minimizing ‖x − u‖2. This point is a projection of x onto set C, which we

denote by ΠC(x).

In the linear regression setting, with response variable y ∈ Rn and design matrix X ∈

Rn×p, if we regress Y on X using the LASSO, the optimal model parameters Xβ̂ can be

written as:

Xβ̂ = y − ΠC(y) = (I − ΠC) (y),

where C is a polyhedron
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Proof. Given y ∈ Rn.

θ = ΠC(y)

onto a closed convex set C ⊆ Rn can be characterised as the unique point satisfying

〈y − θ, θ − u〉 ≥ 0, ∀u ∈ C. (1)

where 〈·, ·〉 denotes the inner product. Based on this, if we define

θ = y −Xβ̂(y),

or equivalently:

Xβ∗ = y − θ

can be regarded as a function of y, We want to show that the inequality (1) holds for all

u ∈ C, where C is defined as

C :=

p⋂
j=1

({
u ∈ Rn : X>j u ≤ λ

}
∩
{
u ∈ Rn : X>j u ≥ −λ

})
,

which is equivalent to {
u ∈ Rn :

∥∥X>u∥∥∞ ≤ λ
}
.

To show this, we can see that

〈y − θ, θ − u〉 = 〈Xβ∗, y −Xβ∗ − u〉

= 〈Xβ∗, y −Xβ∗〉 − 〈X>u, β∗〉.
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From the KKT conditions for LASSO, we know that the optimization problem

min
β
g(β) + h(β) = min

β

1

2
‖y −Xβ‖22︸ ︷︷ ︸

g(β)

+λ ‖β‖1︸ ︷︷ ︸
h(β)

satisfies the stationarity condition, which can be stated as:

0 ∈ ∂ (g(β∗) + h(β∗))

= ∇g(β∗) + ∂h(β∗)

= −X> (y −Xβ∗) + λ∂ ‖β∗‖1 .

Thus

X> (y −Xβ∗) = λγ, (2)

where

γj = (∂ ‖β∗‖1)j =

 sgn
(
β∗j
)

if β∗j 6= 0

[−1, 1] if β∗j = 0
.

Taking the inner product with β∗ on both sides of (2), we always have

〈Xβ∗, y −Xβ∗〉 = λ ‖β∗‖1 = max
‖w‖∞≤λ

w>β∗.

The RHS holds since βjγj =

0 β∗j = 0

|β∗j | otherwise
. Therefore,

〈y − θ, θ − u〉 = max
‖X>u‖∞≤λ

〈X>u, β∗〉 − 〈X>u, β∗〉 ≥ 0 ∀u ∈ C,
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which implies that θ is indeed a projection of y onto C,

θ = y −Xβ∗(y) = ΠC(y).
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