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1 Case Study: Fused Lasso

Consider the gray spikes in Figure 1, the results of a comparative genomic hybridization

(CGH) experiment. Each of these represents the (log base 2) relative copy number of a gene

in a cancer sample relative to a control sample; these copy numbers are plotted against the

chromosome order of the gene.

• These data are very noisy, so that some kind of smoothing is essential.

• Biological considerations dictate that it is typically segments of a chromosome –

rather than individual genes—that are replicated.

• Consequently, we might expect that the underlying vector of true copy numbers to

be piecewise-constant over contiguous regions of a chromosome.

The fused lasso signal approximator exploits such structure within a signal, and is the

solution of the following optimization problem

min
θ∈Rn

{
1

2

N∑
i=1

(yi − θi)2 + λ1

n∑
i=1

|θi|+ λ2

n∑
i=2

|θi − θi−1|

}
(1)
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• The first penalty is the familiar `1-norm, and serves to shrink the θi toward zero.

• The second penalty encourages neighboring coefficients θi to be similar, and will

cause some to be identical.

There are more general forms of the fused lasso; we mention two here.

• We can generalize the notion of neighbors from a linear ordering to more general

neighborhoods, for examples adjacent pixels in an image. This leads to a penalty of

the form

λ2
∑
i∼i′
|θi − θi′|, (2)

where we sum over all neighboring pairs i ∼ i′.

• In (1) every observation is associated with a coefficient. More generally

min
(β0,β)∈R×Rp

{
1

2

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1|

}
,

Here the covariates xij and their coefficients βj are indexed along some sequence j

for which neighborhood clumping makes sense; (1) is clearly a special case.

Problem (1) and its relatives are all convex optimization problems, and so all have well-

defined solutions. As in other problems of this kind, here we seek efficient path algorithms

for finding solutions for a range of values for the tuning parameters. Although coordinate

descent is one of our favorite algorithms for lasso-like problems, it need not work for the

fused lasso (1), because the difference penalty is not a separable function of the coordinates.

We begin by considering the structure of the optimal solution θ̂(λ1, λ2) of the fused

lasso problem (1) as a function of the two regularization parameters λ1 and λ2. The fol-

lowing result due to Friedman et al. (2007) provides some useful insight into the behavior

of this optimum:
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Figure 1: Fused lasso applied to CGH data. Each spike represents the copy number of a
gene in a tumor sample, relative to that of a control (on the log base-2 scale). The piecewise-
constant green curve is the fused lasso estimate.

Lemma 1. For any λ′1 > λ1, we have

θ̂i(λ
′
1, λ2) = Sλ′1−λ1(θ̂i(λ1, λ2)) for each i = 1, . . . , n,

One important special case of Lemma 1 is the equality

θ̂i(λ1, λ2) = Sλ1(θ̂i(0, λ2)) for each i = 1, . . . , n.

Consequently, if we solve the fused lasso with λ1 = 0, all other solutions can be obtained

immediately by soft thresholding. This useful reduction also applies to the more general

versions of the fused lasso (2). On the basis of Lemma 1, it suffices to focus our attention
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on solving the problem

min
θ∈Rn

{
1

2

N∑
i=1

(yi − θi)2 + λ

n∑
i=2

|θi − θi−1|

}
(3)

We consider ADMM algorithm to solving (3).

2 Alternating Direction Method of Multipliers (ADMM)

2.1 Dual (sub)gradient methods

What if we can’t derive dual (conjugate) in closed form, but want to utilize dual relation-

ship? Turns out we can still use dual-based subgradient or gradient methods.

Example: consider the problem

min
x
f(x) subject to Ax = b

Lagrangian is

f(x) + u>(Ax− b)

Dual function is

min
x
f(x) + u>(Ax− b) = min

x
f(x)− (−A>u)x− b>u

= −f ∗(−A>u)− b>u

Its dual problem is

max
u
−f ∗(−A>u)− b>u
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where f ∗ is conjugate of f . Defining g(u) = −f ∗(−A>u)− b>u. Note that

∂g(u) = A∂f ∗(−A>u)− b

and recall that

x ∈ ∂f ∗(−A>u)⇐⇒ x ∈ argmin
z
f(z) + u>Az

Therefore the dual subgradient method (for maximizing the dual objective) starts with an

initial dual guess u(0), and repeats for k = 1, 2, 3, . . . ,

x(k) ∈ argmin
x
f(x) + (u(k−1))>Ax

u(k) = u(k−1) + tk∂g(u
(k−1))

= u(k−1) + tk(A∂f
∗(−A>u(k−1))− b)

= u(k−1) + tk(Ax
(k) − b)

where tk are step sizes. chosen in standard ways. Recall that if f is strictly convex, then f ∗

is differentiable and so we get dual gradient ascent, which for k = 1, 2, 3, . . . ,

x(k) = argmin
x
f(x) + (u(k−1))>Ax

u(k) = u(k−1) + tk(Ax
(k) − b)

2.2 Dual decomposition

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b
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Here x = (x1, . . . , xB) ∈ Rn divides into B blocks of variables, with each xi ∈ Rni . We

can also partition A accordingly

A = [A1, . . . , AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient:

x+ = argmin
x

B∑
i=1

fi(xi) + u>Ax

⇐⇒x+i ∈ argmin
xi

fi(xi) + u>Aixi, i = 1, . . . , B

i.e., minimization decomposes into B separate problems.

Dual decomposition algorithm: repeat for k = 1, 2, 3, . . . ,

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))>Aixi, i = 1, . . . , B

u(k) = u(k−1) + tk(
B∑
i=1

Aix
(k)
i − b)

Can think of these steps as

• Broadcast: send u to each of the B processors, each optimizes in parallel to find xi.

• Gather: collect Aixi from each processor. update the global dual variable u.

Example with inequality constraints:

min
x

B∑
i=1

fi(xi) subject to
B∑
i=1

Aixi ≤ b
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Dual decomposition (projected subgradient method) repeats for k = 1, 2, 3, . . . ,

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))>Aixi, i = 1, . . . , B

v(k) = v(k−1) + tk(
B∑
i=1

Aix
(k)
i − b)

u(k) = (v(k))+

where (·)+ is component-wise thresholding, (u+)i = max{0, ui}.

2.3 Augmented Lagrangians

Disadvantage of dual (sub)gradient descent methods: require strong conditions to ensure

primal iterates converge to solutions. Convergence properties can be improved by utilizing

augmented Lagrangian. Transform primal:

min
x
f(x) +

ρ

2
‖Ax− b‖22

subject to Ax = b

Clearly extra term ρ
2
‖Ax− b‖22 does not change problem. Use dual gradient ascent, repeat

for k = 1, 2, 3, . . . ,

x(k) = argmin
x
f(x) + (u(k−1))>Ax+

ρ

2
‖Ax− b‖22 (smooth)

u(k) = u(k−1) + ρ(Ax(k) − b)

when A has full column rank, primal is guaranteed strongly convex.

Notice step size choice tk = ρ, for all k, in dual gradient ascent. Why? Since x(k)
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minimizes f(x) + (u(k−1))>Ax+ ρ
2
‖Ax− b‖22 over x, we have

0 ∈ ∂f(x(k)) + A>(u(k−1) + ρ(Ax(k) − b))

= ∂f(x(k)) + A>u(k)

This is the stationarity condition for the original primal problem. can show under mild

conditions that Ax(k) − b approaches zero. i.e. primal iterates approach feasibility. hence

in the limit, KKT conditions are satisfied and x(k), u(k) approach optimality.

• Advantage: much better convergence properties.

• Disadvantage: lose decomposability.

2.4 ADMM

good convergence properties of augmented Lagrangian + decomposability. Consider min-

imization problem

min
x
f1(x1) + f2(x2) subject to A1x1 + A2x2 = b

As before, we augment the objective

min
x
f1(x1) + f2(x2) +

ρ

2
‖A1x1 + A2x2 − b‖22

subject to A1x1 + A2x2 = b

Write the augmented Lagrangian as

Lρ(x1, x2, u) = f1(x1) + f2(x2) + u>(A1x1 + A2x2 − b) +
ρ

2
‖A1x1 + A2x2 − b‖22
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Now ADMM repeats the steps, for k = 1, 2, 3, . . . ,

x
(k)
1 = argmin

x1
Lρ(x1, x

(k−1)
2 , u(k−1))

x
(k)
2 = argmin

x2
Lρ(x

(k)
1 , x2, u

(k−1))

u(k) = u(k−1) + ρ(A1x
(k)
1 + A2x

(k)
2 − b)

Note that the usual method of multipliers would have replaced the first two steps by

(x
(k)
1 , x

(k)
2 ) = arg min

x1,x2
Lρ(x1, x2, u

(k−1))

2.4.1 ADMM in scaled form

It is often easier to express the ADMM algorithm in a scaled form, where we replace the

dual variable u by a scaled variable w = u/ρ. In this parameterization, the ADMM steps

are

x
(k)
1 = argmin

x1
f1(x1) +

ρ

2
‖A1x1 + A2x

(k−1)
2 − b+ w(k−1)‖22

x
(k)
2 = argmin

x2
f2(x2) +

ρ

2
‖A1x

(k)
1 + A2x2 − b+ w(k−1)‖22

w(k) = w(k−1) + A1x
(k)
1 + A2x

(k)
2 − b

Note that here the kth iterate w(k) is just given by a running sum of residuals:

w(k) = w(0) +
k∑
i=1

A1x
(i)
1 + A2x

(i)
2 − b

2.4.2 Example: lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:
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min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

We can rewrite this as

min
β,α

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to β − α = 0

The ADMM updates are

β+ = argmin
x1

1

2
‖y −Xβ‖22 +

ρ

2
‖β − α + w‖22

= (X>X + ρI)−1(X>y + ρ(α− w))

α+ = argmin
x1

λ‖α‖1 +
ρ

2
‖β+ − α + w‖22

= Sλ/ρ(β+ + w)

w+ = w + β+ − α+

2.4.3 Example: group lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the group lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖β(g)‖2

Rewrite as

min
β

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖α(g)‖2 subject to β − α = 0
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ADMM steps are:

β(k) = (X>X + ρI)−1(X>y + ρ(α(k−1) − w(k−1)))

α
(k)
(g) = Rcgλ/ρ(β

(k)
(g) + w

(k−1)
(g) ), g = 1, . . . , G

w(k) = w(k−1) + β(k) − α(k)

Notes:

• The matrix X>X + ρI is always invertible, regardless of X .

• If we compute a factorization (say Cholesky) inO(p3) flops, then each β update takes

O(p2) flops.

• The α update applies the group soft-thresholding operatorRt, which is defined as

Rt(x) =

(
1− t

‖x‖

)
+

x

• Similar ADMM steps follow for a sum of arbitrary norms as regularizer, provided

we know prox operator of each norm.

• ADMM algorithm can be rederived when groups have overlap (hard problem to op-

timize in general!).

2.5 Consensus ADMM

Consider a problem of the form:

min
x

B∑
i=1

fi(x)
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The traditional method is to rewrite the problem as

min
x1,...,xB

B∑
i=1

fi(xi) subject to x1 = x2, x2 = x3, x3 = x4, . . . , xB−1 = xB

The variables are tangled together, not distributable! Instead, the consensus ADMM ap-

proach begins by reparametrizing:

min
x,x1,...,xB

B∑
i=1

fi(xi) subject to xi = x, i = 1, . . . , B

The consensus ADMM steps are:

x
(k)
1 = argmin

x1
f1(x1) +

ρ

2
‖x1 − x(k−1) + w

(k−1)
1 ‖22

x
(k)
2 = argmin

x2
f2(x2) +

ρ

2
‖x2 − x(k−1) + w

(k−1)
2 ‖22

. . . . . .

x
(k)
B = argmin

xB
fB(xB) +

ρ

2
‖xB − x(k−1) + w

(k−1)
B ‖22

x(k) =
1

B

B∑
i=1

(x
(k)
i + w

(k−1)
i )

w
(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . , B
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