Convex Optimization Problems
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1 Convex optimization problems

Definition 1. Optimization problem

min f(x)

Here D = dom(f) N, dom(g;) N(;_, dom(h;), common domain of all the functions.

Definition 2. Convex optimization problem: optimization problem set-up above provided

that the functions f and g;, 7 = 1, ..., m are convex, and h;, j = 1, ..., p are affine:
h;(z) = a]Tx +0b;, 7=1,..,p

¢ Affine function

J



Comments: Note we can represent the constraints as follow:
1. g(z) > 0and —g(z) < 0.
2. h(z) <0and h(z) >0 <= h(z) =0.

3. Domain of convex optimization problem is always convex (intersection of convex

sets is also convex set).
4. min, f(z) <= max, —f(z)
Motivation for convex problems: local minima = global minima!

Proof. Use contradiction. If x is not a global minima, then there must exist some feasible

z € D such that

f(z) < f(x)

then

|z = alla>p

Now we choose

y=tr+(1—-1)z
for some 0 < ¢ < 1, then ]
cyeD

* g satisfies the constraints



» Now take a very large value of ¢ such that ||y — x| < p. By the convexity of f, we

have

fly) = fte+ (1 —1)2)
<tflz)+ (1 -1)f(2)
<tf(z)+ (1 -1)f(z)
= f(x).

Therefore we have found y in the neighborhood of z and y < x. This contradicts

with the fact that z is the local minimum.

1.1 Convex solution sets

We can cite LASSO regression as an example:

2
2

18 = |y xs

f(B)=pB"XTXB - 2y"XB+C
VEf(B)=X"X =0

Therefore, LASSO problem is not strictly convex, and has infinite solutions. For exam-

ple, when p > n LASSO regression may not have a unique minimizer.



1.2 Huber loss
2%/2 —2>0

> plyi—xl'B), plz) =
i=1 dlz| =6%/2 1—2<0

When we use Huber loss instead of quadratic loss, the effect of outliers will be dimin-

ished.

1.3 Hinge form of SVMs

Hinge loss can be written like this:
flz) =0 —-2)1 =

where 2z = y;( X[ 8 + B)

If we graph this function, it will be similar with the graph of logistical loss.

1.4 Rewriting constraints

We have an optimization problem:

min f(z) subject to g;(z) < 0,i=1,..m Az =10

T

There are two methods to rewrite it:
1. min, f(z) subject to z € C where C = {z : g;(z) <0,i=1,...m, Az = b};

0 zeC

2. min, f(x) + Ic(x) where Ic =
o ¢l

The first method can be used in all problems. However, the second method can be used

only for convex problems.



1.5 First-order optimality condition

Sufficient and necessary condition of the statement "differentiable function f is convex"

are:

1. dom(f) is convex;

2. fly) =2 f(z) + Vf(z)(y — x)

First-order optimality condition: Sufficient and necessary condition of the statement "fea-

sible point x is optimal" is:
Vix)(y—z)>0 forallyeC

1.6 Quadratic minimization

Next, we use quadratic minimization as an example:

1
flz) = §xTQx +blz+c where ) = 0

First order condition:

Vi) =Qr+b=0

if Q is singular and b € col(Q), we have
Qr=-b=-0QQ"b+QZ =Q(-Q" b+ z2) where QTQ = I and Qz =0

r=—-Q'b+2z  where z € ker(Q)
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