
MATLAB Toolbox envlp: User’s Guide

June 10, 2014

Contents 1

1 Overview 2
1.1 Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Quick Start 6
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A Guided Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Envelope Models 14
3.1 Multivariate Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Envelope Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Envelope Model Using Sequential Algorithm . . . . . . . . . . . . . . . . . . . 16
3.4 Heteroscedastic Envelope Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Inner Envelope Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Partial Envelope Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Scaled Envelope Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Envelope Model in the Predictor Space . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Envelope Model in the Predictor Space Using Partial Least Squares Algorithm 24
3.10 Envelope Estimator for Multivariate Mean . . . . . . . . . . . . . . . . . . . . 25

4 Optional Arguments 27

1



1

Overview

The envelope model is a new area in multivariate analysis. It uses dimension reduction
techniques to achieve efficient estimation of parameters, for example, the regression coeffi-
cients in multivariate linear regression (MLR).

This MATLAB toolbox envlp currently has nine modules: env, envseq, henv, ienv, penv,
senv, xenv, xenvpls and envmean. The nine modules implement six models in the enve-
lope family, including envelope model (using Grassmann manifold optimization algorithm
and sequential algorithm), heteroscedastic envelope model, inner envelope model, partial
envelope model, scaled envelope model and envelope model in the predictor space (using
Grassmann manifold optimization algorithm and partial least squares algorithm), as well
as the envelope estimator for multivariate mean. The modules are described as follows.

env Implements the envelope model. The envelope model is a general tool for efficient esti-
mation in the context of MLR, and it has the potential to achieve substantial efficiency
gains when part of the response variables or their linear combination is invariant to
the changes of the predictors [?].

envseq Implements the envelope model using sequential algorithm. This module also
implements the envelope model, but uses a sequential computing algorithm. This
algorithm makes the envelope model applicable for small sample size cases [?].

henv Implements the heteroscedastic envelope model. The heteroscedastic envelope model
is used when the data has non constant error structure [?].

ienv Implements the inner envelope model. The inner envelope model is also a general
tool for efficient estimation in the context of MLR, but has a different mechanism
from the envelope model. Therefore it may provide efficiency gains in the cases when
the envelope models fail to offer any gains [?].

penv Implements the partial envelope model. The partial envelope model can be applied
when part of the predictors are of main interest. It often gives more efficiency gains
than the envelope model in estimating the coefficients of the main predictors [?].

senv Implements the scaled envelope model. The scaled envelope model is used when the
user hopes to have a scale-invariant version of the envelope model [?, 2012].

xenv Implements the envelope model in the predictor space. The envelope model in the
predictor space is used when some of the predictors or their linear combinations

2



1.1. TECHNICAL SUPPORT 3

do not contribute to the change of the responses. It can potentially bring a better
prediction performance than the standard model, or even partial least squares [?].

xenvpls Implements the envelope model in the predictor space using partial least squares
algorithm. This module implements the envelope model in the predictor space, but
uses the partial least squares algorithm. This algorithm makes the envelope model in
the predictor space applicable for small sample size cases [?].

envmean Implements the envelope estimator of the multivariate mean. The envelope es-
timator of the multivariate mean has smaller mean squared error and asymptotic
standard errors compared to the sample mean, and often has smaller mean squared
error compared to the James-Stein estimator [?].

The complete applicability of this toolbox is described in Table 1.1.

1.1. Technical Support

We provide a support website, on which the users can download the toolbox, report bugs
and check recent updates http://code.google.com/p/envlp/. For further help, the users can
contact the authors of the toolbox: Dennis Cook (dennis@stat.umn.edu), Zhihua Su (zhi-
huasu@stat.ufl.edu), and Yi Yang (yiyang@umn.edu).

1.2. Directory Structure

Toolbox folder contains following files and sub-folders:

./envelope_license.m Envelope Toolbox License.

./install_envelope.m Envelope Toolbox installation script.

./README.txt Envelope Toolbox Quick Start.

./data/ Data published in papers on envelope models and data description manual.

./doc/ User’s guide, function reference manual.

./examples/ Examples for demonstration.

./src/ Envelope toolbox source code.

1.3. Document Organization

This user’s guide is organized as follows:

Chapter 1 Overview. Introduces the content and applicability of the toolbox.

Chapter 2 Quick start. Describes the installation of the toolbox, and provides simple ex-
amples on using the main functions.

http://code.google.com/p/envlp/


4 CHAPTER 1. OVERVIEW

Module Dimension Selection Inference Tools Section

env

AIC Estimation and Prediction

3.2
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis Test on Coefficients
m-fold CV

envseq m-fold CV Bootstrap for Estimating Standard Errors 3.3

henv
AIC Estimation and Prediction

3.4
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis Test on Coefficients
m-fold CV

ienv

AIC Estimation and Prediction

3.5
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis Test on Coefficients
m-fold CV

penv

AIC Estimation and Prediction

3.6
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis Test on Coefficients
m-fold CV

senv
AIC Estimation and Prediction

3.7BIC Bootstrap for Estimating Standard Errors
m-fold CV Hypothesis Test on Coefficients

xenv

AIC Estimation and Prediction

3.8
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis Test on Coefficients
m-fold CV

xenvpls m-fold CV Bootstrap for Estimating Standard Errors 3.9

envmean

AIC Estimation and Prediction

3.10
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis Test on Coefficients
m-fold CV

Table 1.1: Applicability of toolbox envlp



1.3. DOCUMENT ORGANIZATION 5

Chapter 3 Envelope models. Discusses each module of the toolbox, and demonstrates the
applicability with more detailed examples.

Chapter 4 Optional arguments. Explains how to control the convergence speed, input
user-specified starting values, and display iteration process.

This user’s guide is intended to assist the users in cognizing and mastering the usage of
the toolbox, not all commands are discussed in details as illustrated. For more details, the
users can consult the technical Reference.



2

Quick Start

2.1. Installation

To install the toolbox, direct your MATLAB working directory to the folder “envlp”, and
type

install_envlp

If the users agree with our license statements, the installation is completed, and all the
utilities of the toolbox are added to the MATLAB path. Once installed, no further action is
needed to call the functions in the toolbox, even if the users change a working directory, or
MATLAB is relaunched. If a previous version of the toolbox is present, it should be removed
before installing the new version. To remove, simply delete the folder of the toolbox.

2.2. A Guided Tour

This “envlp” toolbox consists tools in the following three classes:

1. Dimension selection: Select the dimension of the envelope subspace.

2. Model Fitting with Selected Dimension: Fit the model.

3. Post processing: Inference based on the model fitting.

We will present a tour of our toolbox through all three classes.

Dimension selection

The dimension selection tools available in this toolbox are Akaike information criterion
(AIC), Bayesian information criterion (BIC), Likelihood ratio testing (LRT) and m-fold cross
validation. The m-fold cross validation can be applied to all methods, while AIC, BIC
and LRT can be applied to 'env', 'henv', 'ienv', 'penv', 'senv' and 'xenv', except that LRT
cannot be applied to 'senv', as indicated in Table 1.1. AIC and BIC generally require longer
computing time than LRT, because of the nature of the method. The syntaxes of AIC, BIC,
LRT and m-fold cross validation are

6



2.2. A GUIDED TOUR 7

u = modelselectaic(X, Y, modelType)
u = modelselectbic(X, Y, modelType)
u = modelselectlrt(X, Y, alpha, modelType)
SelectOutput = mfoldcv(X, Y, m, modelType)

For the inputs: X is a matrix containing the predictors, except that with penv, it is a list hav-
ing X.X1 and X.X2; Y is a matrix containing the response; ’alpha’ is the significance level;
’m’ is an integer indicating m-fold cross validation and ’modelType’ is a string indicting the
model. The choices for ’modelType’ in modelselectaic, modelselectbic and modelselectlrt can
be 'env', 'henv', 'ienv', 'penv', 'senv'and 'xenv', and the choices for ’modelType’ in mfoldcv
are 'envseq'and 'xenvpls'. The output is the dimension of the envelope subspace selected
by the tool for modelselectaic, modelselectbic and modelselectlrt, and a list containing di-
mension of the envelope subspace as well as the prediction error for each dimension for
mfoldcv. Examples will be provided in Section 2.3.

Model Fitting with Selected Dimension

The functions to fit the six models in the envelope family are the main drive of this toolbox.
Their syntaxes are

ModelOutput = env(X, Y, u)
ModelOutput = envseq(X, Y, u)
ModelOutput = henv(X, Y, u)
ModelOutput = ienv(X, Y, u)
ModelOutput = penv(X, Y, u)
ModelOutput = senv(X, Y, u)
ModelOutput = xenv(X, Y, u)
ModelOutput = xenvpls(X, Y, u)

The inputs X and Y are the same as the inputs in the dimension selection tools, and u is the
dimension of the envelope subspace. The user can specify the dimension, or use dimension
selection tools described in dimension selection part to choose u. The output ModelOutput
is a list, containing the maximum likelihood estimators (MLE) under the model, as well
as some key statistics for inference, including the standard error ratios of elements in the
regression coefficients for the standard model versus the envelope model, maximized value
of the log likelihood, number of parameters, etc.

envseq and xenvpls fit the same model as env and xenv, respectively, but use a different
computing algorithm, making them capable to accommodate small sample size cases. With
large sample size cases, envseq and xenvpls can also be applied, and usually give different
results from env and xenv. In this case, ? indicates that env and xenv normally give better
results, and therefore are recommended.



8 CHAPTER 2. QUICK START

Post-processing

This toolbox provides functions for the following inference:

• Compute bootstrap standard errors for the regression coefficients β̂, which gives an
estimator for the actual standard errors of β̂.

• For a given data point, report its fitted value or predicted value, with associated
standard errors.

• Test hypothesis

H0 : Lβ̂R = A

Hα : Lβ̂R 6= A

where L, R and A are given matrices.

The syntaxes of the functions for the inferences are

bootse = bootstrapse(X, Y, u, B, modelType)
PredictOutput = prediction(ModelOutput, Xnew, infType, modelType)
TestOutput = testcoefficient(ModelOutput, modelType, TestInput)

respectively. For the inputs, modelType in all three functions can be 'env', 'henv', 'ienv',
'penv', 'senv' and 'xenv', while modelType in bootstrapse can also be 'envseq' and 'xen-
vpls'; ModelOutput in prediction and testcoefficient is a list returned from the functions for
model fitting; X, Y, and u are discussed in the dimension selection part; B is the number
of bootstrap sample; Xnew is a value of X with which to estimate or predict Y; infType is
a string of characters indicting the inference type, the choices are “estimation” and “pre-
diction”; and TestInput is a list that specifies the null hypothesis quantities L, R, and A.
TestInput is an option input argument; if missing, testcoefficient will perform the usual F
test, i.e. testing if β = 0. The output of bootstrapse is a matrix the same size of β̂, with each
elements as the bootstrap standard error of its corresponding element in β̂. The output of
prediction is a list containing the fitted or predicted value, its covariance matrix and stan-
dard errors. The function testcoefficient will print out a form displaying the test statistic,
degrees of freedom of the reference distribution and the p-value, all of which and some
other statistics are in the list TestOutput.

For functions in envmean module, the interface is different from those in other modules,
since the context is not regression. The functions in envmean module will be explained in
details in Section 3.10.

2.3. Two examples

To demonstrate the usage of this toolbox, we take the envelope model and partial envelope
model as examples. Other methods can be applied similarly, and are also discussed in
details in Chapter 3.



2.3. TWO EXAMPLES 9

Wheat Protein Data

For the demonstration of the envelope model, we apply it to the wheatprotein data, which
is used as a data analysis example in ?. First we load the data and assign column 1 to 6 as
the response Y and column 8 as the predictor X. The description of the data is available
under the folder /envlp/data.

load wheatprotein.txt
X = wheatprotein(:, 8);
Y = wheatprotein(:, 1:6);

Then we apply the dimension selection tools to choose u and get the following results.

modelType = ’env’;
u = modelselectaic(X, Y, modelType)
u =

1
u = modelselectbic(X, Y, modelType)
u =

1

alpha = 0.01;
u = modelselectlrt(X, Y, alpha, modelType)
u =

1

In this example, all three dimension selection tools agree that the dimension of the envelope
should be 1, which is consistent with the results in ?. Now we fit the envelope model with
dimension 1.

ModelOutput = env(X, Y, u)
ModelOutput =

beta: [6x1 double]
Sigma: [6x6 double]
Gamma: [6x1 double]
Gamma0: [6x5 double]
eta: 8.5647

Omega: 7.8762
Omega0: [5x5 double]
alpha: [6x1 double]

l: -850.7592
covMatrix: [6x6 double]

asySE: [6x1 double]
ratio: [6x1 double]

paramNum: 28
n: 50



10 CHAPTER 2. QUICK START

We notice that ModelOutput is a list that includes the MLEs and the statistics relevant to
the inference of the envelope model. For more details of the components in ModelOutput,
please refer to the Reference of the toolbox. If we want to see the regression coefficients, as
well as the standard error ratios, we can type

ModelOutput.beta
ans =
-1.0644
4.4730
3.6839
-5.9770
0.6013
-1.5986

ModelOutput.ratio
ans =
28.0389
18.3983
23.5916
16.2928
65.7999
6.4555

and get the results. We can also look at the eigenvalues of Σ1 and Σ2 by the following
commands

ModelOutput.Omega
ans =

7.8762

eig(ModelOutput.Omega0)
ans =
1.0e+03 *
6.5166
0.2083
0.0201
0.0004
0.0003

These results are consistent with those published in ?. After getting the model fitting results,
if we would like to check the fitted value and its standard errors for the second observation,
we can use the prediction function.

Xnew = X(2, :)’;
PredictOutput = predict_env(ModelOutput, Xnew, ’estimation’)
PredictOutput =



2.3. TWO EXAMPLES 11

value: [6x1 double]
covMatrix: [6x6 double]

SE: [6x1 double]

We can check the standard errors of the fitted value, and also compare the fitted value with
its true value

PredictOutput.SE
ans =

4.8892
4.0227
4.3237
4.7470
6.8186
2.6948

[PredictOutput.value, Y(2,:)’]
ans =
474.7135 458.0000
127.4740 112.0000
251.2044 236.0000
380.8280 368.0000
380.9473 383.0000
-6.3287 -15.0000

Now suppose we want to test if β = 0, we run the testcoefficient as

TestOutput = testcoefficient(ModelOutput, modelType)
Test Hypothesis Chisq Statistic DF P-value
-------------------------------------------------------
L * beta * R = A 116.230 6 0.0000
-------------------------------------------------------

Notice that we did not have TestInput, because we are performing the usual F test on if
β = 0. The test results indicate that we have strong evidence to reject β = 0.

Fiber and Paper Data

Now we use another example for the partial envelope model. The data loaded is the fiber
and paper data analyzed in ?.

load fiberpaper.dat
Y = fiberpaper(:, 1 : 4);
X.X1 = fiberpaper(:, 7);
X.X2 = fiberpaper(:, 5 : 6);



12 CHAPTER 2. QUICK START

We notice that for partial envelope model, X is a list, with X.X1 containing the main predic-
tors and X.X2 containing covariates. The dimension selection process is parallel to that for
the envelope model:

modelType = ’penv’;
u = modelselectaic(X, Y, modelType)
u =

3

u = modelselectbic(X, Y, modelType)
u =

1

alpha = 0.01;
u = modelselectlrt(X, Y, alpha, modelType)
u =

1

In this example, AIC picks the dimension 3, while BIC and LRT both gives dimension as
1. In ?, u = 1 is used for model fitting and inference. So we fit the partial envelope model
with u = 1.

u = 1;
ModelOutput = penv(X, Y, u)
ModelOutput =

beta1: [4x1 double]
beta2: [4x2 double]
alpha: [4x1 double]
Gamma: [4x1 double]
eta: 0.0047

Omega: 0.0149
Omega0: [3x3 double]
Sigma: [4x4 double]

l: -35.6323
paramNum: 23
covMatrix: [12x12 double]

asySE: [4x1 double]
ratio: [4x1 double]

n: 62

Again we get the output as a list, which contains the MLEs for the parameters and statistics
that are relevant to the inference for the partial envelope model. Detailed description of the
elements in the list ModelOutput is in the Reference of the toolbox. To display the standard
error ratios, and the eigenvalues of Σ1 and Σ2, we key in



2.3. TWO EXAMPLES 13

ModelOutput.ratio
ans =
65.9692
6.8217
10.4152
9.6228

ModelOutput.Omega
ans =

0.0149

eig(ModelOutput.Omega0)
ans =

4.9819
0.0999
0.0050

The results are almost the same the those in ?. They are slightly different, because the
toolbox uses a different starting value algorithm, which is less likely to be trapped in local
minimum and thus leads to more reliable results. Next we look at the standard errors for
elements in β̂. Since ModelOutput.asySE contains the asymptotic standard errors, for actual
standard errors, we need to divide the asymptotic standard errors by

√
n, where n is the

sample size and is returned in ModelOutput.n.

ModelOutput.asySE / sqrt(ModelOutput.n)
ans =
1.0e-03 *
0.3181
0.8704
0.9719
0.4689

The standard errors above are computed assuming the partial envelope model. They can
also be estimated using bootstrap.

B = 5000;
bootse = bootstrapse(X, Y, u, B, modelType)
bootse =

0.0052
0.0020
0.0029
0.0013

The uses may get slightly different results each time they run bootstrapse, as different
random seeds are used.



3

Envelope Models

3.1. Multivariate Linear Regression

The envelope model is originally developed under the framework of multivariate linear
regression, and its performance is frequently compared to the standard multivariate linear
regression model. In this toolbox, we offer some simple functions on multivariate linear
regression to ease the comparison between the two models.

A standard multivariate linear regression model is formulated as

Y = α + βX + ε,

where Y ∈ Rr is the multivariate response, X ∈ Rp is non-stochastic predictor, and ε ∈ Rr

follows a distribution with mean 0, and covariance matrix Σ ∈ Rr×r, α ∈ Rr and β ∈ Rr×p

are the unknown intercept and coefficients. The goal of the envelope model is to reduce the
standard errors in estimating β.

This function fits the standard multivariate linear regression model

ModelOutput = fit_OLS(X, Y)

where the input X is an n× p matrix, with the ith row being the transpose of the ith observa-
tion of X, and Y is an n× r matrix with the ith row being the transpose of the ith observation
of Y. The output ModelOutput is a list, which contains the ordinary least squares (OLS)
estimators of β, Σ and α.

The standard errors of the OLS estimator β̂ is often compared to those from the envelope
model, the function

bootse = bootstrapse_OLS(X, Y, B)

computes the estimated standard errors of β̂ by bootstrap. The input B is the number of
bootstrap samples, and bootse returns a matrix the same size as β̂, with each element as
the standard error of the corresponding element in β̂.

14



3.2. ENVELOPE MODEL 15

3.2. Envelope Model

The envelope model is a general method in the envelope family to reduce the standard er-
rors in estimating β. It can be applied when the number of the responses is strictly greater
than the number of the predictors, and the responses are continuous variables. It has a
potential to obtain efficiency gains in estimating β, compared to the OLS estimators.

In the multivariate linear regression context in Section 3.1, a coordinate form of the en-
velope model is

Y = α + ΓηX + ε, Σ = ΓΩΓT + Γ0Ω0ΓT
0 ,

where the regression coefficients β = Γη, B = span(β), Γ ∈Rr×u spans EΣ(B) – the envelope
subspace, Γ0 ∈ Rr×(r−u) spans the orthogonal complement of EΣ(B), η ∈ Ru×p, Ω ∈ Ru×u,
Ω0 ∈R(r−u)×(r−u) are coordinates, and u is the dimension of EΣ(B).

To select the dimension of the envelope subspace u, we can use the following functions

u = modelselectaic(X, Y, ’env’)
u = modelselectbic(X, Y, ’env’)
alpha = 0.01; # Users can specify other significance level
u = modelselectlrt(X, Y, alpha, ’env’)

The possible values of u can be any integer from 0 to r. When u = r, the envelope model is
equivalent to the standard multivariate linear model. And when u = 0, it means that β = 0,
then the changes in Y do not depend on X. After obtaining u, we can fit the envelope model
by

ModelOutput = env(X, Y, u)

The output ModelOutput is a list, which contains the MLEs of β, Σ, Γ, Γ0, η, Ω, Ω0 and α,
and also statistics computed from the model, including the maximized log likelihood, the
asymptotic covariance matrix of vec(β̂), the asymptotic standard errors of elements in β̂, the
ratios of the asymptotic standard errors of the standard model versus the envelope model
for elements in β, the number of parameters in the model, and the number of observations
in the data. After fitting the data and get ModelOutput, we can perform post processing
inference as computing bootstrap standard errors of β̂ by

bootse = bootstrapse(X, Y, u, B, ’env’)

or computing the fitted value or predicted value given an X by

PredictOutput = prediction(ModelOutput, Xnew, ’estimation’, ’env’)
PredictOutput = prediction(ModelOutput, Xnew, ’prediction’, ’env’)



16 CHAPTER 3. ENVELOPE MODELS

or testing if some linear combination of β is equal to a particular matrix, i.e. given L, R,
and A, testing if LβR = A,

TestOutput = testcoefficient(ModelOutput, modelType, TestInput)

The inputs and outputs of these post processing functions are discussed in details in Section
2.2.

3.3. Envelope Model Using Sequential Algorithm

The envelope model using sequential algorithm implements the envelope model in Sec-
tion 3.2, but uses a different computing algorithm. The algorithm estimates the envelope
subspace sequentially [?]. It is faster than the Grassmann manifold optimization algorithm
used in env, and it is applicable when the sample size n is less than the number of responses
r. In large sample cases, the performance of this algorithm is not as good as the Grassamn
manifold optimization algorithm, but as it is faster, it can provide a starting value for the
Grassmann manifold optimization.

To select the dimension of the envelope subspace u, we can use the m-fold cross valida-
tion. Common choices are 5 or 10.

m = 5;
SelectOutput = mfoldcv(X, Y, m, ’envseq’)

The possible values of u can be any integer from 0 to the minimum of the floor of (m −
1)n/m− 1. When u = 0, it means that β = 0, and the changes in Y do not depend on the
changes in X. If the sample size is large, we can also use the tools for 'env' to select u, as
env and envseq implement the same model.

u = modelselectaic(X, Y, ’env’)
u = modelselectbic(X, Y, ’env’)
alpha = 0.01;
u = modelselectlrt(X, Y, alpha, ’env’)

After getting u, to fit the envelope model using the sequential algorithm, we use

ModelOutput = envseq(X, Y, u)



3.4. HETEROSCEDASTIC ENVELOPE MODEL 17

The output ModelOutput is a list, which contains the estimators of β, Σ, Γ, Γ0, η, Ω, Ω0

and α, and also the number of parameters in the model and number of observations in the
data. It does not contain any information based on the likelihood function, for example, the
maximized log-likelihood, the asymptotic covariance matrix of vec(β̂), or the asymptotic
standard errors of elements in β̂. envseq is mainly implemented for small sample size cases,
under which the likelihood cannot be estimated. Then any inference that is based on the
covariance matrix of vec(β) such as estimation, prediction and test coefficients cannot be
performed with 'envseq'. But the bootstrap standard errors can still be computed for β̂ by

bootse = bootstrapse(X, Y, u, B, ’envseq’)

env can be very slow if r is large, and it cannot be applicable when n is less than r. In those
cases, envseq can be used as an alternative. The results of envseq also provide a starting
value for env, although it is more often stuck in local minimums than the default starting
value of env. Nevertheless, envseq provides a

√
n consistent estimator of the envelope,

then one Gauss-Newton iteration with the output of envseq as the starting value gives an
estimator that is asymptotically equivalent to the MLE of EΣ(B). To use the output of envseq
as the starting value, an example is shown as follows.

load wheatprotein.txt
X = wheatprotein(:, 8);
Y = wheatprotein(:, 1 : 6);
u = 1;
temp = envseq(X, Y, u);
Opts.init = temp.Gamma;
ModelOutput = env(X, Y, u, Opts);

The usage of Opts will be discussed in details in Chapter 4.

3.4. Heteroscedastic Envelope Model

The heteroscedastic envelope model [?] is used when the data has non constant error
structure, and it is developed under the framework of estimating multivariate means for
different populations. To use the heteroscedastic envelope model, the number of response
should be greater than or equal to the number of populations.

The standard model for estimating multivariate means for p populations can be formu-
lated as Y(i)j = µ + β(i) + ε(i)j, i = 1, · · · , p, j = 1, · · · , n(i). We use the subscript (i) to
represent the ith group, and we use j without the parenthesis to represent the jth obser-
vation. Then Y(i)j ∈ Rr is the jth observation in the ith group, n(i) is the number of ob-
servations in the ith group, µ ∈ Rr is the grand mean, β(i) ∈ Rr is the main effect for the
ith group and satisfies ∑

p
i=1 n(i)β(i) = 0, the errors ε(i)j follows a distribution with mean 0,

and covariance matrix Σ(i) ∈Rr×r. With this formulation, let B = span(β(1) · · · , β(p)), and



18 CHAPTER 3. ENVELOPE MODELS

M = {Σ(i) : i = 1, · · · , p}. The coordinate form of the heteroscedastic envelope model is
displayed as follows:

Y(i)j = µ + Γη(i) + ε(i)j, Σ(i) = ΓΩ1(i)Γ
T + Γ0Ω0ΓT

0 , i = 1, · · · , p, j = 1, · · · , n(i),

where β(i) = Γη(i), Γ ∈ Rr×u spans EM(B) – the M envelope of B, Γ0 ∈ Rr×(r−u) spans
the orthogonal complement of EM(B), η(i) ∈ Ru×1, Ω1(i) ∈ Ru×u, Ω0 ∈ R(r−u)×(r−u) , i =
1, · · · , p, are coordinates, ∑

p
i=1 n(i)η(i) = 0, and u is the dimension of EM(B).

To use the heteroscedastic envelope model, first we check if the data has heteroscedastic
error structure by the Box’s M test [?]. Using the water strider example [?], the following
codes performs the Box’s M test.

load waterstrider.mat
alpha = 0.01; # Users can specify other significance level
TestOutput = mtest(X, Y, alpha);

The input X is a group indicator, there is no constraint on the number of columns of X, as
long as X takes p unique values for p populations. For example, if there are three groups,
X can take three unique values as 1, 2, and 3 to indicate the groups, or X can take (0, 1),
(1, 0), and (0, 0) to indicate the groups. The output of the M test is displayed below

---------------------------------------------
MBox Chi-sqr. df P

---------------------------------------------
157.5977 137.3361 72 0.0000
---------------------------------------------
Covariance matrices are significantly different.

As the data has non constant covariance structure, we need to apply the heteroscedastic
envelope model. To select the dimension of the envelope subspace, we use

u = modelselectaic(X, Y, ’henv’)
u = modelselectbic(X, Y, ’henv’)
alpha = 0.01;
u = modelselectlrt(X, Y, alpha, ’henv’)

The input X has the same form as in the function mtest. After obtaining u, the heteroscedas-
tic envelope model can be fitted by

ModelOutput = henv(X, Y, u)



3.5. INNER ENVELOPE MODEL 19

The output ModelOutput is a list containing the fitted values Ŷ, the unique values in X,
the MLEs of the grand mean µ, the group mean µ + β(i), Γ, Γ0, β(i), Σ(i), η(i), Ω(i), and
Ω0 , and also statistics computed from the model, including the maximized log likelihood,

the asymptotic covariance matrix of (µ̂T, β̂
T
(1), · · · , β̂

T
(p))

T, the asymptotic standard errors of

elements in β̂(i), the ratios of the asymptotic standard errors of the standard model versus
the heteroscedastic envelope model for elements in β(i), the number of parameters in the
model, and the number of observations in the data. After model fitting, the functions for
post processing inference are

bootse = bootstrapse(X, Y, u, B, ’henv’)
PredictOutput = prediction(ModelOutput, Xnew, ’estimation’, ’henv’)
PredictOutput = prediction(ModelOutput, Xnew, ’prediction’, ’henv’)
TestOutput = testcoefficient(ModelOutput, modelType, TestInput)

Their inputs and outputs are similar to those for the envelope model, except that X here is
a group indicator, and Xnew in prediction should be one of the unique value of X in the
original data.

3.5. Inner Envelope Model

Like the envelope model, the inner envelope model [?] is also a general method to reduce
the standard errors in estimating β. It has a different mechanism to achieve efficiency gains
than the envelope model, so it may be very useful when the envelope model reduces to the
standard model and offers no efficiency gains. The inner envelope model also requires that
the number of predictors is strictly less than the number of responses.

In the multivariate linear regression context (Section 3.1), the coordinate form of the in-
ner envelope model can be written as

Y = α + (Γ1ηT
1 + Γ0BηT

2 )X + ε, Σ = Γ1Ω1ΓT
1 + Γ0Ω0ΓT

0 ,

where β = Γ1ηT
1 + Γ0BηT

2 ∈Rr×p, B = span(β), Γ1 ∈Rr×u spans the inner envelope subspace
IEΣ(B), Γ0 ∈Rr×(r−u) spans the orthogonal complement of IEΣ(B), B ∈R(r−u)×(p−u) is a
semi-orthogonal matrix such that (Γ1, Γ0B) spans B, η1 ∈Rp×u, η2 ∈Rp×(p−u), Ω1 ∈Ru×u,
and Ω0 ∈R(r−u)×(r−u) contain the coordinates, and u is the dimension of IEΣ(B).

To select the dimension of IEΣ(B), we use the same functions as for the envelope model,
except that the modelType is 'ienv'.

u = modelselectaic(X, Y, ’ienv’)
u = modelselectbic(X, Y, ’ienv’)
alpha = 0.01;
u = modelselectlrt(X, Y, alpha, ’ienv’)



20 CHAPTER 3. ENVELOPE MODELS

The possible values of u are integers from 0 to p. When u = 0, the inner envelope model
reduces to the standard model, and offers no efficiency gains. When u = p, the inner enve-
lope model is equivalent to an envelope model with dimension p.

Given the dimension u, the inner envelope model can be fitted by

ModelOutput = ienv(X, Y, u)

The output ModelOutput is a list containing the MLEs of β, Σ, Γ1, Γ0, η1, B, η2, Ω1, Ω0 and
α, and also statistics computed from the model, including the maximized log likelihood,
the asymptotic covariance matrix of vec(β̂), the asymptotic standard errors of elements
in β̂, the ratios of the asymptotic standard errors of the standard model versus the inner
envelope model for elements in β, the number of parameters in the model, and the number
of observations in the data. After model fitting, the functions for post processing inference
are

bootse = bootstrapse(X, Y, u, B, ’ienv’)
PredictOutput = prediction(ModelOutput, Xnew, ’estimation’, ’ienv’)
PredictOutput = prediction(ModelOutput, Xnew, ’prediction’, ’ienv’)
TestOutput = testcoefficient(ModelOutput, modelType, TestInput)

Their inputs and outputs are similar to those for the envelope model.

3.6. Partial Envelope Model

The partial envelope model [?] can be applied when part of the predictors are of main
interest. It only requires that the number of the main predictors is strictly less than the
number of the responses. This is particular useful when the number of the predictors p
is large, but only a small number of predictors are of main interest. Suppose that XT =

(XT
1 , XT

2 ), where X1 ∈ Rp1 are predictors of main interest, and X2 ∈ Rp2 are covariates,
p1 + p2 = p. Then the standard model is formulated as Y = α + β1X1 + β2X2 + ε, and the
coordinate form of the partial envelope model is

Y = α + ΓηX1 + β2X2 + ε, Σ = ΓΩΓT + Γ0Ω0ΓT
0 ,

where β1 = Γη ∈ Rr×p1 , B1 = span(β1), Γ ∈ Rr×u spans the partial envelope subspace
EΣ(B1), Γ0 ∈ Rr×u spans the orthogonal complement of EΣ(B1), η ∈ Ru×p1 , Ω ∈ Ru×u,
Ω0 ∈ R(r−u)×(r−u) are coordinates, β2 ∈ Rr×p2 contains the coefficients for X2 and u is the
dimension of EΣ(B1).

For functions related to the partial envelope model, the input X is a list, which has two
elements X.X1 and X.X2. The element X.X1 is an n × p1 matrix, with the ith row as the
transpose of the ith observation of X1, and X.X2 is an n × p2 matrix, with the ith row as
the transpose of the ith observation of X2. The form of X as a list is unique to the partial



3.7. SCALED ENVELOPE MODEL 21

envelope model. The name of the list can be different, but the names of components in the
list are fixed. For example, we can have ABC.X1 and ABC.X2, but we cannot have ABC.Z1
and ABC.Z2.

The following functions can be applied to select u,

u = modelselectaic(X, Y, ’penv’)
u = modelselectbic(X, Y, ’penv’)
alpha = 0.01;
u = modelselectlrt(X, Y, alpha, ’penv’)

The possible values of u are any integer from 0 to r, when u = r, the partial envelope model
reduces the standard model, and when u = 0, the changes in Y do not depend on the
changes in X1 given X2.

After obtaining u, the partial envelope model can be fit by

ModelOutput = penv(X, Y, u)

The output ModelOutput is a list containing the MLEs of β1, β2, Σ, Γ, Γ0, η, Ω, Ω0 and α,
as well as statistics computed from the model, including the maximized log likelihood, the
asymptotic covariance matrix of (vec(β̂2)

T, vec(β̂1)
T)T, the asymptotic standard errors of

elements in β̂1, the ratios of the asymptotic standard errors of the standard model versus
the partial envelope model for elements in β1, the number of parameters in the model, and
the number of observations in the data. The functions for post processing inference are

bootse = bootstrapse(X, Y, u, B, ’penv’)
PredictOutput = prediction(ModelOutput, Xnew, ’estimation’, ’penv’)
PredictOutput = prediction(ModelOutput, Xnew, ’prediction’, ’penv’)
TestOutput = testcoefficient(ModelOutput, modelType, TestInput)

The usage of these functions is introduced in Section 2.2 and demonstrated to some extent
by the Fiber and Paper example in Section 2.3. In the function prediction, the input Xnew
is a list, which has Xnew.X1 and Xnew.X2. Xnew.X1 is a p1 dimensional column vector
containing the new value of X1, and Xnew.X2 is a p2 dimensional column vector containing
the new value of X2.

3.7. Scaled Envelope Model

Scaled envelope model [?] is used when the user hopes to have a scale-invariant version of
the envelope model. The scaled envelope estimator is more efficient or at least as efficient
as the standard estimator, and sometimes can be more efficient than the envelope estimator,



22 CHAPTER 3. ENVELOPE MODELS

especially when the envelope subspace has dimension r. However, the scaled envelope es-
timator normally takes longer to compute because of the nature of its iterative computing
algorithm. But users can print out and monitor the model fitting process, which will be
discussed in Chapter 4.

In the multivariate linear regression context (3.1), the coordinate form of the scaled en-
velope model can be written as

Y = α + ΛΓηX + ε, Σ = ΛΓΩΓTΛ + ΛΓ0Ω0ΓT
0 Λ,

where β = ΛΓη∈Rr×p, Λ ∈Rr×r is the scaling matrix, it is a diagonal matrix with the first
element as 1, and the other diagonal elements as positive real numbers, Γ ∈ Rr×p spans
the envelope subspace EΛ−1ΣΛ−1(Λ−1B), Γ0 ∈ Rr×(r−u) spans the orthogonal complement
of EΛ−1ΣΛ−1(Λ−1B), η ∈Ru×p, Ω ∈Ru×u, and Ω0 ∈R(r−u)×(r−u) carry the coordinates, and
u is the dimension of the envelope subspace EΛ−1ΣΛ−1(Λ−1B). If Λ = Ir, then the scaled
envelope model is equivalent to the envelope model.

To select the dimension of EΛ−1ΣΛ−1(Λ−1B), we can apply the following two functions

u = modelselectaic(X, Y, ’senv’)
u = modelselectbic(X, Y, ’senv’)

Notice that likelihood ratio testing can not be applied to the model selection of the scaled
envelope model, only AIC and BIC can be used to select u. The possible values of u can be
any integer from 0 to r. When u = r, the scaled envelope model is the same as the standard
multivariate linear model. And when u = 0, it means that β = 0, then the changes in Y do
not depend on X. After obtaining u, we can fit the scaled envelope model by

ModelOutput = senv(X, Y, u)

The output ModelOutput is a list, which contains the MLEs of β, Σ, Λ, Γ, Γ0, η, Ω, Ω0 and
α, and also statistics computed from the model, including the maximized log likelihood,
the asymptotic covariance matrix of vec(β̂), the asymptotic standard errors of elements in
β̂, the ratios of the asymptotic standard errors of the standard model versus the scaled
envelope model for elements in β, the number of parameters in the model, and the number
of observations in the data. After model fitting, the users can perform the following post
processing inference:

bootse = bootstrapse(X, Y, u, B, ’senv’)
PredictOutput = prediction(ModelOutput, Xnew, ’estimation’, ’senv’)
PredictOutput = prediction(ModelOutput, Xnew, ’prediction’, ’senv’)
TestOutput = testcoefficient(ModelOutput, modelType, TestInput)

These functions are used similarly as those for the envelope model.



3.8. ENVELOPE MODEL IN THE PREDICTOR SPACE 23

3.8. Envelope Model in the Predictor Space

The envelope model in the predictor space is used when the number of the predictors is
strictly larger than the number of the responses. It has the potential to have better predic-
tion performance compared to the standard model, or even the partial least squares. In
fact, in the population version, the envelope estimator in the predictor space is equivalent
to the partial least squares estimator, but in the sample version, its performance is normally
superior to the partial least squares estimator.

We slightly change the formulation of the standard model to Y = µ + βTX + ε, to be con-
sistent with the notations in ?. Then the coordinate form of the envelope model in the
predictor space is as follows:

Y = µ + ηTΩ−1ΓTX + ε, ΣX = ΓΩΓT + Γ0Ω0ΓT
0 ,

where µ ∈ Rr is the intercept, β = ΓΩ−1η ∈ Rp×r, Γ ∈ Rp×u spans the envelope subspace
EΣX(B), and B = span(βT), Γ0 ∈ Rp×(p−u) spans the orthogonal complement of EΣX(B),
η ∈ Ru×r, Ω ∈ Ru×u, and Ω0 ∈ R(p−u)×(p−u) carry coordinates, and u is the dimension of
the envelope EΣX(B).

To select the dimension of EΣX(B), we apply the following three functions

u = modelselectaic(X, Y, ’xenv’)
u = modelselectbic(X, Y, ’xenv’)
alpha = 0.01;
u = modelselectlrt(X, Y, alpha, ’xenv’)

The possible values for u can be any integer from 0 to p, when u = p, the envelope model
reduces to the standard model, and when u = 0, the changes in Y do not depend on X.
After estimating u, we can fit the model by

ModelOutput = xenv(X, Y, u)

The output ModelOutput is a list, which contains the MLEs of β, ΣX, Γ, Γ0, η, Ω, Ω0 and µ,
and also statistics computed from the model, including the maximized log likelihood, the
asymptotic covariance matrix of vec(β̂), the asymptotic standard errors of elements in β̂, the
ratios of the asymptotic standard errors of the standard model versus the envelope model
for elements in β, the number of parameters in the model, and the number of observations
in the data. After model fitting, the following post processing inference can be performed:

bootse = bootstrapse(X, Y, u, B, ’xenv’)
PredictOutput = prediction(ModelOutput, Xnew, ’estimation’, ’xenv’)
PredictOutput = prediction(ModelOutput, Xnew, ’prediction’, ’xenv’)
TestOutput = testcoefficient(ModelOutput, modelType, TestInput)



24 CHAPTER 3. ENVELOPE MODELS

These functions are used similarly as those for the envelope model in Section 3.2.

3.9. Envelope Model in the Predictor Space Using Partial Least
Squares Algorithm

The envelope model in the predictor space using the partial least squares algorithm es-
timates exactly the same model as in section 3.8, but it estimates the envelope subspace
EΣX(B) using partial least squares. This makes the envelope model in the predictor space
faster to compute, and applicable to small sample cases, where n is less than p.

To select u, the dimension of EΣX(B), we can use m-fold cross validation, for example,
5-fold cross validation:

SelectOutput = mfoldcv(X, Y, m, ’xenvpls’)

The possible values of u can be any integer from 0 to the minimum of (m − 1)n/m − 1.
When u = p, the envelope model degenerates to the standard model, and when u = 0,
β = 0, and the changes in Y do not depend the changes in X. If the sample size is large,
we can also use the dimension selection tools for 'xenv', as xenv and xenvpls implement the
same model.

u = modelselectaic(X, Y, ’xenv’)
u = modelselectbic(X, Y, ’xenv’)
alpha = 0.01;
u = modelselectlrt(X, Y, alpha, ’xenv’)

After obtaining u, to fit the envelope model in the predictor space using partial least squares
algorithm, we call the following function

ModelOutput = xenvpls(X, Y, u)

The output ModelOutput is a list, which contains the estimators of β, ΣX, Γ, Γ0, η, Ω, Ω0

and µ, and also the number of parameters in the model and number of observations in the
data. It does not contain any information based on the likelihood function, for example,
the maximized log-likelihood, the asymptotic covariance matrix of vec(β̂), the asymptotic
standard errors of elements in β, etc. xenvpls is mainly implemented for small sample size
cases, under which the likelihood cannot be estimated. The estimator of EΣX(B) is obtained
by partial least squares algorithm. We can check this by

ModelOutput = xenvpls(X, Y, u);
[XL, YL, XS, YS, BETA, PCTVAR, MSE, stats] = plsregress(X, Y, u);
subspace(ModelOutput.Gamma, stats.W)



3.10. ENVELOPE ESTIMATOR FOR MULTIVARIATE MEAN 25

The function plsregress is built in the Statistics toolbox in MATLAB, it does the partial least
squares regression to the data. The function subspace computes the largest angle between
the two subspaces, if the angle is 0, then the two subspaces are the same.

For inference, any inference that is based on the covariance matrix of vec(β̂) such as esti-
mation, prediction and test coefficients cannot be performed with 'xenvpls'. But we can still
estimate the bootstrap standard errors for β̂ by

bootse = bootstrapse(X, Y, u, B, ’xenvpls’)

3.10. Envelope Estimator for Multivariate Mean

When estimating the multivariate mean from the data, the envelope estimator has a smaller
mean squared error than the sample mean, and often has a smaller mean squared error
than James-Stein estimator [?].

The coordinate form of the envelope model for estimating the multivariate mean is

µ = Γη+ ε, Σ = ΓΩΓT + Γ0Ω0ΓT
0 ,

where Γ ∈ Rp×u spans the envelope subspace EΣ(M), M = span(µ), Γ0 ∈ Rp×(p−u) spans
the orthogonal complement of EΣ(M), η ∈Ru, Ω ∈Ru×u, Ω0 ∈R(p−u)×(p−u) carry coordi-
nates, and 0≤ u≤ p is the dimension of the envelope subspace.

Because it is not in the regression setting, the interface of the functions is different from
other envelope models. To select the dimension of the envelope subspace u, we can use the
following functions

u = aic_envmean(Y)
u = bic_envmean(Y)
alpha = 0.01; # Users can specify other significance level
u = lrt_envmean(Y, alpha)

For the input, Y is an n× p data matrix, where the ith row is YT
i , alpha is the significance

level, which is often taken as 0.01 or 0.05. The possible values of u can be any integer from
0 to p. When u = p, the envelope estimator reduces to the sample mean, µ̂EM = Ȳ. And
when u = 0, it means that µ is inferred to be a zero vector. After obtaining u, we can get the
estimator of the multivariate mean by

ModelOutput = envmean(Y, u)



26 CHAPTER 3. ENVELOPE MODELS

The user can specify the dimension u, or use the dimension selection tools discussed above
to choose u. The output ModelOutput is a list, which contains the MLEs of µ, Σ, Γ, Γ0,
η, Ω and Ω0, and also statistics computed from the model, including the maximized log
likelihood, the asymptotic covariance matrix of µ̂, the asymptotic standard errors of ele-
ments in µ̂, the element-wise ratio of the asymptotic standard errors in the sample mean
versus the envelope estimator, the number of parameters in the model, and the number of
observations in the data. After fitting the data and get ModelOutput, we can perform post
processing inference as computing bootstrap standard errors of µ̂ by

bootse = bstrp_envmean(Y, u, B)

or computing predicted value for a new observation by

PredictOutput = predict_envmean(ModelOutput, ’prediction’)

or testing if some linear combination of µ is equal to a particular vector, i.e. given L and A,
testing if Lβ = A,

TestOutput = testcoefficient_envmean(ModelOutput, TestInput)

In bstrp_envmean, the input B is the number of bootstrap sample, the output bootse is
a p dimensional vector with each element as the standard error for the corresponding
element in µ̂. The output of predict_envmean is a list containing the predicted value for a
new observation, its prediction covariance matrix and standard errors of its elements. For
testcoefficient_envmean, the input TestInput is a list containing two components TestInput.L
and TestInput.A. TestInput.L is a d1 × p matrix, with 1 ≤ d1 ≤ p, and TestInput.A is a
d1 column dimensional vector. If TestInput is missing, the default values are used, with
TestInput.L being a p by p identity matrix and TestInput.A being a p dimensional zero
vector, and the test is if µ = 0. The output TestOutput is a list which returns the chi-squared
statistic, degrees of freedom of the statistic, the p-value of the test and the covariance matrix
of Lβ. A table will also be printed out to display the test results.



4

Optional Arguments

The computing of the envelope models involves Grassmann manifold optimization. The
package sg_min 2.4.3 by Ross Lippert (http://web.mit.edu/~ripper/www/sgmin.html) uses
analytical first derivative and numerical second derivative of the objective function, and we
find it very stable. The Grassmann manifold optimization in this toolbox is then based on
sg_min 2.4.3. Because of the iterative nature of the optimization, we offer some optional
arguments so that the users can control the convergence tolerance and speed, as well as
monitoring the iteration process. In the functions modelselectaic, modelselectbic, modelse-
lectlrt, env, henv, ienv, penv, senv, xenv, envmean and bootstrapse, there is an optional input
argument Opts. Opts is a list, which has five elements:

1. Opts.maxIter: This controls the maximum number of iterations. The default value is
300. The iterations will terminate once the maximum number of iterations is reached,
then the results are based on the last iteration. At the same time, a warning

WARNING: reached maximum number of iterations without convergence
for specified tolerances

is printed out.

2. Opts.ftol: This controls the tolerance parameter of the objective function. The default
value is 1e− 10. The iteration will terminate once the tolerance conditions for both
the objective function and its derivative are reached.

3. Opts.gradtol: This controls the tolerance parameter of the derivative of the objective
function. The default value is 1e− 7.

4. Opts.verbose: This is a flag for whether or not to print out the iteration process. It is
logical 0 or 1, with 0 for no print out and 1 for print out. The default value is 0. The
print out will depend on the nature of the functions: with functions for dimension
selection (modelselectaic, modelselectbic and modelselectlrt), the current dimension
will be printed out; with functions for bootstrap (bootstrapse), the current number
of bootstrap sample will be printed out; with the scaled envelope model (senv), the
current number of iterations for the alternating algorithm between the scales and
Grassmann manifold optimization is printed out; and with all the other functions
henv, ienv, penv, senv, xenv and envmean, the current number of iterations of the

27

http://web.mit.edu/~ripper/www/sgmin.html


28 CHAPTER 4. OPTIONAL ARGUMENTS

Grassmann manifold optimization, −2 times the log likelihood function as well as its
gradient are printed out.

5. Opts.init: This argument allows the users to input their starting values. If not speci-
fied, the starting values are generated by the functions get_Init or get_Init4henv. This
argument is only applicable to env, henv, ienv, penv, senv, xenv and envmean.

The users can choose to define some or none of the five elements, if not defined, the default
value will be used. If the users choose to define some of the elements, it is added as the last
input of the function. For example, suppose the user defines Opts for env, then the syntax
of env will be

ModelOutput = env(X, Y, u, Opts)

Next we will demonstrate how to use the optional arguments to control convergence and
control the display.

Control Convergence Arguments

We use the wheat protein data and the function env as an example. First we set

Opts.verbose = 1;

so that we can monitor the iteration process. We leave the other arguments as default values
for now and fit the envelope model

load wheatprotein.txt
X = wheatprotein(:, 8);
Y = wheatprotein(:, 1:6);
u = 1;
ModelOutput = env(X, Y, u, Opts);
iter grad F(Y)
0 1.554710e+02 1.702843e+03
1 1.169893e+01 1.701527e+03
2 1.520058e+01 1.701521e+03
3 2.180808e+00 1.701519e+03
4 3.006970e+00 1.701519e+03
5 9.535630e-01 1.701519e+03
6 1.932848e+00 1.701519e+03
7 6.326229e-01 1.701519e+03
8 5.210354e-01 1.701519e+03
9 5.599613e-01 1.701519e+03
10 3.862568e-01 1.701518e+03
11 2.326454e-03 1.701518e+03
12 1.786087e-03 1.701518e+03
13 1.747497e-03 1.701518e+03



29

14 1.941525e-03 1.701518e+03
15 6.571252e-03 1.701518e+03
16 1.607637e-03 1.701518e+03
17 1.114232e-03 1.701518e+03
18 9.419803e-04 1.701518e+03
19 9.852313e-04 1.701518e+03
20 1.542826e-05 1.701518e+03
21 1.952793e-09 1.701518e+03

In the output, “F(Y)” is the value of the objective function, which in this case, is −2 times
the log likelihood function. We notice that it takes 21 iterations till convergence. Suppose
we set the maximum number of iterations as 15, then the algorithm stops at the fifteenth
iteration and a warning is printed out at the end.

Opts.maxIter = 15;
ModelOutput = env(X, Y, u, Opts);
iter grad F(Y)
0 1.554710e+02 1.702843e+03
1 1.169893e+01 1.701527e+03
2 1.520058e+01 1.701521e+03
3 2.180808e+00 1.701519e+03
4 3.006970e+00 1.701519e+03
5 9.535630e-01 1.701519e+03
6 1.932848e+00 1.701519e+03
7 6.326229e-01 1.701519e+03
8 5.210354e-01 1.701519e+03
9 5.599613e-01 1.701519e+03
10 3.862568e-01 1.701518e+03
11 2.326454e-03 1.701518e+03
12 1.786087e-03 1.701518e+03
13 1.747497e-03 1.701518e+03
14 1.941525e-03 1.701518e+03
15 6.571252e-03 1.701518e+03
WARNING: reached maximum number of iterations without convergence for
specified tolerances

Grassmann manifold optimization can take hundreds of iterations to converge at the default
tolerance parameters. We use this example because that we can print its complete iteration
process. Now we change the tolerance level of convergence.

Opts.ftol = 1e-5;
Opts.gradtol = 1e-3;
ModelOutput = env(X, Y, u, Opts);
iter grad F(Y)
0 1.554710e+02 1.702843e+03
1 1.169893e+01 1.701527e+03
2 1.520058e+01 1.701521e+03



30 CHAPTER 4. OPTIONAL ARGUMENTS

3 2.180664e+00 1.701519e+03
4 3.002431e+00 1.701519e+03
5 9.537034e-01 1.701519e+03
6 1.932020e+00 1.701519e+03
7 6.325922e-01 1.701519e+03
8 5.210506e-01 1.701519e+03
9 5.599522e-01 1.701519e+03
10 4.780483e-01 1.701518e+03
11 3.589887e-03 1.701518e+03

As we loosen the tolerance level, it requires less number of iterations till convergence. If
the users want to specify their starting value, it can be done by

Opts.init = [1 0 0 0 0 0]’;
ModelOutput = env(X, Y, u, Opts);
iter grad F(Y)
0 1.755092e+02 2.131512e+03
1 5.025313e+02 2.037372e+03
2 1.338489e+02 1.968143e+03
...
59 9.490925e-04 1.701518e+03
60 1.745430e-04 1.701518e+03
61 3.713437e-06 1.701518e+03

From the result, we notice that a random starting value normally takes longer to conver-
gence. Furthermore, according to our experience, it is more likely to be trapped in the local
minimums, and therefore, random starting values should be avoided.

The Display Argument

In the previous example, the print out for env is the Grassmann manifold optimization
process. In this example, we will show different print out types for different functions. We
will still use the wheat protein data as the background for the first two cases.

load wheatprotein.txt
X = wheatprotein(:, 8);
Y = wheatprotein(:, 1:6);

1. With functions on dimension selection, the print out is the current dimension:

Opts.verbose = 1;
u = modelselectaic(X, Y, ’env’, Opts);
Current dimension 0
Current dimension 1



31

Current dimension 2
Current dimension 3
Current dimension 4
Current dimension 5

Suppose the number of responses is r, the print out will start with dimension 0 and end
with dimension r− 1. The case of u = r is computed but not printed, because it takes little
time, compared to the Grasmann manifold optimization process.

2. With function bootstrapse, the print out is the current number of bootstrap sample.

u = 1;
B = 15;
Opts.verbose = 1;
bootse = bootstrapse(X, Y, u, B, ’env’, Opts);
Current number of bootstrap sample 1
Current number of bootstrap sample 2
Current number of bootstrap sample 3
Current number of bootstrap sample 4
Current number of bootstrap sample 5
Current number of bootstrap sample 6
Current number of bootstrap sample 7
Current number of bootstrap sample 8
Current number of bootstrap sample 9
Current number of bootstrap sample 10
Current number of bootstrap sample 11
Current number of bootstrap sample 12
Current number of bootstrap sample 13
Current number of bootstrap sample 14
Current number of bootstrap sample 15

The print out will start from the first bootstrap sample and end at the last bootstrap sample.

3. With function senv, the print out is the process in the alternating algorithm between the
optimization of the scaling parameters and Grassmann manifold.

load(’sales.txt’)
Y = sales(:, 4 : 7);
X = sales(:, 1 : 3);
u = 1;
Opts.verbose = 1;
ModelOutput = senv(X, Y, u, Opts);
Current number of iterations 1
Current number of iterations 2
Current number of iterations 3
Current number of iterations 4
Current number of iterations 5



32 CHAPTER 4. OPTIONAL ARGUMENTS

Current number of iterations 6
Current number of iterations 7
Current number of iterations 8
Current number of iterations 9
Current number of iterations 10
Current number of iterations 11
Current number of iterations 12
Current number of iterations 13
Current number of iterations 14
Current number of iterations 15
Current number of iterations 16
Current number of iterations 17
Current number of iterations 18
Current number of iterations 19
Current number of iterations 20
Current number of iterations 21
Current number of iterations 22
Current number of iterations 23
Current number of iterations 24
Current number of iterations 25
Current number of iterations 26

The maximum number of iterations of the alternating algorithm is 1000. So the print out
can run from the first iteration to the thousandth iteration.

4. With other functions, the print out is the Grassmann manifold optimization process as
in env.

load irisf.mat
d = 1;
Opts.verbose = 1;
ModelOutput = ienv(X, Y, d, Opts)
iter grad F(Y)
0 3.064865e+01 2.962639e+03
1 1.679360e+01 2.962025e+03
2 3.560980e+00 2.961025e+03
3 1.431042e-01 2.961019e+03
4 1.667906e-01 2.961019e+03
5 1.699151e-02 2.961019e+03
6 7.836851e-05 2.961019e+03
7 8.623080e-05 2.961019e+03
8 4.470246e-06 2.961019e+03
9 3.716136e-11 2.961019e+03
10 4.629752e-11 2.961019e+03

In the display, F(Y) is -2 times the log likelihood function and grad is its derivative.


	Contents
	1 Overview
	1.1 Technical Support
	1.2 Directory Structure
	1.3 Document Organization

	2 Quick Start
	2.1 Installation
	2.2 A Guided Tour
	2.3 Two examples

	3 Envelope Models
	3.1 Multivariate Linear Regression
	3.2 Envelope Model
	3.3 Envelope Model Using Sequential Algorithm
	3.4 Heteroscedastic Envelope Model
	3.5 Inner Envelope Model
	3.6 Partial Envelope Model
	3.7 Scaled Envelope Model
	3.8 Envelope Model in the Predictor Space
	3.9 Envelope Model in the Predictor Space Using Partial Least Squares Algorithm
	3.10 Envelope Estimator for Multivariate Mean

	4 Optional Arguments

