Convex Functions

October 9, 2024

1 Convex functions

* The domain of f
dom(f) = {z: f(z) is defined and finite}

Definition 1. Convex function: f : R™ — R such that dom(f) C R" convex, and

fltz+ (1 =1t)y) <tf(x)+(1—1t)f(y)

for0 <t < 1landall x,y € dom(f).

Example 1. Indicator function is a convex function
Io(te + (1 —=t)y) < tlc(z)+ (1 —t) ey

If x,y € C, then

Ifxr ¢ Candy ¢ C



Proposition 1. Note: strongly convex — strictly convex —> convex

Proposition 2. If f is differentiable, and Vx,y € dom(f),

» fisconvex <= f(y) > f(z) + Vf(z)(y — x)
 fisstrictly convex <— f(y) > f(z) + Vf(z)(y — x)

* f is strongly convex
= ) = f@) + V@) =) + S lly -l
ie,
e if m = 0, convex function

e if m — 0, strictly convex

e if m > 0, strongly convex
Proposition 3. If fis twice continuously differentiable,

e fisconvex <—
f"(x) >0, Vxedom(f)

V2f(x) =0, (positive semidefinite)
» fis strictly convex <—-
f"(x) >0, Vaz e dom(f)

V2f(z) = 0 (positive definite)



 f is strongly convex <—-
(@) >m >0 Vze dom(f)

V2f(z) =m =0 (bounded)

Example 2. If f is strictly convex with f”(z,) = % then it is not strongly convex since

1
lim f"(z,) = lim — =0

n—00 n—oo N

Example 3. Least squares loss.
minf(8) <= minlly - X5}

VEF(B) =XTX =0
1. XTX = 0,n > p full column rank;

2. XTX > 0, otherwise.

Proposition 4. First-order characterization: If f is differentiable, then f is convex if and

only if dom(f) is convex and
fy) = f@) + V@) (y - 2)
forall z,y € dom(f). So for a differentiable convex function,
Vf(x) =0 = z minimizes f

Example 2: Nonnegative linear combination - Logistic Regression
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In logistic regression, we wish to solve

i log(1 + exp(—y;x;
mgmzzl og(1 + exp(—yix; B))

for x; € RP and y; £ 1. To verify that this function is convex, we need to verify if

J(t) = log(1 + exp(t))

is convex. We take the second derivative,

and conclude that it is convex.

1.1 Lipschitz continuity and strong convexity
Let f be convex and twice differentiable.

Show that the following statements are equivalent.

1. V f is Lipschitz with constant L > 0;

2. (Vf(x) = V) (z—y) < Lllz - ylf3 for all ., y;

3. V2f(z) = LI for all z;

4. f(y) < f(2) + V(@) (y —2) + 5lly — 2|3 forall 2, y.

Show that the following statements are equivalent.

1. f is strongly convex with constant m > 0;
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2. (Vf(z) = Vi) (z —y) = mlz —y|3 forall z,y;
3. V2f(x) = mlI for all z;

4. f(y) = f(2) + V(@) (y —2) + Zlly — 2|3 forall z, y.

1.2 Convex function examples

The distance function to a closed, convex set C

dist(z, C) = minlly — zf|; = minh(z,y) = f(z) (D)

is a convex function of z.
Let the solution of the function be u = Po(z), where P (x) is the projection of = onto

C. Write dist(z,C) = ||z — Po(x)||2 = ||z — ul|2-

Proposition 5. If turns out that when dist(x,C') > 0,

ddist(z,C) = i

=l
Only has one element, so in fact dist(z, C') is differentiable and this is its gradient.

Proof. We will only show one direction, i.e., that

U e ddist(x, O)
|z — ull2

By first-order optimality condition:

min f(x) subjectto x€C



is solved at x, for f convex and differentiable, if and only if

Vi)' (y—2)>0 forall yeC

for a projection,

Vi (y—u)>0 forall yeC

which means

(u—2)"(y —u)>0 forall yeC

Hence
CCH={y:(u—2)"(y—u) 20} ={y: (z—uw’(y—u) <0}

where H is a convex set. Now we claim

(z—u)(y —u)
[l = ull

dist(y,C) >

forall y

We can check this is true. First, for y € H, which means that we have (x —u)” (y —u) < 0,
then the right-hand side is < 0. Now fory ¢ H, we have (z—u)T (y—u) < ||[z—ul2|ly—u]2

by Cauchy—Schwarz inequality. Thus

(x—w)(y—u) _ llz—ullolly —ull
le—uly =z —ull

= |ly — ull2 < dist(y, H) < dist(y,C)  (2)

as desired. Using the claim, we have for any y



dis(y 0) 2 LU IR0 (ﬁ)%—w ®
which is equivalent to
r—U r
f0 = o)+ () - @

Thus by the definition of subgradient g = ~ is a subgradient of dist(x, C) at x.

[l =l
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