Appendix for ”Flexible Expectile Regression in Repro-
ducing Kernel Hilbert Spaces”
In this appendix we provide technical proofs for the theorems and lemmas in “Flexible

Expectile Regression in Reproducing Kernel Hilbert Spaces”.

Some technical lemmas for Theorem 1

We first present some technical lemmas and their proofs. These lemmas are used to prove

Theorem 1.

Lemma 3. Let ¢ be the convexr conjugate of ¢,,,

—L 2 ift <0,
oL(t) =4
=t if t > 0.

The solution to (10) can be alternatively obtained by solving the optimization problem

i ceey Q) bject t i =0, 29
{g}lﬁog(al,ag, ,a),  subject to ;a (29)
where g 1s defined by
n 1 n n .
gla, e, ... ) = — Zl yi; + 3 Zl a0 K (%, %x5) + 2 Zl o5 (a). (30)
1= i,j= i=
Proof. Let o = (a1, g, ..., v,)T. Since both objective functions in (10) and (29) are convex,

we only need to show that they share a common stationary point. Define

Go(a) = du(a1) + ¢w(a2) + o+ dul(an),

VGy(a) = (¢,(), g,(2), .. ¢, (o))"

By setting the derivatives of (10) with respect to a to be zero, we can find the stationary



point of (10) satisfying

Y — Qo b, (yl — Qo — 2?21 K(xhl'j)%‘)
d — "y — o — D0 K(22, 7)) d
a Yo 0 _Kal - ¢ (yz 0 ZJJ (22, ;) J) A~ a'Ka=0,
da : : da
|\ v — || Oy — a0 = X K(an, 2)q5) |

which can be reduced to

— ¢, (yi — a0 — Y K(zi,1;)05) +2Xa; =0, for 1<i<n, (31)
j=1
and setting the derivative of (10) with respect to ag to be zero, we have
> (i — 0= Y K(zi,25)05) = 0. (32)
i=1

J=1

Combining (31) and (32), (32) can be simplified to

iémzo. (33)

In comparison, the Lagrange function of (29) is
g(al,ag,...,an)—l—yzﬂ:ai. (34)
i=1
The first order conditions of (34) are
—yi+v+ i K (i, ;)05 + 20" (o) = 0, for 1 <i <, (35)

=1

and .
> ;=0 (36)
=1

Noting that 2X¢% (a;) = ¢ (2\a;) and ¢ is the inverse function of ¢/,. Let v = ay, then

(31) and (35) are equivalent. Therefore, (10) and (29) have a common stationary point and



therefore a common minimizer. O

Lemma 4.

n n
E o K (x,%x5) < VK(x,%;) - E a0 K (x4, %;5).

i=1 j=1

Proof. Let C = K'/2, then by Cauchy-Schwarz inequality

Z ;K (xi,%;) = (a1, a9, ..., @,)C(Ci1, Cia, ..., Cin)’

n n

<|(a, ;.. )C| - (Cits Cias - ... Cin)|| = D i K (xi,x5) - /K (%1, %)

=1 j=1

]
Lemma 5. For the g function defined in (30), we have
1zn:(oz»—(3[»)(0[»—(3«)K(X~ x;) + A zn:(oz»—d»)Q
2”:1 Lo U 2max(1 — w,w) — Co
Sg(ab Qg, ... 7an) - 9(6417 6‘27 s 7&71)
<12n:(a~—d~)(a'—d~)K(x~ X;) + A zn:(a~—d~)2
_2”:1 ’ A / U 2min(1 - w,w) — LY
Proof. 1t is clear that the second derivative of g is bounded above by K + WI and
bounded below by K + ml where K € R™™. Let a = (v, g, . .., c0)T
9(e) —g(@) < (@) (o — @) + 1(K + ;I)(a —a)l(a—-a) (37)
- 2 min(l — w, w) ’
N ~ 1 A ~ N
g(o) — g(@) = (@) (o — @) + S (K D(a—a)(a-a). (38)

e max(l — w, w)

Hence when a and @ are fixed and ¢'(a) = 0, the maximum of g(a) — g(a) is obtained
when the second order derivative of g achieves its maximum and the minimum is obtained

when the second order derivative achieves its minimum. OJ

The next lemma establishes the basis for the so-called leave-one-out analysis (Jaakkola

and Haussler, 1999; Joachims, 2000; Forster and Warmuth, 2002; Zhang, 2003). The basic



idea is that the expected observed risk is equivalent to the expected leave-one-out error. Let
D1 = {(x5,4:) 7! be a random sample of size n + 1, and let Dn+1 be the subset of D,

with the i-th observation removed, i.e.

Dq[irl = {(Xl, yl)> cey (Xi—la yi—l)» (Xi-f—la yi+1)7 ceey (Xn-i-la yn+1)}-

Let (fl1 (340 ) be the estimator trained on DLL]H The leave-one-out error is defined as the
averaged prediction error on each observation (x;, y;) using the estimator (f17, &g}) computed

from DL]H, where (x;,7;) is excluded:

n+1
1 &l
Leave-one-out o — w Sy
eave-One-ouf error:  ——— izlqb (y; — f(x;)).
Lemma 6. Let ( f (n)) be the KERE estimator trained from D,,. The expected observed
risk Ep, Exy) 00y — Gom) — f(n)(x)) 15 equivalent to the expected leave-one-out error on
Dn+1.'

n+1

R 1 a0 A
Ep, {E(x,y)¢w(y — (n) — f(n) (X))} = EDnH <n—+1 Z %(?/z‘ - d([)] - f[z] (Xz))>; (39)
i=1

where &g] and 1 are KERE trained from DY

n+1-°
Proof.
n+1 1 n+1 . _
B (5 Dol =l = F)) = g 3 Edulys = alf = )
i=1
1 n+1 . -~
T o+l Zl ED%LI{E(XW)%(% — Qo — 1 (Xz’>>}
1 n+1
= 1 2 P Bty — do = f00))

— Ep, (x,y)gzbw(y — ag — f(x)).

In the following Lemma, we give an upper bound of |&;| for 1 <i < n.



Lemma 7. Assume M = sup, K(x,x)"/2. Denote as (f(n),do(n)) the KERE estimator
in (7) trained on n samples D, = {(x;,y;)}i—,. The estimates ;) for 1 < i < n are
defined by fo() = Siy G K (xir0). Denote [Vally = /Eiwf Bl = 2550, i,

g = m0ee) g, — max(1 - w,w). We claim that

we have
1 n R n R n o
3 G ()0 () K (%0, %5) <) iy — 23 ) (G )
i,7=1 =1 =1
A B\, ©
ZQQ - )\ 2)\ i1
< & Y 2,
- 2=~
=1
Applying Lemma 4, we have
? — . a2 Z?: Y7 q2
fon (o) = 3 5 K x5 35) < M| ==L = gy [RY o (41)
j=1

By the definition in (10), Gq ) is given by argming, > . ¢u (yi — g — f(n) (XZ)) By the first
order condition

n

A ~

> 20w = I(yi — o) — fiuy ()| (Wi — o) — fimy (x:)) = 0.

=1



Let ¢; = |w —I(y; — Qo (n) — f(n)(xi)) , we have min(1 — w,w) < ¢; < max(1l — w,w), hence

n n n

= | et~ Foot)| < X eullui] + o))

i=1 i=1 i=1

q
ARSI NES AN
i=1

and we have

. [Yalls ¢

| < M2 |all2). 42

Go] < a1 (MYl (42)
Combining (31) and (42), we concluded (40). O
Proof of Theorem 1
Proof. Consider n + 1 training samples D, 1 = {(x1,%1), .., (Xnt1,Yns1)}. Denote as

(f1, d([)i]) the KERE estimator trained from Dﬂrl, which is a subset of D,,y; with i-th ob-

servation removed, i.e.,

Dq[ml}—&-l = {(Xl, y1)> cee (Xi—1> %’—1)» (Xi-f—la yi+1)7 cee (Xn-I—la yn+1)}-

~

Denote as (f(n41); & @nt1)) the KERE estimator trained from n + 1 samples D,1. The
. ~ . P n+1 ~
estimates &; for 1 <i < n + 1 are defined by fr,41)(-) = >0} K (xi, ).
n Y. n max(l—w,w
In what follows, we denote || V,i1l2 = 1/ 30 42, % =L S il = W,

¢2 = max(l — w,w), g3 = min(1l — w,w).

Part I We first show that the leave-one-out estimate is sufficiently close to the estimate
fitted from using all the training data. Without loss of generality, just consider the case that
the (n+1)th data point is removed. The same results apply to the other leave-one out cases.
We show that | f["+1(x;) + d([)nH] — f(nﬂ)(xi) — Qg (nt1)| < 02["+1], where the expression of
C"™ s to be derived in the following.

We first study the upper bound for | f"+1(x;) — f(n+1)(xi)|. By the definitions of g in



(30) and (&l &t Al we have

Y

g(alm ab il o)
_ g(alU el gl
1 1 . 1,
< g( + —Qpy1, Qo + 04n+1,---704n+—04n+1)
n n n
1
= g(d + —Qpy1, Qo + Oén+1,---7@n+—dn+1,0>~
n n n
That is,
gt al i alt 0) — g(ay, g, . )
1
S g(éél -+ —één+1,662 —+ —één+1,. .. ,één -+ —dn+1,0) —g(@17@2,. .. 766n+1).
n n n

Denote for simplicity that Lf‘jl] = 0. Applying Lemma 5 to both LHS and RHS of the

above inequality, we have

n+1 n+1

A
~[n+1 ~ ~[n+1 ~ n+1 ~
D@ =)@ = a) K (xi, %) + o Z( P —ay)
ij=1
1 1 1 1 T A 1
T [N Y E R +M],
n n n n 2nqs

where K € R"1 ig defined by K;; = K(x;,x;). Since |K(x;,x;)] < M? for any 1 <

1,7 <n+ 1, we have

T
<%,...,%,—I)KG,...,%,—l)
= % > Kij — IS K1 — %2?11 Ko + Kopingt
< M?+4+ M?+ M? + M? = 4M?.

Combining it with the bound for |G, 11| by Lemma 7 (note that here &, is trained on n+1

samples), we have

n+1
S (@t =)@l - 6y K (xi, %) < of Y (43)
2,7=1



where

2
1] — [ 4 pp2 A+ 1)\ (@2 o) 14

and

n Yn
e = ety v 1) B Yol + (4)

Combining (43) with Lemma 4, we have that for 1 <i <n+1,

n+1

’f[nJrl] (x;) — n+1 (x;)| = ‘Z Alnt] — &) (X“XJ) < C{nJrl]M. (46)

+1] n+1]

Next, we bound |a"t — & nt1)|- Since &g n41) and 04[ are the minimizers of
5 0 0(n+1) 0(n+1)

n+1

Z Gu (yz — Qo — f(n+1)(xi)> and i P (yi — Qp — ]ﬂnﬂ] (Xi)),
i=1 i=1

we have -

o - Z% (yz — frni(x )) oo 0, (47)
and .

g o (v 0 = F) | =0 (15)

By the Lipschitz continuity of ¢!, we have

S, ( 0(n+1) — flr+(x )) Sl ( — Q0 (nt1) — f(n+1)(xz’)> ‘
< 2(n+ 1)go| fH(x;) — f(nJrl)(Xi)'a

and by applying (46) and (47) we have the upper bound

<2n+1)g /O M

n+1

> 4, (?Jz — A (ny1) — [ (Xi)>
i=1




Similarly, by (41), (42), and (48) we have

Zz 1 ¢I ( = @0 (n+1) f[nJrl] ‘

- ZnH < — Qo (n+1) — f[nJrl ) ZHH ( Yi — Qo (nt1) — f(n+1)(X¢)>
_szu (yn+1 - CAYo(nH) - ﬂ"“ X n+1 > ‘
S ZnJrl ao(nJrl) — f[ +1 XZ ) n+1 ( d(] (n+1) — f(n+1)(X1)> ‘ (49)
+|¢, (yn+1 — Q0 (n+1) — f[nH] (Xn+1)>
[n+1]
< 20+ 1)g2\/CT M + 2 ([yns1| + 160 (nsny| + [ i)
< 2(n+ D)o/ CF M + 265 ([ ] + a2+ May /2| Yo [l2 + /B Vall2)
< 2(n+ Dgoy/CI M 4 2g,0

where the second last inequality follows from (41) and (42). Note that in this case the

corresponding sample is n + 1.

Using (48) we have

2ngs|al ™ — oy |

< ’ Z o (yz - d([)nH] - ]ﬂnﬂ} (Xz)> - Z ., (yz — Q0 (nt1) —

i=1 i=1

= ‘ Z Cb; <?Jz — Qg (n+1) — f[n+1] (Xz)> ‘

tt] e 1
|Oé[ +1] —Oéo(n+1)| §q1<(1+ﬁ) C{ —H]M_’_Ecé +1}>.

Finally, combining (46) and (50) we have

() + @l = fl (x1) = Ao | < O

fr )|

(51)



where

= q1<(1 + WM+ G *”) +/ortin (52)

Part II We now use (51) to derive a bound for ¢, (yns1 — aO"H] I (x,44)). Let
= f(n+1)(X1) + Qo (nt1) f[nJrl (xi) — @gLH] and t' = y; — Qo (ny1) — f(n+1)(xi)' We claim that,

Gult +1) — du(t') < ga(|2tt'] + [£2)). (53)

when (t+t') and ¢’ are both positive or both negative, (53) follows from (t+t")2—t" = 2tt'+¢2.
When ¢+t and ¢’ have different signs, it must be that |t'| < |¢|, and we have |¢t| = |[t+t'|+ ||
and hence |t +t'| < |t|. Then (53) is proved by ¢, (t +1") — ¢, (') = max(¢,(t+1'), pu(t')) <
g max((t + /)%, ¢"?) < max(1l — w,w)t? < max(1 — w,w)(|2t¢'| + [¢?]).

Hence by (51), (53) and the upper bound of |y,41 — f(n+1)(xn+1) — G (n+1)|, we have

~

G (Yns1 — Gy = FH(x,,11)) < (Wit — Qo) — Fonrn) (Xnp1)) + CF 1 (54)

where
C[n—i—l] (2C[n+1]c [n+1] (C£n+l})2) (55)

Note that (54) and (55) hold for other i,1 <i <n + 1.

~

by — ) — F(x)) < Gy — Go(mi1) — Fongn(xi)) + Cy. (56)

Hence by (44), (45), (52) and (54) we have

B, (0uly = o = 90x))) < Ep,.o (6ulss = oo = finrn () + B, CF. - (57)

and

n+1
Dpi1 (Z Pu(Yi ‘S‘g] - /1 (Xi))>
n+1 1 n+1

Ep,.,, (Z Gus(Yi — Q0 (1) f(n-l—l)(Xi))) + . 1ED"+1 Z C:[),i]- (58)

i=1

IN

10



On the other hand, let (fZ, af.) in the RKHS and satisty R(f, of.) < infremy aoer R(f, ao)+

e. From the definition of &g ;1) and ]E(n+1) we have

n+1
A

nH(Z% i = Gogun) — Fouen () + 5 iyl
n+1 )\
< * ek ) * |2 )
< HI(Z% b= 0o = J26) 1 (59)

By Lemma 6, (58) and (59), we get

EDn{Exy ¢w( _dO(n - fn (X))}

n+1

= Dpt1 (Z Do (yi — fm (XZ)))

* * A * 1 s 7
< Bp, {Een@uly — 05 = f160)} + 5 I e + 5 B YO
=1
A 1 A
< : AN * (12 s [i].
— fEHlKn,ELOGRR<f’ O{0) + € + n + 1 HfE HHK + n + 1ED7L+1 ZC?) (60)

=1

Because A\/n — 0, there exists V. such that when n > N, %H||f*||]%1K < e. In what follows,

we show that there exists N’ such that when n > N/, -L-E, S} C’[l < e. Thus, when

€’ n+1

n > max (N, N!) we have

EDn {E(x,y)¢w(y - 640 (n) — f(n) (X>)} S inf R(f> Oéo) + 3e.

fEHK ,a0ER

Since it holds for any € > 0, Theorem 1 will be proved.

Now we only need to show that - E’Dn+1 Z"H C[Z] — 0 as n — oco. In fact we can
show —5FEp, ., St C’M < }D (Hn +1) — 0 as n — oo. In the following analysis, C
represents any constant that does not depend on n, but the value of C varies in different
expressions. Let V; = ql% + M (q141)/Z||Yosll2+|yil, then as n — oo, 4M? < ggl),

and we have the upper bound

cll < (o) (%@)2 — CV;

11



and since n > v/A asymptotically, we have

il <c(cycl+ )+C\/><C +C— o

VA
Then
- , - Vi V2 %
cll < cviol! + ocl’? < cv,—L + 0= : 61
3 2 2 \/X )\ \/X ( )
We can bound Vj as follows:
Y.
Vi = Q1Hn+1H M(q +1) \/ 2| Yot ll2 + [l

[Yosall2 7
nt 2 Mg+ 14 B Y[l + |y
q1 \/n——l—l (Q1 ) 2\ H +1H2 ’y ‘

Yoill3
< oyfEenl ;1”2+C|yi|.

Then we have

Vo3
Ep, V7 < 2C°Ep,,, [@ﬂﬁ]. (62)

A
Combining it with (61) and using the assumption Ey? < D, we have

n+1
[i] C 1 1+n
Pon 20 < o (BNl B

A
C E||Y,1? <1+n ) C <1+n )
— +1)<—D +1
VA 1+n A VA A

So when A\/n*?* — 0o we have 2=Ep__, s el .

This completes the proof of Theorem 1.

12



Proof of Lemma 1

Proof. We observe that the difference of the first derivatives for the function ¢, satisfies

21 —w)la—0b] if (a<0,06<0),

/ / 2w|a — b if (a>0,0>0),

|6, (a) — ¢, (b)] =
2|(1 —w)a—wb| if (a<0,b>0),
2lwa — (1 —w)b] if (a>0,0<0).
\
Therefore we have
[¢,(a) = ¢,(0)] < Lla —b| Va5, (63)

where L = 2max(1—w,w). By the Lipschitz continuity of ¢/, and Cauchy-Schwarz inequality,

(¢ (a) — ¢, (b))(a —b) < Lla — bJ? Va,b € R. (64)

w

If we let p,(a) = (L/2)a® — ¢,(a), then (64) implies the monotonicity of the gradient
¢/ (a) = La — ¢/,(a). Therefore ¢ is a convex function and by the first order condition for
convexity of ¢,:

Yula) > o, (b) + ¢l (b)(a —b) Va,b € R,

which is equivalent to (18). O

Proof of Lemma 2
Proof. 1. By the definition of the majorization function and the fact that a®**+b is the

minimizer in (16)

vaA(a(kH)) < Q(a(kH) | a(k)) < Q(a(’“) | a(k)) — Fw,A(a(k)).

2. Based on (20) and the fact that @ is continuous, bounded below and strictly convex,

we have

0 =VQ(a™ | a®) =VE,,(a®) + 2K, (a*) — o). (65)

13



Hence

Fw)\<a(k+l)) < Q(a(kJrl) ‘ a(k))

= Fy\(a®™) + VE, \(a®)(a*) — a®) + (o) — ™)K, (a*+) — o)

=F, A(Oﬁ(k)) — (a(k+1) — a(k))TKu(a(k+1) — a(k))'

By (21) and the assumption that >  K;K] is positive definite, we see that K, is also

positive definite. Let v, (K, ) be the smallest eigenvalue of K,, then

0 < Y (Ko [l —a®|? < (@®V) —a®)TK, (a®+) —a®) < B, (a®)—F, ,(a®*D).
(66)

Since F is bounded below and monotonically decreasing as shown in Proof 1, F,, ,(a®) —
F, A (a® D) converges to zero as k — oo, from (66) we see that limy,_,., [|a*+) —a®| = 0.
3. Now we show that the sequence (a®)) converges to the unique global minimum of
(12). As shown in Proof 1, the sequence (F, \(a®)) is monotonically decreasing, hence
is bounded above. The fact that (F, \(a®)) is bounded implies that (a®)) must also
be bounded, that is because limg_,o Fiy, a(cr) = 00. We next show that the limit of any
convergent subsequence of (a*)) is a stationary point of F. Let (a*)) be the subsequence

of (a®) and let lim;_,, a'*) = &, then by (65)
0= VQ(a(ki+1) | a(k’i)) — VFw)\(a(ki)) + 2Ku(a(ki+1) _ a(k‘i))_
Taking limits on both sides, we prove that @ is a stationary point of F'.

0 = lim VQ(a®* | a®)) = VQ(lim a® ) | lim a®)).
1— 00

1— 00 11— 00

= VE, (&) + 2K, (& — &) = VE,A(&).

Then by the strict convexity of F', we have that & is the unique global minimum of (12). O

14



Proof of Theorem 2

Proof. 1. By (14) and (16),
Fuoa(a®) < Qa* ™ | a®) < Q(Ara™ + (1 — Ap)a | a¥).

Using (24) we can show that

Q(Aa® + (1 —Apa | a®)

=Fun(a®) + (1 - A)VE,A(@®) (@ — a®™) + (1 — A?(@ — a™) K, (@ - o

=AeFop(@®) + (1= Ay) [Q@] @) = Ay(@ — a®)K, (@ - a®)]
:Aka,,\(a(k)) —+ (1 — Ak)Fw,A(&)

Then the statement can be proved by substituting (68) into (67).

2. We obtain a lower bound for F,, ()
E,a(@) > F,\(a®) + VE,\(a®)(a - a®) + (@ - aW)K (e — o)
and majorization Q(a | a®)
Qa | a(k)) = Fw,,\(a(k)) + VF%,\(a(k))(a — a(k)) + (. — a(k))TKu(& — a(k)).

Subtract (69) from (70) and divide by (& — a®)TK, (& — a®)), we have

Q@] a®) - K@)
(a — a(k))TKU(a — a(k))
- (a — a(k))TKU(a — a(k))

S 1— Wmin(qulKl)'

A =

(67)

(69)

(70)

(71)

Both K, and K are positive definite by the assumption that Y | K;K] is positive definite,

and since

KK, — K, *K, *K,K, "K3,

15



_1 _1
the matrix K 'K; is similar to the matrix K, > K;K, ?, which is positive definite. Hence

1

_1 _1
=1 vuin(K;'K) = 1 — oin (Ko 2K K, %) < 1.

By (14) and (71) we showed that 0 < A, <T < 1.

3. Since VF, ,(&) = 0, using the Taylor expansion on F, \(a®) at &, we have
Fua(@®) = F,A(@) = (@ —a) K (a®) — &) > 1K) la® — alf?

Fup(@®) = Fua(@) < (e — @)Ky (a® - &) < yuax(Ku) o™ — &

Therefore, by Results 1 and 2

(87

k+1)_/\||2 < Fw7/\(a(k+1)) — Fw7A<a) < F(Fw’)\<a(k)) — Fw,/\(a)) < F’ymaX(Ku)

< la®—&.
“Ymin (KZ) “Ymin (Kl) “Ymin (Kl)

%

]
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