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1 Convex functions

• The domain of f

dom(f) = {x : f(x) is defined and finite}

Definition 1. Convex function: f : Rn → R such that dom(f) ⊂ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for 0 ≤ t ≤ 1 and all x, y ∈ dom(f).

Example 1. Indicator function is a convex function

IC(tx+ (1− t)y) ≤ tIC(x) + (1− t)ICy

If x, y ∈ C, then

0 ≤ 0

If x /∈ C and y /∈ C

... ≤ ∞
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Proposition 1. Note: strongly convex =⇒ strictly convex =⇒ convex

Proposition 2. If f is differentiable, and ∀x, y ∈ dom(f),

• f is convex ⇐⇒ f(y) ≥ f(x) +∇f(x)(y − x)

• f is strictly convex ⇐⇒ f(y) > f(x) +∇f(x)(y − x)

• f is strongly convex

⇐⇒ f(y) ≥ f(x) +∇f(x)(y − x) + m

2
||y − x||22

ie,

• ifm = 0, convex function

• ifm→ 0, strictly convex

• ifm > 0, strongly convex

Proposition 3. If f is twice continuously differentiable,

• f is convex ⇐⇒

f ′′(x) ≥ 0, ∀x ∈ dom(f)

∇2f(x) � 0, (positive semidefinite)

• f is strictly convex ⇐⇒

f ′′(x) > 0, ∀x ∈ dom(f)

∇2f(x) � 0 (positive definite)
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• f is strongly convex ⇐⇒

f ′′(x) ≥ m > 0 ∀x ∈ dom(f)

∇2f(x) � m � 0 (bounded)

Example 2. If f is strictly convex with f ′′(xn) = 1
n
, then it is not strongly convex since

lim
n→∞

f ′′(xn) = lim
n→∞

1

n
= 0

Example 3. Least squares loss.

min
β
f(β) ⇐⇒ min

β
||y −Xβ||22

∇2f(β) = XTX � 0

1. XTX � 0, n ≥ p full column rank;

2. XTX � 0, otherwise.

Proposition 4. First-order characterization: If f is differentiable, then f is convex if and

only if dom(f) is convex and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). So for a differentiable convex function,

∇f(x) = 0 =⇒ x minimizes f

Example 2: Nonnegative linear combination - Logistic Regression
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In logistic regression, we wish to solve

min
β

n∑
i=1

log(1 + exp(−yixTi β))

for xi ∈ Rp and yi ± 1. To verify that this function is convex, we need to verify if

f(t) = log(1 + exp(t))

is convex. We take the second derivative,

f ′′(t) =
et

(1− et)2
> 0

and conclude that it is convex.

1.1 Lipschitz continuity and strong convexity

Let f be convex and twice differentiable.

Show that the following statements are equivalent.

1. ∇f is Lipschitz with constant L > 0;

2. (∇f(x)−∇f(y))T (x− y) ≤ L‖x− y‖22 for all x, y;

3. ∇2f(x) � LI for all x;

4. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2
‖y − x‖22 for all x, y.

Show that the following statements are equivalent.

1. f is strongly convex with constantm > 0;
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2. (∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖22 for all x, y;

3. ∇2f(x) � mI for all x;

4. f(y) ≥ f(x) +∇f(x)T (y − x) + m
2
‖y − x‖22 for all x, y.

1.2 Convex function examples

The distance function to a closed, convex set C

dist(x,C) = min
y∈C
‖y − x‖2 = min

y∈C
h(x, y) = f(x) (1)

is a convex function of x.

Let the solution of the function be u = PC(x), where PC(x) is the projection of x onto

C. Write dist(x,C) = ‖x− PC(x)‖2 = ‖x− u‖2.

Proposition 5. It turns out that when dist(x,C) > 0,

∂dist(x,C) =
x− u
‖x− u‖2

Only has one element, so in fact dist(x,C) is differentiable and this is its gradient.

Proof. We will only show one direction, i.e., that

x− u
‖x− u‖2

∈ ∂dist(x,C)

By first-order optimality condition:

min
x

f(x) subject to x ∈ C
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is solved at x, for f convex and differentiable, if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

for a projection,

∇f(u)T (y − u) ≥ 0 for all y ∈ C

which means

(u− x)T (y − u) ≥ 0 for all y ∈ C

Hence

C ⊆ H = {y : (u− x)T (y − u) ≥ 0} = {y : (x− u)T (y − u) ≤ 0}

where H is a convex set. Now we claim

dist(y, C) ≥ (x− u)T (y − u)
‖x− u‖2

for all y

We can check this is true. First, for y ∈ H , which means that we have (x−u)T (y−u) ≤ 0,

then the right-hand side is≤ 0. Now for y /∈ H , we have (x−u)T (y−u) ≤ ‖x−u‖2‖y−u‖2
by Cauchy–Schwarz inequality. Thus

(x− u)T (y − u)
‖x− u‖2

≤ ‖x− u‖2‖y − u‖2
‖x− u‖2

= ‖y − u‖2 ≤ dist(y,H) ≤ dist(y, C) (2)

as desired. Using the claim, we have for any y
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dist(y, C) ≥ (x− u)T (y − x+ x− u)
‖x− u‖2

= ‖x− u‖2 +
(

x− u
‖x− u‖2

)T
(y − x) (3)

which is equivalent to

f(y) ≥ f(x) +

(
x− u
‖x− u‖2

)T
(y − x) (4)

Thus by the definition of subgradient g = x−u
‖x−u‖2 is a subgradient of dist(x,C) at x.
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