
Stat Comput
DOI 10.1007/s11222-014-9498-5

A fast unified algorithm for solving group-lasso penalize
learning problems

Yi Yang · Hui Zou

Received: 19 June 2013 / Accepted: 22 July 2014
© Springer Science+Business Media New York 2014

Abstract This paper concerns a class of group-lasso learn-
ing problems where the objective function is the sum of
an empirical loss and the group-lasso penalty. For a class
of loss function satisfying a quadratic majorization con-
dition, we derive a unified algorithm called groupwise-
majorization-descent (GMD) for efficiently computing the
solution paths of the corresponding group-lasso penalized
learning problem. GMD allows for general design matrices,
without requiring the predictors to be group-wise orthonor-
mal. As illustration examples, we develop concrete algo-
rithms for solving the group-lasso penalized least squares and
several group-lasso penalized large margin classifiers. These
group-lasso models have been implemented in an R pack-
age gglasso publicly available from the Comprehensive R
Archive Network (CRAN) at http://cran.r-project.org/web/
packages/gglasso. On simulated and real data, gglasso
consistently outperforms the existing software for computing
the group-lasso that implements either the classical group-
wise descent algorithm or Nesterov’s method.

Keywords Groupwise descent · Group lasso · grplasso ·
Large margin classifiers · MM principle · SLEP

1 Introduction

The lasso (Tibshirani 1996) is a very popular technique for
variable selection for high-dimensional data.Consider the

Y. Yang · H. Zou (B)
School of Statistics, University of Minnesota,
Minneapolis, MN, USA
e-mail: zouxx019@umn.edu; hzou@stat.umn.edu

H. Zou
Department of Statistics, Faculty of Science,
King Abdulaziz University, Jeddah, Saudi Arabia

classical linear regression problem where we have a con-
tinuous response y ∈ Rn and an n × p design matrix X. To
remove the intercept that is not penalized, we can first center
y and each column of X, that is, all variables have mean zero.
The lasso linear regression solves the following ℓ1 penalized
least squares:

argmin
β

1
2
∥y − Xβ∥2

2 + λ∥β∥1, λ > 0. (1)

The group-lasso (Yuan and Lin 2006) is a generalization
of the lasso for doing group-wise variable selection. Yuan
and Lin (2006) motivated the group-wise variable selection
problem by two important examples. The first example con-
cerns the multi-factor ANOVA problem where each factor is
expressed through a set of dummy variables. In the ANOVA
model, deleting an irrelevant factor is equivalent to delet-
ing a group of dummy variables. The second example is the
commonly used additive model in which each nonparamet-
ric component may be expressed as a linear combination of
basis functions of the original variables. Removing a compo-
nent in the additive model amounts to removing a group of
coefficients of the basis functions. In general, suppose that
the predictors are put into K non-overlapping groups such
that (1, 2, . . . , p) = ⋃K

k=1 Ik where the cardinality of index
set Ik is pk and Ik

⋂
Ik′ = ∅ for k ̸= k′. Consider the linear

regression model again and the group-lasso linear regression
model solves the following penalized least squares:

argmin
β

1
2
∥y − Xβ∥2

2 + λ

K∑

k=1

√
pk∥β(k)∥2, λ > 0, (2)

where ∥β(k)∥2 =
√∑

j∈Ik
β2

j . The group-lasso idea has been
used in penalized logistic regression (Meier et al. 2008).

123

http://cran.r-project.org/web/packages/gglasso
http://cran.r-project.org/web/packages/gglasso

Stat Comput

The group-lasso is computationally more challenging than
the lasso. The entire solution paths of the lasso penalized
least squares can be efficiently computed by the least angle
regression (LARS) algorithm (Efron et al. 2004). See also
the homotopy algorithm of Osborne et al. (2000). However,
the LARS-type algorithm is not applicable to the group-
lasso penalized least squares, because its solution paths are
not piecewise linear. Another efficient algorithm for solv-
ing the lasso problem is the coordinate descent algorithm
(Tseng 2001; Fu 1998; Daubechies et al. 2004; Genkin et
al. 2007; Wu and Lange 2008; Friedman et al. 2010). Yuan
and Lin (2006) implemented a block-wise descent algo-
rithm for the group-lasso penalized least squares by follow-
ing the idea of Fu (1998). However, their algorithm requires
the group-wise orthonormal condition, i.e., XT

(k)X(k) = Ipk

where X(k) = [· · · X j · · ·], j ∈ Ik . Meier et al. (2008)
also developed a block coordinate gradient descent algo-
rithm BCGD for solving the group-lasso penalized logis-
tic regression. Meier’s algorithm is implemented in an R
package grplasso available from the Comprehensive R
Archive Network (CRAN) at http://cran.r-project.org/web/
packages/grplasso.

From an optimization viewpoint, it is more interesting to
solve the group-lasso with a general design matrix. From a
statistical perspective, the group-wise orthonormal condition
should not be the basis of a good algorithm for solving the
group-lasso problem, even though we can transform the pre-
dictors within each group to meet the group-wise orthonor-
mal condition. The reason is that even when the group-wise
orthonormal condition holds for the observed data, it can be
easily violated when removing a fraction of the data or per-
turbing the dataset as in bootstrap or sub-sampling. In other
words, we cannot perform cross-validation, bootstrap or sub-
sampling analysis of the group-lasso, if the algorithm’s valid-
ity depends on the group-wise orthonormal condition. In a
popular MATLAB package SLEP, Liu et al. (2009) imple-
mented Nesterov’s method (Nesterov 2004, 2007) for a vari-
ety of sparse learning problems. For the group-lasso case,
SLEP provides functions for solving the group-lasso penal-
ized least squares and logistic regression. Nesterov’s method
can handle general design matrices. The SLEP package
is available at http://www.public.asu.edu/~jye02/Software/
SLEP.

In this paper we consider a general formulation of the
group-lasso penalized learning where the learning procedure
is defined by minimizing the sum of an empirical loss and the
group-lasso penalty. The aforementioned group-lasso penal-
ized least squares and logistic regression are two examples of
the general formulation. We propose a simple unified algo-
rithm, groupwise-majorization-descent (GMD), for solving
the general group-lasso learning problems under the condi-
tion that the loss function satisfies a quadratic majorization
(QM) condition. GMD is remarkably simple and has prov-

able numerical convergence properties. We show that the QM
condition indeed holds for many popular loss functions used
in regression and classification, including the squared error
loss, the Huberized hinge loss, the squared hinge loss and
the logistic regression loss. It is also important to point out
that GMD works for general design matrices, without requir-
ing the group-wise orthogonal assumption. We have imple-
mented the proposed algorithm in an R package gglasso
which contains the functions for fitting the group-lasso penal-
ized least squares, logistic regression, Huberized SVM using
the Huberized hinge loss and squared SVM using the squared
hinge loss. The Huberized hinge loss and squared hinge loss
are interesting loss functions for classification from machine
learning viewpoint. In fact, there has been both theoretical
and empirical evidence showing that the Huberized hinge
loss is better than the hinge loss (Zhang 2004; Wang et
al. 2008). The group-lasso penalized Huberized SVM and
squared SVM are not implemented ingrplasso andSLEP.

Here we use breast cancer data (Graham et al. 2010)
to demonstrate the speed advantage of gglasso over
grplasso and SLEP. This is a binary classification prob-
lem where n = 42 and p = 22,283. We fit a sparse addi-
tive logistic regression model using the group-lasso. Each
variable contributes an additive component that is expressed
by five B-spline basis functions. The group-lasso penalty is
imposed on the coefficients of five B-spline basis functions
for each variable. Therefore, the corresponding group-lasso
logistic regression model has 22,283 groups and each group
has 5 coefficients to be estimated. Displayed in Fig. 1 are
three solution path plots produced by grplasso, SLEP
and gglasso. We computed the group-lasso solutions at
100 λ values on an Intel Xeon X5560 (Quad-core 2.8 GHz)
processor. It took SLEP about 450 and grplasso about
360 seconds to compute the logistic regression paths, while
gglasso used only about 10 seconds.

The rest of this article is organized as follows. In Sect.
2 we formulate the general group-lasso learning problem.
We introduce the quadratic majorization (QM) condition and
show that many popular loss functions for regression and
classification satisfy the QM condition. In Sect. 3 we derive
the GMD algorithm for solving the group-lasso model satis-
fying the QM condition and discuss some important imple-
mentation issues. Simulation and real data examples are pre-
sented in Sect. 4. We end the paper with a few conclud-
ing remarks in Sect. 5. We present technical proofs in an
Appendix.

2 Group-lasso models and the QM condition

2.1 Group-lasso penalized empirical loss

To define a general group-lasso model, we need to intro-
duce some notation. Throughout this paper we use x to

123

http://cran.r-project.org/web/packages/grplasso
http://cran.r-project.org/web/packages/grplasso
http://www.public.asu.edu/~jye02/Software/SLEP
http://www.public.asu.edu/~jye02/Software/SLEP

Stat Comput

Fig. 1 Fit a sparse additive
logistic regression model using
the group-lasso on the breast
cancer data (Graham et al. 2010)
with n = 42 patients and 22,283
genes (groups). Each gene’s
contribution is modeled by 5
B-Spline basis functions. The
solution paths are computed at
100 λ values. The vertical
dotted lines indicate the selected
λ (log λ = −3.73), which
selects 8 genes

(a) SLEP − Liu et al. (2009)
 Breast Cancer Data (approximately 450 seconds)

Log Lambda

C
oe

ffi
ci

en
ts

(b) grplasso − Meier et al. (2008)
 Breast Cancer Data (approximately 360 seconds)

Log Lambda

C
oe

ffi
ci

en
ts

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0

−2
−1

0
1

2

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0

−2
−1

0
1

2

−5.5 −5.0 −4.5 −4.0 −3.5 −3.0

−2
−1

0
1

2

(c) gglasso − BMD Algorithm
 Breast Cancer Data (approximately 10 seconds)

Log Lambda

C
oe

ffi
ci

en
ts

denote the generic predictors which are used to fit the group-
lasso model. Note that x may not be the original variables
in the raw data. For example, if we use the group-lasso to
fit an additive regression model. The original predictors are
z1, . . . , zq but we generate x variables by using basis func-
tions of z1, . . . , zq . For instance, x1 = z1, x2 = z2

1, x3 = z3
1,

x4 = z2, x5 = z2
2, etc. We assume that the user has defined

the x variables and we only focus on how to compute the
group-lasso model defined in terms of the x variables.

Let X be the design matrix with n rows and p columns
where n is the sample size of the raw data. If an intercept is
used in the model, we let the first column of X be a vector
of 1. Assume that the group membership is already defined
such that (1, 2, . . . , p) = ⋃K

k=1 Ik and the cardinality of
index set Ik is pk , Ik

⋂
Ik′ = ∅ for k ̸= k′, 1 ≤ k, k′ ≤ K .

Group k contains x j , j ∈ Ik , for 1 ≤ k ≤ K . If an inter-
cept is included, then I1 = {1}. Given the group parti-
tion, we use β(k) to denote the segment of β correspond-

123

Stat Comput

ing to group k. This notation is used for any p-dimensional
vector.

Suppose that the statistical model links the predictors to
the response variable y via a linear function f = βTx. Let
$(y, f) be the loss function used to fit the model. In this work
we primarily focus on statistical methods for regression and
binary classification, although our algorithms are developed
for a general loss function. For regression, the loss function
$(y, f) is often defined as $(y − f). For binary classifica-
tion, we use {+1,−1} to code the class label y and consider
the large margin classifiers where the loss function $(y, f)

is defined as $(y f). We obtained an estimate of β via the
group-lasso penalized empirical loss formulation defined as
follows:

argmin
β

1
n

n∑

i=1

τi$(yi ,β
Txi) + λ

K∑

k=1

wk∥β(k)∥2, (3)

where τi ≥ 0 and wk ≥ 0 for all i, k.
Note that we have included two kinds of weights in the

general group-lasso formulation. The observation weights τi s
are introduced in order to cover methods such as weighted
regression and weighted large margin classification. The
default choice for τi is 1 for all i . We have also included
penalty weights wks in order to make a more flexible group-
lasso model. The default choice for wk is

√
pk . If we do

not want to penalize a group of predictors, simply let the
corresponding weight be zero. For example, the intercept
is typically not penalized so that w1 = 0. Following the
adaptive lasso idea (Zou 2006), one could define the adap-
tively weighted group-lasso which often has better estima-
tion and variable selection performance than the un-weighted
group-lasso (Wang and Leng 2008). Our algorithms can eas-
ily accommodate both observation and penalty weights.

2.2 The QM condition

For notation convenience, we use D to denote the working
data {y, X} and let L(β|D) be the empirical loss, i.e.,

L(β | D) = 1
n

n∑

i=1

τi$(yi ,β
Txi).

Definition 1 The loss function $ is said to satisfy the
quadratic majorization (QM) condition, if and only if the
following two assumptions hold:

(i). L(β | D) is differentiable as a function of β, i.e.,
∇L(β|D) exists everywhere.

(ii). There exists a p × p matrix H, which may only depend
on the data D, such that for all β,β∗,

L(β | D) ≤ L(β∗ | D) + (β − β∗)T∇L(β∗|D)

+ 1
2
(β − β∗)TH(β − β∗). (4)

The following lemma characterizes a class of loss func-
tions that satisfies the QM condition.

Lemma 1 Let τi , 1 ≤ i ≤ n be the observation weights.
Let " be a diagonal matrix with "i i = τi . Assume $(y, f)

is differentiable with respect to f and write $′
f = ∂$(y, f)

∂ f .
Then

∇L(β|D) = 1
n

n∑

i=1

τi$
′
f (yi , xT

i β)xi .

(1) If $′
f is Lipschitz continuous with constant C such that

|$′
f (y, f1) − $′

f (y, f2)| ≤ C | f1 − f2| ∀ y, f1, f2,

then the QM condition holds for $ and H = 2C
n XT"X.

(2) If $′′
f = ∂$2(y, f)

∂ f 2 exits and

$′′
f ≤ C2 ∀ y, f,

then the QM condition holds for $ and H = C2
n XT"X.

In what follows we use Lemma 1 to verify that many
popular loss functions indeed satisfy the QM condition. The
results are summarized in Table 1.

We begin with the classical squared error loss for regres-
sion: $(y, f) = 1

2 (y − f)2. Then we have

∇L(β|D) = −1
n

n∑

i=1

τi (yi − xT
i β)xi . (5)

Because $′′
f = 1, Lemma 1 part (2) tell us that the QM

condition holds with

H = XT"X/n ≡ Hls. (6)

Table 1 The QM condition is verified for the least squares, logistic
regression, squared hinge loss and Huberized hinge loss

Loss −∇L(β | D) H

Least squares 1
n

∑n
i=1 τi (yi − xT

i β)xi XT"X/n

Logistic regression 1
n

∑n
i=1 τi yi xi

1
1+exp(yi xT

i β)

1
4 XT"X/n

Squared hinge loss 1
n

∑n
i=1 2τi yi xi (1 − yi xT

i β)+ 4XT"X/n

Huberized hinge loss 1
n

∑n
i=1 τi yi xi hsvm′(yi xT

i β) 2
δ XT"X/n

123

Stat Comput

We now discuss several margin-based loss functions for
binary classification. We code y by {+1,−1}. The logis-
tic regression loss is defined as $(y, f) = Logit(y f) =
log(1 + exp(−y f)). We have $′

f = −y 1
1+exp(y f) and

$′′
f = y2 exp(y f)

(1+exp(y f))2 = exp(y f)

(1+exp(y f))2 . Then we write

∇L(β | D) = −1
n

n∑

i=1

τi yi xi
1

1 + exp(yi xT
i β)

. (7)

Because $′′
f ≤ 1/4, by Lemma 1 part (2) the QM condition

holds for the logistic regression loss and

H = 1
4

XT"X/n ≡ Hlogit. (8)

The squared hinge loss has the expression $(y, f) =
sqsvm(y f) =

[
(1 − y f)+

]2 where

(1 − t)+ =
{

0, t > 1
1 − t, t ≤ 1.

By direct calculation we have

$′
f =

{
0, y f > 1
−2y(1 − y f), y f ≤ 1

∇L(β | D) = −1
n

n∑

i=1

2τi yi xi (1 − yi xT
i β)+. (9)

We can also verify that |$′
f (y, f1)−$′

f (y, f2)| ≤ 2| f1− f2|.
By Lemma 1 part (1) the QM condition holds for the squared
hinge loss and

H = 4XT"X/n ≡ Hsqsvm. (10)

The Huberized hinge loss is defined as $(y, f) =
hsvm(y f) where

hsvm(t) =

⎧
⎨

⎩

0, t > 1
(1 − t)2/2δ, 1 − δ < t ≤ 1
1 − t − δ/2, t ≤ 1 − δ.

By direct calculation we have $′
f = yhsvm′(y f) where

hsvm′(t) =

⎧
⎨

⎩

0, t > 1
(1 − t)/δ, 1 − δ < t ≤ 1
1, t ≤ 1 − δ,

∇L(β | D) = −1
n

n∑

i=1

τi yi xi hsvm′(yi xT
i β). (11)

We can also verify that |$′
f (y, f1) − $′

f (y, f2)| ≤ 1
δ | f1 −

f2|. By Lemma 1 part (1) the QM condition holds for the
Huberized hinge loss and

H = 2
δ

XT"X/n ≡ Hhsvm. (12)

3 GMD algorithm

3.1 Derivation

In this section we derive the groupwise-majorization-descent
(GMD) algorithm for computing the solution of (3) when
the loss function satisfies the QM condition. The objective
function is

L(β | D) + λ

K∑

k=1

wk∥β(k)∥2. (13)

Let β̃ denote the current solution of β. Without loss of gen-
erality, let us derive the GMD update of β̃

(k)
, the coefficients

of group k. Define H(k) as the sub-matrix of H correspond-
ing to group k. For example, if group 2 is {2, 4} then H2
is a 2 × 2 matrix with H(2)

11 = H2,2, H(2)
12 = H2,4, H(2)

21 =
H4,2, H(2)

22 = H4,4.

Write β such that β(k′) = β̃
(k′)

for k′ ̸= k. Given β(k′) =
β̃

(k′)
for k′ ̸= k, the optimal β(k) is defined as

argmin
β(k)

L(β | D) + λwk∥β(k)∥2. (14)

Unfortunately, there is no closed form solution to (14)
for a general loss function with general design matrix. We
overcome the computational obstacle by taking advantage of
the QM condition. From (4) we have

L(β | D) ≤ L(β̃ | D) + (β − β̃)T∇L(β̃|D)

+1
2
(β − β̃)TH(β − β̃).

Write U (β̃) = −∇L(β̃|D). Using

β − β̃ = (0, . . . , 0︸ ︷︷ ︸
k−1

,β(k) − β̃
(k)

, 0, . . . , 0︸ ︷︷ ︸
K−k

),

we can write

L(β | D) ≤ L(β̃ | D) − (β(k) − β̃
(k)

)TU (k)

+1
2
(β(k) − β̃

(k)
)TH(k)(β(k) − β̃

(k)
). (15)

Let ηk be the largest eigenvalue of H(k). We set γk = (1 +
ε∗)ηk , where ε∗ = 10−6. Then we can further relax the upper
bound in (15) as

L(β | D) ≤ L(β̃ | D) − (β(k) − β̃
(k)

)TU (k)

+1
2
γk(β

(k) − β̃
(k)

)T(β(k) − β̃
(k)

). (16)

It is important to note that the inequality strictly holds unless
for β(k) = β̃

(k)
. Instead of minimizing (14) we solve

123

Stat Comput

argmin
β(k)

L(β̃ | D) − (β(k) − β̃
(k)

)TU (k)

+1
2
γk(β

(k) − β̃
(k)

)T(β(k) − β̃
(k)

) + λwk∥β(k)∥2. (17)

Denote by β̃
(k)

(new) the solution to (17). It is straightforward
to see that β̃

(k)
(new) has a simple closed-from expression

β̃
(k)

(new)= 1
γk

(
U (k)+γk β̃

(k)
) (

1 − λwk

∥U (k) + γk β̃
(k)∥2

)

+
.

(18)

Algorithm 1 summarizes the details of GMD.

Algorithm 1 The GMD algorithm for general group-lasso
learning.
1. For k = 1, . . . , K , compute γk , the largest eigenvalue of H(k).
2. Initialize β̃.
3. Repeat the following cyclic groupwise updates until convergence:

— for k = 1, . . . , K , do step (3.1)–(3.3)
3.1 Compute U (β̃) = −∇L(β̃|D).
3.2 Compute β̃

(k)
(new) =

1
γk

(
U (k) + γk β̃

(k)
) (

1 − λwk

∥U (k)+γk β̃
(k)∥2

)

+
.

3.3 Set β̃
(k) = β̃

(k)
(new).

We can prove the strict descent property of GMD by using
the MM principle (Lange et al. 2000; Hunter and Lange 2004;
Wu and Lange 2010). Define

Q(β | D)= L(β̃ | D)−(β(k)−β̃
(k)

)TU (k)

+1
2
γk(β

(k)−β̃
(k)

)T(β(k)−β̃
(k)

) + λwk∥β(k)∥2.

(19)

Obviously, Q(β | D) = L(β | D) + λwk∥β(k)∥2 when
β(k) = β̃

(k)
and (16) shows that Q(β | D) > L(β | D) +

λwk∥β(k)∥2 when β(k) ̸= β̃
(k)

. After updating β̃
(k)

using
(18), we have

L(β̃
(k)

(new) | D)+λwk∥β̃(k)
(new)∥2 ≤ Q(β̃

(k)
(new) | D)

≤ Q(β̃ | D)

= L(β̃ | D)+λwk∥β̃(k)∥2.

Moreover, if β̃
(k)

(new) ̸= β̃
(k)

, then the first inequality
becomes

L(β̃
(k)

(new) | D) + λwk∥β̃(k)
(new)∥2 < Q(β̃

(k)
(new) | D).

Therefore, the objective function is strictly decreased after
updating all groups in a cycle, unless the solution does not
change after each groupwise update. If this is the case, we
can show that the solution must satisfy the KKT conditions,

which means that the algorithm converges and finds the right
answer. To see this, if β̃

(k)
(new) = β̃

(k)
for all k, then by the

update formula (18) we have that for all k

β̃
(k) = 1

γk

(
U (k) + γk β̃

(k)
)(

1 − λwk

∥U (k) + γk β̃
(k)∥2

)

if ∥U (k) + γk β̃
(k)∥2 > λwk, (20)

β̃
(k) =0 if ∥U (k) + γk β̃

(k)∥2 ≤ λwk . (21)

By straightforward algebra we obtain the KKT conditions:

−U (k) + λwk · β̃
(k)

∥β̃(k)∥2

= 0 if β̃
(k) ̸= 0,

∥∥∥U (k)
∥∥∥

2
≤ λwk if β̃

(k) = 0,

where k = 1, 2, . . . , K . Therefore, if the objective function
stays unchanged after a cycle, the algorithm necessarily con-
verges to the right answer.

3.2 Implementation

We have implemented Algorithm 1 for solving the group-
lasso penalized least squares, logistic regression, Huberized
SVM and squared SVM. These functions are contained in an
R package gglasso publicly available from the Compre-
hensive R Archive Network (CRAN) at http://cran.r-project.
org/web/packages/gglasso. We always include the intercept
term in the model. Without loss of generality we always cen-
ter the design matrix beforehand.

We solve each group-lasso model for a sequence of λ val-
ues from large to small. The default number of points is 100.
Let λ[l] denote these grid points. We use the warm-start trick
to implement the solution path, that is, the computed solution
at λ = λ[l] is used as the initial value for using Algorithm 1
to compute the solution at λ = λ[l+1]. We define λ[1] as
the smallest λ value such that all predictors have zero coef-
ficients, except the intercept. In such a case let β̂1 be the
optimal solution of the intercept. Then the solution at λ[1]

is β̂
[1] = (β̂1, 0, . . . , 0) as the null model estimates. By the

Karush-Kuhn-Tucker conditions we can find that

λ[1] = max
k=1,...,K

∥∥∥∥
[
∇L(β̂

[1]|D)
](k)

∥∥∥∥
2
/wk, wk ̸= 0.

For least squares and logistic regression models, β̂1 has a
simple expression:

β̂1(LS) =
∑n

i=1 τi yi∑n
i=1 τi

group-lasso penalized least squares

(22)

123

http://cran.r-project.org/web/packages/gglasso
http://cran.r-project.org/web/packages/gglasso

Stat Comput

β̂1(Logit) = log

(∑
yi =1 τi∑

yi =−1 τi

)

group-lasso penalized

logistic regression (23)

For the other two models, we use the following iterative pro-
cedure to solve for β̂1:

1. Initialize β̂1 = β̂1(Logit) in large margin classifiers.
2. Compute β̂1(new) = β̂1 − 1

γ1
∇L((β̂1, 0, . . . , 0)|D)1

where γ1 = 1
n

∑n
i=1 τi .

3. Let β̂1 = β̂1(new).
4. Repeat 2–3 until convergence.

For computing the solution at each λ we also utilize the
strong rule introduced in Tibshirani et al. (2012). Suppose
that we have computed β̂(λ[l]), the solution at λ[l]. To com-
pute the solution at λ[l+1], before using Algorithm 1 we first
check if group k satisfies the following inequality:

∥∥∥[∇L(β̂(λ[l])|D)](k)
∥∥∥

2
≥ wk(2λ[l+1] − λ[l]). (24)

Let S = {Ik : group k passes the check in (24)} and denote
its complement as Sc. The strong rule claims that at λ[l+1]

the groups in the set S are very likely to have nonzero coef-
ficients and the groups in set Sc are very likely to have zero
coefficients. If the strong rule guesses correctly, we only need
to use Algorithm 1 to solve the group-lasso model with a
reduced data set {y, XS} where XS = [· · · X j · · ·], j ∈ S
corresponds to the design matrix with only the groups of
variables in S. Suppose the solution is β̂S . We then need to
check whether the strong rule indeed made correct guesses
at λ[l+1] by checking whether β̃(λ[l+1]) = (β̂S, 0) satisfies
the KKT conditions. If for each group k where Ik ∈ Sc the
following KKT condition holds:
∥∥∥[∇L(β̃(λ[l+1]) = (β̂S, 0)|D)](k)

∥∥∥
2

≤ λ[l+1]wk .

Then β̃(λ[l+1]) = (β̂S, 0) is the desired solution at λ =
λ[l+1]. Otherwise, any group that violates the KKT conditions
should be added to S. We update S by S = S

⋃
V where

V =
{

Ik : Ik ∈ Scand
∥∥∥[∇L(β̃(λ[l+1])

= (β̂S, 0)|D)](k)
∥∥∥

2
> λ[l+1]wk

}
.

Note that the strong rule will eventually make the correct
guess since the set S can only grow larger after each update
and hence the strong rule iteration will always stop after a
finite number of updates. Algorithm 2 summarizes the details
of the strong rule.

Note that not all the corresponding coefficients in S are
nonzero. Therefore when we apply Algorithm 1 on the
reduced data set {y, XS} to cyclically update β̂S , we only

focus on a subset A of S which contains those groups whose
current coefficients are nonzero A = {Ik : Ik ∈ S and
β̃

(k) ̸= 0}. This subset is referred as the active-set. The simi-
lar idea has been adopted by previous work (Tibshirani et al.
2012; Meier et al. 2008; Vogt and Roth 2012). In detail, we
first create an active-set A by updating each group belonging
to S once. Next Algorithm 1 will be applied on the active-set
A until convergence. We then run a complete cycle again on
S to see if any group is to be included into the active-set.
If not, the algorithm is stopped. Otherwise, Algorithm 1 is
repeated on the updated active-set.

Algorithm 2 The GMD algorithm with the strong rule at
λ[l+1].
1. Initialize β̃ = β̂(λ[l]).
2. Screen K groups using the strong rule, create an initial survival set

S such that for group k where Ik ∈ S
∥∥∥[∇L(β̂(λ[l])|D)](k)

∥∥∥
2

≥ wk(2λ[l+1] − λ[l]).

3. Call Algorithm 1 on a reduced dataset (yi , xi S)n
i=1 to solve β̂S .

4. Compute a set V as the part of Sc that failed KKT check:

V =
{

Ik : Ik ∈ Sc and
∥∥∥[∇L(β̃(λ[l+1])

= (β̂S, 0)|D)](k)
∥∥∥

2
> λ[l+1]wk

}
.

5. If V = ∅ then stop the loop and return β̂(λ[l+1]) = (β̂S, 0).
Otherwise update S = S

⋃
V and go to step 3.

In Algorithm 1 we use a simple updating formula to
compute ∇L(β̃|D), because it only depends on R = y −
Xβ̃ for regression and R = y · Xβ̃ for classification.
After updating β̃

(k)
, for regression we can update R by

R − X(k)(β̃
(k)

(new) − β̃
(k)

), for classification update R by
R + y · X(k)(β̃

(k)
(new) − β̃

(k)
).

In order to make a fair comparison to grplasso and
SLEP, we tested three different convergence criteria in
gglasso:

1. max
j

∣∣∣β̃ j (current)−β̃ j (new)
∣∣∣

1+|β̃ j (current)| < ϵ, for j = 1, 2 . . . , p.

2.
∥∥β̃(current) − β̃(new)

∥∥
2 < ϵ.

3. maxk(γk) · max
j

∣∣∣β̃ j (current)−β̃ j (new)
∣∣∣

1+|β̃ j (current)| < ϵ, for j =
1, 2 . . . , p and k = 1, 2 . . . , K .

Convergence criterion 1 is used in grplasso and conver-
gence criterion 2 is used in SLEP. For the group-lasso penal-
ized least squares and logistic regression, we used both con-
vergence criteria 1 and 2 in gglasso. For the group-lasso
penalized Huberized SVM and squared SVM, we used con-
vergence criterion 3 in gglasso. Compared to criterion 1,
criterion 3 uses an extra factor maxk(γk) in order to take

123

Stat Comput

into account the observation that β̃
(k)

(current) − β̃
(k)

(new)

depends on 1
γk

. The default value for ϵ is 10−4.

4 Numerical examples

In this section, we use simulation and real data to demon-
strate the efficiency of the GMD algorithm in terms of tim-
ing performance and solution accuracy. All numerical exper-
iments were carried out on an Intel Xeon X5560 (Quad-core
2.8 GHz) processor. In this section, let gglasso (LS1)
and gglasso (LS2) denote the group-lasso penalized least
squares solutions computed by gglasso where the conver-
gence criterion is criterion 1 and criterion 2, respectively.
Likewise, we define gglasso (Logit1) and gglasso
(Logit2) for the group-lasso penalized logistic regression.

4.1 Timing comparison

We design a simulation model by combining the FHT model
introduced in Friedman et al. (2010) and the simulation model
3 in Yuan and Lin (2006). We generate original predictors
X j , j = 1, 2 . . . , q from a multivariate normal distribution
with a compound symmetry correlation matrix such that the
correlation between X j and X j ′ is ρ for j ̸= j ′. Let

Y ∗ =
q∑

j=1

(
2
3

X j − X2
j + 1

3
X3

j

)
β j ,

where β j = (−1) j exp(−(2 j−1)/20). When fitting a group-
lasso model, we treat {X j , X2

j , X3
j } as a group, so the final

predictor matrix has the number of variables p = 3q.
For regression data we generate a response Y = Y ∗ +k ·e

where the error term e is generated from N (0, 1). k is chosen
such that the signal-to-noise ratio is 3.0. For classification
data we generate the binary response Y according to

Pr(Y = −1) = 1/(1 + exp(−Y ∗)),

Pr(Y = +1) = 1/(1 + exp(Y ∗)).

We considered the following combinations of (n, p):

Scenario 1. (n, p) = (100, 3000) and (n, p) = (300,

9000).
Scenario 2. n = 200 and p = 600, 1200, 3000, 6000,

9000, shown in Fig. 2.

For each (n, p, ρ) combination we recorded the timing (in
seconds) of computing the solution paths at 100 λ values of
each group-lasso penalized model by gglasso, SLEP and
grplasso. The results was averaged over 10 independent
runs.

Table 2 shows results from Scenario 1. We see that
gglasso has the best timing performance. In the group-
lasso penalized least squares case, gglasso (LS2) is about
12 times faster than SLEP (LS). In the group-lasso penal-
ized logistic regression case, gglasso (Logit2) is about
2-6 times faster than SLEP (Logit) and gglasso (Logit1)
is about 5-10 times faster than grplasso (Logit).

Figure 2 shows results from Scenario 2 in which we exam-
ine the impact of dimension on the timing of gglasso. We
fixed n at 200 and plotted the run time (in log scale) against
p for three correlation levels 0.2, 0.5 and 0.8. We see that
higher ρ increases the timing of gglasso in general. For
each fixed correlation level, the timing increases linearly with
the dimension.

4.2 Quality comparison

In this section we show that gglasso is also more accurate
than grplasso and SLEP under the same convergence cri-
terion. We test the accuracy of solutions by checking their
KKT conditions. Theoretically, β is the solution of (3) if and
only if the following KKT conditions hold:

[∇L(β|D)](k) + λwk · β(k)

∥β(k)∥2
= 0 if β(k) ̸= 0,

∥∥∥[∇L(β|D)](k)
∥∥∥

2
≤ λwk if β(k) = 0,

where k = 1, 2, . . . , K . The theoretical solution for the con-
vex optimization problem (3) should be unique and always
passes the KKT condition check. However, a numerical solu-
tion could only approach this analytical value within certain
precision therefore may fail the KKT check. Numerically,
we declare β(k) passes the KKT condition check if

∥∥∥∥∥[∇L(β|D)](k) + λwk · β(k)

∥β(k)∥2

∥∥∥∥∥
2

≤ ε if β(k) ̸= 0,

∥∥∥[∇L(β|D)](k)
∥∥∥

2
≤ λwk + ε if β(k) = 0,

for a small ε > 0. In this paper we set ε = 10−4.
For the solutions of the FHT model scenario 1 computed

in Sect. 4.1, we also calculated the number of coefficients
that violated the KKT condition check at each λ value.
Then this number was averaged over the 100 values of λs.
This process was then repeated 10 times on 10 independent
datasets. As shown in Table 3, in the group-lasso penalized
least squares case, gglasso (LS1) has zero violation count;
gglasso (LS2) also has smaller violation counts compared
with SLEP (LS). In the group-lasso penalized classification
cases, gglasso (Logit1) has less KKT violation counts
than grplasso (Logit) does when both use convergence
criterion 1, and gglasso (Logit2) has less KKT violation

123

Stat Comput

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a) Least Squares

p

Lo
g−

sc
al

ed
 R

un
ni

ng
 T

im
e

600 1200 3000 6000 9000

ρ = 0.2
ρ = 0.5
ρ = 0.8

1.
5

2.
0

2.
5

3.
0

(b) Logistic Regression

p

Lo
g−

sc
al

ed
 R

un
ni

ng
 T

im
e

600 1200 3000 6000 9000

ρ = 0.2
ρ = 0.5
ρ = 0.8

2.
0

2.
5

3.
0

3.
5

(c) HSVM

p

Lo
g−

sc
al

ed
 R

un
ni

ng
 T

im
e

600 1200 3000 6000 9000

ρ = 0.2
ρ = 0.5
ρ = 0.8

2.
0

2.
5

3.
0

3.
5

(d) SqSVM

p

Lo
g−

sc
al

ed
 R

un
ni

ng
 T

im
e

600 1200 3000 6000 9000

ρ = 0.2
ρ = 0.5
ρ = 0.8

Fig. 2 The FHT model scenario 2. The average running time of 10 independent runs (in the natural logarithm scale) of gglasso for computing
solution paths of a least squares; b logistic regression; c Huberized SVM; d squared SVM. In all cases n = 200

counts than SLEP (Logit) when both use convergence crite-
rion 2. Overall, it is clear that gglasso is numerically more
accurate than grplasso and SLEP. gglasso (HSVM) and
gglasso (SqSVM) both pass KKT checks without any vio-
lation.

4.3 Real data analysis

In this section we compare gglasso, grplasso and
SLEP on several real data examples. Table 4 summarizes
the datasets used in this section. We fit a sparse additive
regression model for the regression-type data and fit a sparse
additive logistic regression model for the classification-type
data. The group-lasso penalty is used to select important addi-

tive components. All data were standardized in advance such
that each original variable has zero mean and unit sample
variance. Some datasets contain only numeric variables but
some datasets have both numeric and categorical variables.
For any categorical variable with M levels of measurement,
we recoded it by M − 1 dummy variables and treated these
dummy variables as a group. For each continuous variable,
we used five B-Spline basis functions to represent its effect
in the additive model. Those five basis functions are consid-
ered as a group. For example, in Colon data the original data
have 2,000 numeric variables. After basis function expansion
there are 10,000 predictors in 2,000 groups.

For each dataset, we report the average timings of 10 inde-
pendent runs for computing the solution paths at 100λ values.

123

Stat Comput

Table 2 The FHT model
scenario 1

Reported numbers are timings
(in seconds) of gglasso,
grplasso and SLEP for
computing solution paths at 100
λ values using the group-lasso
penalized least squares, logistics
regression, Huberized SVM and
squared SVM models. Results
are averaged over 10
independent runs

Timing comparison

Data n = 100 p = 3,000 n = 300 p = 9,000

ρ 0.2 0.5 0.8 0.2 0.5 0.8

Regression

SLEP (LS) 7.31 8.90 10.76 31.39 40.53 36.56

gglasso (LS1) 1.05 1.33 3.57 5.53 18.62 38.84

gglasso (LS2) 0.60 0.60 0.63 2.93 2.98 2.80

Classification

grplasso (Logit) 31.78 38.19 58.45 111.70 158.44 239.67

gglasso (Logit1) 3.16 5.65 10.39 19.42 22.98 37.39

SLEP (Logit) 5.50 5.86 2.39 24.68 22.14 6.80

gglasso (Logit2) 0.95 0.95 0.76 6.11 5.35 3.68

gglasso (HSVM) 4.36 8.60 14.63 24.46 33.77 65.29

gglasso (SqSVM) 5.35 10.21 15.32 30.80 41.00 73.68

Table 3 The FHT model
scenario 1

Reported numbers are the
average number of coefficients
among p coefficients that
violated the KKT condition
check (rounded down to the next
smaller integer) using gglasso,
grplasso and SLEP. Results are
averaged over the λ sequence of
100 values and averaged over 10
independent runs

Quality comparison: KKT condition check

Data n = 100 p = 3,000 n = 300 p = 9,000

ρ 0.2 0.5 0.8 0.2 0.5 0.8

Regression

SLEP (LS) 23 21 17 53 48 30

gglasso (LS1) 0 0 0 0 0 0

gglasso (LS2) 23 21 16 43 46 27

Classification

grplasso (Logit) 0 5 17 0 28 37

gglasso (Logit1) 0 0 0 0 0 0

SLEP (Logit) 7 23 29 15 70 143

gglasso (Logit2) 9 24 24 4 50 48

gglasso(HSVM) 0 0 0 0 0 0

gglasso(SqSVM) 0 0 0 0 0 0

Table 4 Real datasets

n is the number of instances. q
is the number of original
variables. p is the number of
predictors after expansion. “R”
means regression and “C”
means classification

Dataset Type n q p Data source

Autompg R 392 7 31 Quinlan (1993)

Bardet R 120 200 1,000 Scheetz et al. (2006)

Cardiomypathy R 30 6,319 31,595 Segal et al. (2003)

Spectroscopy R 103 100 500 Sæbø et al. (2008)

Breast C 42 22,283 111,415 Graham et al. (2010)

Colon C 62 2,000 10,000 Alon et al. (1999)

Prostate C 102 6,033 30,165 Singh et al. (2002)

Sonar C 208 60 300 Gorman and Sejnowski (1988)

We also report the average number of the KKT check viola-
tions. The results are summarized in Table 5. It is clear that
gglasso outperforms both grplasso and SLEP.

Before ending this section we would like to use a real data
example to demonstrate why the group-lasso could be advan-

tageous over the lasso. On sonar data we compared the lasso
penalized logistic regression and the group-lasso penalized
logistic regression. We randomly split the sonar data into
training and test sets according to 4:1 ratio, and found the
optimal λ for each method using five-fold cross-validation

123

Stat Comput

Table 5 Group-lasso penalized regression and classification on real datasets

Group-lasso regression on real data

Dataset Autompg Bardet Cardiomypathy Spectroscopy

Sec. KKT Sec. KKT Sec. KKT Sec. KKT

SLEP (LS) 3.14 0 9.96 0 78.23 0 9.37 0

gglasso (LS1) 1.79 1 8.49 1 0.38 2 0.50 0

gglasso (LS2) 1.29 0 1.04 0 2.53 0 2.26 0

Group-lasso classification on real data

Dataset Colon Prostate Sonar Breast

Sec. KKT Sec. KKT Sec. KKT Sec. KKT

grplasso (Logit) 60.42 0 111.75 0 24.55 0 439.76 0

gglasso (Logit1) 1.13 0 3.877 0 1.54 0 9.62 0

SLEP (Logit) 75.31 0 166.91 0 5.49 0 358.75 0

gglasso (Logit2) 2.23 0 4.36 0 2.88 0 10.24 0

gglasso (HSVM) 1.15 0 3.53 0 0.66 0 9.15 0

gglasso (SqSVM) 1.45 0 3.79 0 1.27 1 9.58 0

Reported numbers are: (a) timings (in seconds), total time for 100 λ values; (b) the average number of coefficients among p coefficients that violated
the KKT condition check. Results are averaged over 10 independent runs

on the training data. Then we calculated the misclassification
error rate on the test set. We used glmnet (Friedman et al.
2010) to compute the lasso penalized logistic regression. The
process was repeated 100 times. In the group-lasso model,
we define the group-wise L2 coefficient norm θ j (λ) for the

j th variable by θ j (λ) =
√∑5

i=1 β̂2
j i (λ). Then the j th vari-

able enters the final model if and only if θ j (λ) ̸= 0. Figure 3
shows the solution paths of the tuned lasso and group-lasso
logistic model from one run, where in the group-lasso plot
we plot θ j (λ) against log λ. To make a more direct com-
parison, we also plot the absolute value of each coefficient
in the lasso plot. The fitted lasso logistic regression model
selected 40 original variables while the group-lasso logistic
regression model selected 26 original variables. When look-
ing at the average misclassification error of 100 runs, we see
that the group-lasso logistic regression model is significantly
more accurate than the lasso logistic regression model. Note
that the sample size is 208 in the Sonar data, thus the mis-
classification error calculation is meaningful.

5 Discussion

In this paper we have derived a unified groupwise-majorizatoin-
descent algorithm for computing the solution paths of a class
of group-lasso penalized models. We have demonstrated the
efficiency of Algorithm 1 on four group-lasso models: the
group-lasso penalized least squares, the group-lasso penal-

ized logistic regression, the group-lasso penalized HSVM
and the group-lasso penalized SqSVM. Algorithm 1 can be
readily applied to other interesting group-lasso penalized
models. All we need to do is to check the QM condition
for the given loss function. For that, Lemma 1 is a handy
tool. We also implemented the exact groupwise descent algo-
rithm in which we solved the convex optimization problem
defined in (14) for each group. We used the same computa-
tional tricks to implement the exact groupwise descent algo-
rithm, including the strong rule, warm-start and the active
set. We found that groupwise-majorization-descent is about
10–15 times faster than the exact groupwise descent algo-
rithm. This comparison clearly shows the value of using
majorization within the groupwise descent algorithm. For the
sake of brevity, we opt not to show the timing comparison
here.
grplasso is a popular R package for the group-

lasso penalized logistic regression, but the underlying algo-
rithm is limited to twice differentiable loss functions.
SLEP implements Nesterov’s method for the group-lasso
penalized least squares and logistic regression. In princi-
ple, Nesterov’s method can be used to solve other group-
lasso penalized models. For the group-lasso penalized least
squares and logistic regression cases, our package gglasso
is faster than SLEP and grplasso. Although we do
not claim that groupwise-majorizatoin-descent is superior
than Nesterov’s method, the numerical evidence clearly
shows the practical usefulness of groupwise-majorizatoin-
descent.

123

Stat Comput

(a) LASSO − Sonar Data
 Error Rate: 0.254 (0.023)

 Selects 40 Original Variables

Log Lambda

A
bs

ol
ut

e
C

oe
ffi

ci
en

ts

−6 −5 −4 −3 −2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

−8 −7 −6 −5 −4

0
1

2
3

4
5

6

(b) gLASSO −− Sonar Data
 Error Rate: 0.155 (0.022)

 Selects 26 Original Variables

Log Lambda

A
bs

ol
ut

e
G

ro
up

ed
 C

oe
ffi

ci
en

ts

Fig. 3 Compare the lasso penalized logistic regression and the group-
lasso penalized logistic regression on Sonar data with n = 208 and
p = 60. a solution paths of lasso penalized logistic regression model,
in which each absolute coefficient |β j | is plotted against log λ for j =
1, . . . , p. b solution paths of group-lasso penalized logistic regression
model with p∗ = 300 expanded variables grouped into K = 60 groups,
in which each group norm ∥β(k)∥2 is plotted against log λ for k =
1, . . . , K . The vertical dotted lines indicate the best models chosen by
cross-validation

Finally, we should point out that Nesterov’s method is a
more general optimization algorithm than groupwise-descent
or groupwise-majorizatoin-descent. Note that groupwise-
descent or groupwise-majorizatoin-descent can only work
for groupwise separable penalty functions in general. What
we have shown in this paper is that a more general algo-
rithm like Nesterov’s method can be slower than a specific
algorithm like GMD for a given set of problems. The same
message was reported in a comparison done by Tibshirani in
which the coordinate descent algorithm was shown to out-
perform Nesterov’s method for the lasso regression. See Tib-
shirani http://statweb.stanford.edu/~tibs/comparison.txt for
more details.

6 Supplementary materials

Our methods have been implemented in an R package gglasso
publicly available from the Comprehensive R Archive
Network (CRAN) at http://cran.r-project.org/web/packages/
gglasso.

Acknowledgments The authors thank the editor, an associate editor
and two referees for their helpful comments and suggestions. This work
is supported in part by NSF Grant DMS-08-46068.

Appendix: Proofs

Proof of Lemma 1 Part (1). For any β and β∗, write β−β∗ =
V and define g(t) = L(β∗ + tV | D) so that

g(0) = L(β∗ | D), g(1) = L(β | D).

By the mean value theorem, ∃ a ∈ (0, 1) such that

g(1) = g(0)+ g′(a) = g(0)+ g′(0)+[g′(a)− g′(0)]. (25)

Write $′
f = ∂$(y, f)

∂ f . Note that

g′(t) = 1
n

n∑

i=1

τi$
′
f (yi , xT

i (β∗ + tV))(xT
i V). (26)

Thus g′(0) = (β −β∗)T∇L(β∗|D). Moreover, from (26) we
have

|g′(a) − g′(0)| = |1
n

n∑

i=1

τi [$′
f (yi , xT

i (β∗ + aV))

−$′
f (yi , xT

i β∗)](xT
i V)|

≤ 1
n

n∑

i=1

τi |$′
f (yi , xT

i (β∗ + aV))

−$′
f (yi , xT

i β∗)||xT
i V |

≤ 1
n

n∑

i=1

Cτi |xT
i aV ||xT

i V | (27)

≤ 1
n

n∑

i=1

Cτi∥xT
i V ∥2

2

= C
n

V T[XT"X]V, (28)

where in (27) we have used the inequality |$′(y, f1) −
$′(y, f2)| ≤ C | f1 − f2|. Plugging (27) into (25) we have

L(β | D) ≤ L(β∗ | D) + (β − β∗)T∇L(β∗|D)

+1
2
(β − β∗)TH(β − β∗),

with H = 2C
n XT"X.

123

http://statweb.stanford.edu/~tibs/comparison.txt
http://cran.r-project.org/web/packages/gglasso
http://cran.r-project.org/web/packages/gglasso

Stat Comput

Part (2). Write $′′
f = ∂$2(y, f)

∂ f 2 . By Taylor’s expansion,
∃ b ∈ (0, 1) such that

g(1) = g(0) + g′(0) + g′′(b). (29)

Note that

g′′(b) = 1
n

n∑

i=1

τi$
′′
f (yi , xT

i (β∗ + bV))(xT
i V)2

≤ 1
n

n∑

i=1

C2τi (xT
i V)2, (30)

where we have used the inequality $′′
f ≤ C2. Plugging (30)

into (29) we have

L(β | D) ≤ L(β∗ | D) + (β − β∗)T∇L(β∗|D)

+1
2
(β − β∗)TH(β − β∗),

with H = C2
n XT"X. ⊓1

References

Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D.,
Levine, A.: Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proc. Nat. Acad. Sci. 96(12), 6745 (1999)

Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint. Commun.
Pure Appl. Math. 57, 1413–1457 (2004)

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regres-
sion. Ann. Stat. 32(2), 407–451 (2004)

Friedman, J., Hastie, T., Tibshirani, R.: Regularized paths for general-
ized linear models via coordinate descent. J. Stat. Softw. 33, 1–22
(2010)

Fu, W.: Penalized regressions: the bridge versus the lasso. J. Comput.
Gr. Stat. 7(3), 397–416 (1998)

Genkin, A., Lewis, D., Madigan, D.: Large-scale Bayesian logistic
regression for text categorization. Technometrics 49(3), 291–304
(2007)

Gorman, R., Sejnowski, T.: Analysis of hidden units in a layered net-
work trained to classify sonar targets. Neural Netw. 1(1), 75–89
(1988)

Graham, K., de Las Morenas, A., Tripathi, A., King, C., Kavanah, M.,
Mendez, J., Stone, M., Slama, J., Miller, M., Antoine, G., et al.:
Gene expression in histologically normal epithelium from breast can-
cer patients and from cancer-free prophylactic mastectomy patients
shares a similar profile. Br. J. Cancer 102(8), 1284–1293 (2010)

Hunter, D., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58(1),
30–37 (2004)

Lange, K., Hunter, D., Yang, I.: Optimization transfer using sur- rogate
objective functions (with discussion). J. Comput. Gr. Stat. 9, 1–20
(2000)

Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projec-
tions, Arizona State University. URL: http://www.public.asu.edu/
jye02/Software/SLEP (2009)

Meier, L., van de Geer, S., Bühlmann, P.: The group lasso for logistic
regression. J. R. Stat. Soc. Ser. B 70, 53–71 (2008)

Nesterov, Y.: ‘Introductory lectures on convex optimization: A basic
course’, Operations Research. (2004)

Nesterov, Y.: Gradient methods for minimizing composite objective
function, Technical report, Technical Report, Center for Operations
Research and Econometrics (CORE), Catholic University of Louvain
(UCL) (2007)

Osborne, M., Presnell, B., Turlach, B.: A new approach to variable
selection in least squares problems. IMA J. Numer. Anal. 20(3),
389–403 (2000)

Quinlan, J.: Combining instance-based and model-based learning. In:
Proceedings of the Tenth International Conference on Machine
Learning, pp. 236–243 (1993)

Sæbø, S., Almøy, T., Aarøe, J., Aastveit, A.: St-pls: a multi-directional
nearest shrunken centroid type classifier via pls. J. Chemom. 22(1),
54–62 (2008)

Scheetz, T., Kim, K., Swiderski, R., Philp, A., Braun, T., Knudtson, K.,
Dorrance, A., DiBona, G., Huang, J., Casavant, T., et al.: Regulation
of gene expression in the mammalian eye and its relevance to eye
disease. Proc. Nat. Acad. Sci. 103(39), 14429–14434 (2006)

Segal, M., Dahlquist, K., Conklin, B.: Regression approaches for
microarray data analysis. J. Comput. Biol. 10(6), 961–980 (2003)

Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C.,
Tamayo, P., Renshaw, A., D’Amico, A., Richie, J., et al.: Gene
expression correlates of clinical prostate cancer behavior. Cancer
Cell 1(2), 203–209 (2002)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R.
Stat. Soc. Ser. B 58, 267–288 (1996)

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J.,
Tibshirani, R.: Strong rules for discarding predictors in lasso-type
problems. J. R. Stat. Soc. Ser. B 74, 245–266 (2012)

Tseng, P.: Convergence of a block coordinate descent method for non-
differentiable minimization. J. Optim. Theory Appl. 109(3), 475–494
(2001)

Vogt, J., Roth, V.: A complete analysis of the l1,p group-lasso. In: Pro-
ceedings of the 29th International Conference on Machine Learning
(ICML-12), ICML 2012, Omnipress, pp 185–192 (2012)

Wang, H., Leng, C.: A note on adaptive group lasso. Comput. Stat. Data
Anal. 52, 5277–5286 (2008)

Wang, L., Zhu, J., Zou, H.: Hybrid huberized support vector machines
for microarray classification and gene selection. Bioinformatics 24,
412–419 (2008)

Wu, T., Lange, K.: Coordinate descent algorithms for lasso penalized
regression. Ann. Appl. Stat. 2, 224–244 (2008)

Wu, T., Lange, K.: The MM alternative to EM. Stat. Sci. 4, 492–505
(2010)

Yuan, M., Lin, Y.: Model selection and estimation in regression with
grouped variables. J. R. Stat. Soc. Ser. B 68, 49–67 (2006)

Zhang, T.: Statistical behavior and consistency of classification methods
based on convex risk minimization. Ann. Stat. 32, 56–85 (2004)

Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc.
101, 1418–1429 (2006)

123

http://www.public.asu.edu/jye02/Software/SLEP
http://www.public.asu.edu/jye02/Software/SLEP

	A fast unified algorithm for solving group-lasso penalize learning problems
	Abstract
	1 Introduction
	2 Group-lasso models and the QM condition
	2.1 Group-lasso penalized empirical loss
	2.2 The QM condition

	3 GMD algorithm
	3.1 Derivation
	3.2 Implementation

	4 Numerical examples
	4.1 Timing comparison
	4.2 Quality comparison
	4.3 Real data analysis

	5 Discussion
	6 Supplementary materials
	Acknowledgments
	Appendix: Proofs
	References

