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1 Convex optimization problems

Definition 1. Optimization problem

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

HereD = dom(f)∩
⋂m

i=1 dom(gi)∩
⋂p

i=1 dom(hj), common domain of all the functions.

Definition 2. Convex optimization problem: optimization problem set-up above provided

that the functions f and gi, i = 1, ...,m are convex, and hj , j = 1, ..., p are affine:

hj(x) = aTj x+ bj, j = 1, ..., p

• Affine function

hj(x) = 0⇔ hj(x) ≤ 0 hj(x) ≥ 0
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Comments: Note we can represent the constraints as follow:

1. g(x) ≥ 0 and −g(x) ≤ 0.

2. h(x) ≤ 0 and h(x) ≥ 0 ⇐⇒ h(x) = 0.

3. Domain of convex optimization problem is always convex (intersection of convex

sets is also convex set).

4. minx f(x) ⇐⇒ maxx−f(x)

Motivation for convex problems: local minima = global minima!

Proof. Use contradiction. If x is not a global minima, then there must exist some feasible

z ∈ D such that

f(z) < f(x)

then

||z − x||2 > ρ

Now we choose

y = tx+ (1− t)z

for some 0 ≤ t ≤ 1, then

• y ∈ D

• y satisfies the constraints

hj(y) = aTj (tx+ (1− t)z) + bj

= 0
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gi(y) ≤ tgi(x) + (1− t)gi(z)

≤ 0

• Now take a very large value of t such that ||y − x||2 ≤ ρ. By the convexity of f , we

have

f(y) = f(tx+ (1− t)z)

≤ tf(x) + (1− t)f(z)

< tf(x) + (1− t)f(x)

= f(x).

Therefore we have found y in the neighborhood of x and y < x. This contradicts

with the fact that x is the local minimum.

1.1 Convex solution sets

We can cite LASSO regression as an example:

f(β) =
∥∥∥y −Xβ∥∥∥2

2

f(β) = βTXTXβ − 2yTXβ + C

∇2f(β) = XTX � 0

Therefore, LASSO problem is not strictly convex, and has infinite solutions. For exam-

ple, when p > n LASSO regression may not have a unique minimizer.
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1.2 Huber loss
n∑

i=1

ρ(yi − xTi β), ρ(z) =

 z2/2 −z > 0

δ |z| = δ2/2 1− z ≤ 0

When we use Huber loss instead of quadratic loss, the effect of outliers will be dimin-

ished.

1.3 Hinge form of SVMs

Hinge loss can be written like this:

f(z) = (1− z)+ =

1− z, 1− z > 0

0, 1− z ≤ 0

where z = yi(X
T
i β + β0)

If we graph this function, it will be similar with the graph of logistical loss.

1.4 Rewriting constraints

We have an optimization problem:

min
x
f(x) subject to gi(x) ≤ 0, i = 1, ...m Ax = b

There are two methods to rewrite it:

1. minx f(x) subject to x ∈ C where C = {x : gi(x) ≤ 0, i = 1, ...m,Ax = b};

2. minx f(x) + IC(x) where IC =

 0 x ∈ C

∞ x /∈ C

The first method can be used in all problems. However, the second method can be used

only for convex problems.

4



1.5 First-order optimality condition

Sufficient and necessary condition of the statement "differentiable function f is convex"

are:

1. dom(f) is convex;

2. f(y) ≥ f(x) +∇f(x)(y − x)

First-order optimality condition: Sufficient and necessary condition of the statement "fea-

sible point x is optimal" is:

∇f(x)(y − x) ≥ 0 for all y ∈ C

1.6 Quadratic minimization

Next, we use quadratic minimization as an example:

f(x) =
1

2
xTQx+ bTx+ c where Q � 0

First order condition:

∇f(x) = Qx+ b = 0

if Q is singular and b ∈ col(Q), we have

Qx = −b = −QQ+b+QZ = Q(−Q+b+ z) where Q+Q = I and Qz = 0

x = −Q+b+ z where z ∈ ker(Q)
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