
Appendices

A.1 Connections with Fisher’s discriminant analysis

For simplicity, in this subsection we denote ⌘ as the discriminant directions defined by Fisher’s

discriminant analysis in (4), and ✓ as the discriminant directions defined by Bayes rule. Our

method gives a sparse estimate of ✓. In this section, we discuss the connection between ✓ and

⌘, and hence the connection between our method and Fisher’s discriminant analysis. We first

comment on the advantage of directly estimating ✓ rather than estimating ⌘. Then we discuss how

to estimate ⌘ once ✓̂ is available.

There are two advantages of estimating ✓ rather than ⌘. Firstly, estimating ✓ allows for simul-

taneous estimation of all the discriminant directions. Note that (4) requires that ⌘T
k⌃⌘l = 0 for

any l < k. This requirement almost necessarily leads to a sequential optimization problem, which

is indeed the case for sparse optimal scoring and `1 penalized Fisher’s discriminant analysis. In

our proposal, the discriminant direction ✓k is determined by the covariance matrix and the mean

vectors µk within Class k, but is not related to ✓l for any l 6= k. Hence, our proposal can simulta-

neously estimate all the directions by solving a convex problem. Secondly, it is easy to study the

theoretical properties if we focus on ✓. On the population level, ✓ can be written out in explicit

forms and hence it is easy to calculate the difference between ✓ and ✓̂ in the theoretical studies.

Since ⌘ do not have closed-form solutions even when we know all the parameters, it is relatively

harder to study its theoretical properties.

Moreover, if one is specifically interested in the discriminant directions ⌘, it is very easy to

obtain a sparse estimate of them once we have a sparse estimate of ✓. For convenience, for any

positive integer m, denote 0m as an m-dimensional vector with all entries being 0, 1m as an m-

dimensional vector with all entries being 1, and Im as the m ⇥ m identity matrix. The following

lemma provides an approach to estimating ⌘ once ✓̂ is available. The proof is relegated to Section

A.2.

Lemma 3. The discriminant directions ⌘ contain all the right eigenvectors of ✓0⇧�T
0

correspond-

ing to positive eigenvalues, where ✓0 = (0p,✓), ⇧ = IK� 1

K 1K1T
K , and �0 = (µ1�µ̄, . . . ,µK�µ̄)

with µ̄ =
PK

k=1
⇡kµk.

Therefore, once we have obtained a sparse estimate of ✓, we can estimate ⌘ as follows. Without
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loss of generality write ✓̂ = (✓̂T

D̂, 0)
T, where D̂ = {j : ✓̂·j 6= 0}. Then ✓̂0 = (0, ✓̂). On the other

hand, set �̂0 = (µ̂1 � ˆ̄µ, . . . , µ̂K � ˆ̄µ) where µ̂k are sample estimates and ˆ̄µ =
PK

k=1
⇡̂kµ̂k. It

follows that ✓̂0⇧�̂0 = ((✓̂
0,D̂⇧�̂T

0,D̂)
T
, 0)T. Consequently, we can perform eigen-decomposition

on ✓̂
0,D̂⇧�̂T

0,D̂ to obtain ⌘̂D̂. Because D̂ is a small subset of the original dataset, this decomposition

will be computationally efficient. Then ⌘̂ would be (⌘̂T

D̂, 0)
T.

A.2 Technical Proofs

Proof of Proposition 1. We first show (15).

For a vector ✓ 2 Rp, define

L
MSDA(✓,�) =

1

2
✓T⌃̂✓ � (µ̂2 � µ̂1)

T✓ + �k✓k1, (22)

L
ROAD(✓,�) = ✓T⌃̂✓ + �k✓k1 (23)

Set ✓̃ = c0(�)�1✓̂MSDA(�). Since ✓̃T(µ̂2 � µ1) = 1, it suffices to check that, for any ✓̃0 such

that (✓̃0)T(µ̂2 � µ1) = 1, we have L
ROAD(✓̃, 2�

|c0(�)|)  L
ROAD(✓̃0

,
2�

|c0(�)|). Now for any such ✓̃0,

L
MSDA(c0(�)✓̃

0
,�) = c0(�)

2
L
ROAD(✓̃0

,
2�

|c0(�)|
)� c0(�) (24)

Similarly,

L
MSDA(c0(�)✓̃,�) = c0(�)

2
L
ROAD(✓̃,

2�

|c0(�)|
)� c0(�). (25)

Since L
MSDA(c0(�)✓̃,�)  L

MSDA(c0(�)✓̃0
,�), we have (15).

On the other hand, by Theorem 1 in Mai & Zou (2013b), we have

✓̂DSDA(�) = c1(�)✓̂
ROAD(

�

n|c1(�)|
) (26)
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Therefore,

✓̂ROAD(
2�

|c0(�)|
) = ✓̂ROAD

✓
(
2n|c1(�)|�
|c0(�)|

)/(n|c1(�)|)
◆

(27)

=

✓
c1(

2n|c1(�)|�
|c0(�)|

)

◆�1

✓̂DSDA

✓
2n|c1(�)|�
|c0(�)|

◆
(28)

= (c1(a�))
�1✓̂DSDA(a�) (29)

Combine (29) with (15) and we have (16).

Proof of Lemma 1. We start with simplifying the first part of our objective function, 1

2
✓T
k ⌃̂✓k �

(µ̂k � µ̂1)T✓k.

First, note that

1

2
✓T
k ⌃̂✓k =

1

2

pX

l,m=1

✓kl✓km�̂lm (30)

=
1

2
✓
2

kj�̂jj +
1

2

X

l 6=j

✓kl✓kj�̂lj +
1

2

X

m 6=j

✓kj✓km�̂jm +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm (31)

(32)

Because �̂lj = �̂jl, we have
P

l 6=j ✓kl✓kj�̂lj =
P

m 6=j ✓kj✓km�̂jm. It follows that

1

2
✓T
k ⌃̂✓k =

1

2
✓
2

kj�̂jj +
X

l 6=j

✓kj✓kl�̂lj +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm (33)

Then recall that �̂k = µ̂k � µ̂1. We have

(µ̂k � µ̂1)
T✓k =

pX

l=1

�
k
l ✓kl = �

k
j ✓kj +

X

l 6=j

�
k
l ✓kl (34)

Combine (33) and (34) and we have

1

2
✓T
k ⌃̂✓k � (µ̂k � µ̂1)

T✓k (35)

=
1

2
✓
2

kj�̂jj +
X

l 6=j

✓kj✓kl�̂lj +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm � �
k
j ✓kj �

X

l 6=j

�
k
l ✓kl (36)

=
1

2
✓
2

kj�̂jj + (
X

l 6=j

�̂l,j✓kl � �̂
k
j )✓kj +

1

2

X

m 6=j,l 6=j

✓kl✓km�̂lm �
X

l 6=j

�̂
k
l ✓kl (37)
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Note that the last two terms does not involve ✓.j . Therefore, given {✓.j0 , j
0 6= j}, the solution

of ✓.j is defined as

arg min
✓2,j ,...,✓K,j

KX

k=2

{1
2
✓
2

kj�̂jj + (
X

l 6=j

�̂lj✓kl � �̂
k
j )✓kj}+ �k✓.jk,

which is equivalent to (17). It is easy to get (18) from (17) (Yuan & Lin 2006).

Proof of Lemma 2. We start with the first conclusion. If all elements in ⌃D,DC are equal to 0, then

we must have ⌃j,D⌃
�1

D,Dtk,D = 0 and hence maxj2Dc{
PK

k=2
(⌃j,D⌃

�1

D,Dtk,D)
2}1/2 = 0. It follows

that Condition (C0) holds.

For the second conclusion, note that, when �ij = ⇢
|i�j| and D = {1, . . . , d}, for j 2 DC , we have

⌃j,D = ⇢
j�d⌃d,D. Consequently,

⌃j,D⌃
�1

D,D = ⇢
j�d(0d�1, 1).

Hence,
KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2 = ⇢

2(j�d)
KX

k=2

t
2

kd = ⇢
2(j�d)

< 1

which implies Condition (C0).

For the third conclusion, note that, if ⌃ is compound symmetry, then we can write ⌃D,D = (1 �

⇢)Id + ⇢1d1T
d . Straightforward calculation verifies that

⌃�1

D,D =
1

1� ⇢
Id �

⇢

[1 + (d� 1)⇢](1� ⇢)
1d1

T
d .

Consequently, for any j 2 DC ,

⌃j,D⌃
�1

D,D = a1T
d
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where a =
⇢

1� ⇢
(1� d⇢

1 + (d� 1)⇢
). Therefore, by Cauchy-Schwarz inequality, we have

KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2 = a

2

KX

k=2

(1T
dtk,D)

2  a
2

KX

k=2

{(1T
d1d)(t

T
k,Dt

T
k,D)}

= a
2
d

KX

k=2

X

j2D

t
2

kj = a
2
d

X

j2D

KX

k=2

t
2

kj = a
2
d
2

where we use the fact
PK

k=2
t
2

kj = 1 for any j 2 D. Hence,

{
KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2}1/2 = ad =

d⇢

1� ⇢
(1� d⇢

1 + (d� 1)⇢
) =

d⇢

1 + (d� 1)⇢
< 1

and we have the desired conclusion.

In what follows we use C to denote a generic constant for convenience.

Now we define an oracle “estimator" that relies on the knowledge of D for a specific tuning

parameter �:

✓̂oracle

D = arg min
✓2,D,...,✓K,D

KX

k=2

{1
2
✓T
k,D⌃̂D,D✓k,D � (µ̂k,D � µ̂1,D)

T✓k,D}+ �

X

j2D

k✓.jk. (38)

The proof of Theorem 1 is based on a series of technical lemmas. For convenience, in what

follows we simply write ✓Bayes as ✓. This convention shall not be confused with the generic ✓ in

an objective function.

Lemma 4. Define ✓̂oracle

D (�) as in (38). Then ✓̂k = (✓̂oracle

k,D , 0), k = 2, . . . , K is the solution to (10)

if

max
j2Dc

[
KX

k=2

{(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)}2]1/2 < �. (39)

Proof of Lemma 4. The proof is completed by checking that ✓̂k = (✓̂oracle

k,D (�), 0) satisfies the KKT

condition of (10).

Lemma 5. For each k, ⌃DC ,D⌃
�1

D,D(µk,D � µ1,D) = µk,DC � µ1,DC .
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Proof of Lemma 5. For each k, we have ✓k,DC = 0. By definition, ✓DC = (⌃�1(µk � µ1))DC .

Then by block inversion, we have that

✓k,DC = �(⌃DC ,DC �⌃DC ,D⌃D,D⌃D,DC)�1(⌃DC ,D⌃
�1

D,D(µk,D � µ1,D)� (µk,DC � µ1,DC)),

and the conclusion follows.

Proposition 2. Under Condition (C1), there exists a constant ✏0 such that for any 0 < ✏  ✏0 we

have

pr{|(µ̂kj � µ̂1j)� (µkj � µ1j)| � ✏}  C exp(�C
n✏

2

K
) + C exp(�Cn

K2
), (40)

k = 2, . . . , K, j = 1, . . . , p;

pr(|�̂ij � �ij| � ✏)  C exp(�C
n✏

2

K
) + C exp(�Cn

K2
), i, j = 1, . . . , p. (41)

Proof of Proposition 2. We first show (40). We start with the fact that, conditional on Y, µ̂kj ⇠

N(µkj,
�jj

nk
). Therefore, for any s > 0, we have

pr(µ̂kj � µkj � ✏ | Y ) = pr(es(µ̂kj�µkj) � e
s✏ | Y )  e

�s✏
E
�
e
s(µ̂kj�µkj) | Y

 
= e

�s✏+
�jjs

2

2nk

Let s =
nk✏

�jj
and we have

pr(µ̂kj � µkj � ✏ | Y )  exp(�nk✏
2

2�jj
)  exp(�Cnk✏

2),

where the last inequality follows from the assumption that �jj are bounded from above. Repeat

these steps for µkj � µ̂kj and we have

pr(µ̂kj � µkj  �✏ | Y )  exp(�Cnk✏
2)

Hence,

pr(|µ̂kj � µkj| � ✏ | Y )  C exp(�Cnk✏
2)
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It follows that

pr(|µ̂kj � µkj| � ✏)  E(pr(|µ̂kj � µkj| � ✏ | Y ))  E(C exp(�Cnk✏
2)) (42)

= E
�
C exp(�Cnk✏

2)1(nk > ⇡kn/2)
 
+ E

�
C exp(�Cnk✏

2)1(nk < ⇡kn/2)
 

(43)

For the first term, note that, if nk > ⇡kn/2, we must have

C exp(�Cnk✏
2)  C exp(�C⇡kn✏

2)  C exp(�C
n✏

2

K
),

where the last inequality follows from Condition (C1). Hence,

E
�
C exp(�Cnk✏

2)1(nk > ⇡kn/2)
 
 C exp(�C

n✏
2

K
). (44)

For the second term, note that

E
�
C exp(�Cnk✏

2)1(nk < ⇡kn/2)
 
 Cpr(nk < ⇡kn/2)),

Define W
i = 1(Y i = k). Then W

i ⇠ Bernoulli(⇡k) and nk =
Pn

i=1
W

i. By Hoeffding’s

inequality we have that

pr(nk < ⇡kn/2)) = pr(| 1
n

nX

i=1

W
i � E(W i)| > ⇡k/2) (45)

 C exp(�Cn⇡
2

k)  C exp(�C
n

K2
), (46)

where the last inequality again follows from Condition (C1). Combine (43),(44) and (46), and we

have the desired conclusion.

A similar inequality holds for µ̂1j , and (40) follows.
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For (41), note that

�̂ij =
1

n�K

KX

k=1

X

Y m=k

(Xm
i � µ̂ki)(X

m
j � µ̂kj)

=
1

n�K

KX

k=1

X

Y m=k

(Xm
i � µ

m
i )(X

m
j � µ

m
j ) +

1

n�K

KX

k=1

nk(µ̂ki � µki)(µ̂kj � µkj)

= �̂
(0)

ij +
1

n�K

KX

k=1

nk(µ̂ki � µki)(µ̂kj � µkj).

Now by Chernoff bound, pr(|�̂(0)

ij � �ij| � ✏)  C exp(�Cn✏
2). Combining this fact with (40),

we have the desired result.

Now we consider two events depending on a small ✏ > 0:

A(✏) = {|�̂ij � �ij| <
✏

d
for any i = 1, · · · , p and j 2 D},

B(✏) = {|(µ̂kj � µ̂1j)� (µkj � µ1j)| < ✏ for any k and j}.

By simple union bounds, we can derive Lemma 4 and Lemma 5.

Lemma 6. There exist a constant ✏0 such that for any ✏  ✏0 we have

1. pr(A(✏)) � 1� Cpd exp(�Cn
✏
2

Kd2
)� CK exp(�Cn

K2
);

2. pr(B(✏)) � 1� Cp(K � 1) exp(�C
n✏

2

K
)� CK exp(�Cn

K2
);

3. pr(A(✏) \ B(✏)) � 1� �(✏), where

�(✏) = Cpd exp(�C
n✏

2

d2
) + Cp(K � 1) exp(�C

n✏
2

K
) + 2CK exp(�Cn

K2
).
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Lemma 7. Assume that both A(✏) and B(✏) have occurred. We have the following conclusions:

k⌃̂D,D �⌃D,Dk1 < ✏;

k⌃̂DC ,D �⌃DC ,Dk1 < ✏;

k(µ̂k � µ̂1)� (µk � µ1)k1 < ✏;

k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1 < ✏.

Lemma 8. If both A(✏) and B(✏) have occurred for ✏ <
1

'
, we have

k⌃̂�1

D,D �⌃�1

D,Dk1 < ✏'
2(1� '✏)�1

,

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1 <
'✏

1� '✏
.

Proof of Lemma 8 . Let ⌘1 = k⌃̂D,D�⌃D,Dk1, ⌘2 = k⌃̂DC ,D�⌃DC ,Dk1 and ⌘3 = k(⌃̂D,D)�1�

(⌃D,D)�1k1. First we have

⌘3  k(⌃̂D,D)
�1k1 ⇥ k(⌃̂D,D �⌃D,D)k1 ⇥ k(⌃D,D)

�1k1 = ('+ ⌘3)'⌘1.

On the other hand,

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1  k⌃̂DC ,D �⌃DC ,Dk1 ⇥ k(⌃̂D,D)
�1 � (⌃D,D)

�1k1

+k⌃̂DC ,D �⌃DC ,Dk1 ⇥ k(⌃D,D)
�1k1

+k⌃DC ,Dk1 ⇥ k(⌃̂D,D)
�1 � (⌃D,D)

�1k1

 ⌘2⌘3 + ⌘2'+ '⌘3.

By '⌘1 < 1 we have ⌘3  '
2
⌘1(1� '⌘1)�1 and hence

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1 <
'✏

1� '✏
.
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Lemma 9. Define

✓̂0

k,D = ⌃̂�1

D,D(µ̂k,D � µ̂1,D). (47)

Then k✓̂0

k,D � ✓k,Dk1 
'✏(1 + '�)

1� '✏
.

Proof of Lemma 9. By definition, we have

k⌃̂�1

D,D(µ̂k,D � µ̂1,D)�⌃�1

D,D(µk,D � µ1,D)k1

 k⌃̂�1

D,D �⌃�1

D,Dk1k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1

+k⌃�1

D,Dk1k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1 + k⌃̂�1

D,D �⌃�1

D,Dk1kµk,D � µ1,Dk1

 '✏(1 + '�)

1� '✏
.

Lemma 10. If A(✏) and B(✏) have occurred for ✏ < min{ 1

2' ,
�

1 + '�
}, then for all k

k✓̂(oracle)

k,D (�)� ✓k,Dk1  4�'.

Proof of Lemma 10. Observe ✓̂oracle

k = ⌃̂�1

D,D(µ̂k,D � µ̂1,D)� �⌃̂�1

D,Dt̂k,D. Therefore,

k✓̂oracle

k,D � ✓k,Dk1

 k✓̂0

k,D � ✓k,Dk1 + �k⌃̂�1

D,D �⌃�1

D,Dk1kt̂k,Dk1 + �k⌃�1

D,Dk1kt̂k,Dk1

where ✓̂0

k,D is defined as in (47). Now kt̂k,Dk1  1 and we have

k✓̂oracle

k,D � ✓k,Dk1  '✏(1 + '�) + �'

1� '✏
< 4'�.

Lemma 11. For a sets of real numbers {a1, . . . , aN}, if
PN

i=1
a
2

i  
2
< 1, then

PN
i=1

(ai+b)2 < 1

as long as b <
1� p

N
.
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Proof. By the Cauchy-Schwartz inequality, we have that

NX

i=1

(ai + b)2 =
NX

i=1

a
2

i + 2
NX

i=1

aib+Nb
2 (48)


NX

i=1

a
2

i + 2

vuut(
NX

i=1

a2i ) ·Nb2 +Nb
2 (49)

 
2 + 2

p
Nb2 +Nb

2 (50)

which is less than 1 when b <
1� p

N
.

We are ready to complete the proof of Theorem 1.

Proof of Theorem 1. We first consider the first conclusion. For any � <
✓min
8' and ✏ < min{ 1

2' ,
�

1 + '�
},

consider the event A(✏) \ B(✏). By Lemmas 4, 6 & 10 it suffices to verify (39).

For any j 2 Dc, by Lemma 5 we have

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)|

 |(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ |(µ̂kj � µ̂1j)� (µkj � µ1j)|

 |(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ ✏

 |(⌃̂DC ,D✓̂
(0)

k,D)j � (⌃DC ,D✓k,D)j|+ ✏+ �|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j|

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ ✏

 k(⌃̂DC ,D)j � (⌃DC ,D)jk1k✓̂0

k,D � ✓k,Dk1 + k✓k,Dk1k(⌃̂DC ,D)j � (⌃DC ,D)jk1

+k(⌃DC ,D)jk1k✓̂0

k,D � ✓k,Dk1 + ✏

 C✏. (51)
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|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j � (⌃DC ,D⌃
�1

D,Dtk,D)j|

 k⌃̂DC ,D⌃̂
�1

D,D �⌃DC ,D⌃
�1

D,Dk1kt̂k,D � tk,Dk1

+k⌃DC ,D⌃
�1

D,Dk1kt̂k,D � tk,Dk1 + k⌃̂DC ,D⌃̂
�1

D,D �⌃DC ,D⌃
�1

D,Dk1|(tk,D)j|

|t̂kj � tkj| = | ✓̂kjk✓.jk � ✓kjk✓̂.jk
k✓.jkk✓̂.jk

|

 |✓̂kj � ✓kj|k✓.jk+ ✓maxk✓.j � ✓̂.jk
k✓.jkk✓̂.jk

 C'

✓min

p
(K � 1)

�.

Therefore,

�|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j|

 �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ �(
C'✏

1� '✏
+ ⌘

⇤ C'�

✓min

p
K � 1

) (52)

 �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ C�
2 (53)

Under condition (C0), it follows from (51) and (53) that

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)|  �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ C�
2 (54)

Combine condition (C0) with Lemma 11, we have that, there exists a generic constant M > 0,

such that when � < M(1� ), (39) is true. Therefore, the first conclusion is true.

Under conditions (C2)–(C4), the second conclusion directly follows from the first conclusion.

Lemma 12. Under the conditions in Theorem 1, under A(✏) [B(✏), we have that

k✓̂kk1  K(�+
'✏(1 + '�)

1� '✏
).

28



Proof. Under the conditions in Theorem 1, we have that, under A(✏) [ B(✏), ✓̂k = (✓̂oracle

k,D , 0). It

follows that

KX

k=2

{1
2
(✓̂oracle

k,D )T⌃̂D,D✓̂
oracle

k,D � (µ̂k � µ̂1)
T✓̂oracle

k,D }+ �

pX

j=1

vuut
KX

k=2

(✓̂oraclekj )2


KX

k=2

{1
2
(✓̂0

k,D)
T⌃̂D,D✓̂

0

k,D � (µ̂k � µ̂1)
T✓̂0

k,D}+ �

pX

j=1

vuut
KX

k=2

(✓̂0kj)
2

while by the definition of ✓̂0

k,D, we must have

1

2
(✓̂oracle

k,D )T⌃̂D,D✓̂
oracle

k,D � (µ̂k � µ̂1)
T✓̂oracle

k,D � 1

2
(✓̂0

k,D)
T⌃̂D,D✓̂

0

k,D � (µ̂k � µ̂1)
T✓̂0

k,D

Hence,

pX

j=1

vuut
KX

k=2

(✓̂oraclekj )2 <
pX

j=1

vuut
KX

k=2

(✓̂0kj)
2 

KX

k=2

k✓̂0

kk1  K�+K
'✏(1 + '�)

1� '✏

where the last inequality follows from Lemma 8. Finally, note that k✓̂kk1 
Pp

j=1

qPK
k=2

(✓̂oraclekj )2

and we have the desired conclusion.

Proof of Theorem 2. We first show the first conclusion. Define Ŷ (✓2, . . . ,✓K) as the prediction

by the Bayes rule and Ŷ (✓̂2, . . . , ✓̂K) as the prediction by the estimated classification rule. Also

define lk = (X� µk + µ1

2
)T✓k + log(⇡k/⇡1) and l̂k = (X� µ̂k + µ̂1

2
)T✓̂k + log(⇡̂k/⇡̂1).

Define C(✏) = {|⇡̂k � ⇡k|  min{mink ⇡k/2, ✏}}. By the Bernstein inequality we have that

Pr(C(✏))  C exp(�Cn/K
2).

Assume that the event A(✏) \ B(✏) \ C(✏) for ✏ < min{ 1

2'
,

�

1 + '�
} has happened. By

Lemma 6, we have

Pr(A(✏)\B(✏)\C(✏)) � 1�Cpd exp(�Cn
✏
2

Kd2
)�CK exp(�C

n

K2
)�Cp(K�1) exp(�Cn

✏
2

K
)

(55)
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For any ✏0 > 0,

Rn �R  Pr(Ŷ (✓2, . . . ,✓K) 6= Ŷ (✓̂2, . . . , ✓̂K))

 1� Pr(|l̂k � lk| < ✏0/2, |lk � lk0 | > ✏0, for any k, k
0)

 Pr(|l̂k � lk| � ✏0/2 for some k) + Pr(|lk � lk0 |  ✏0 for some k, k
0).

Now, for X in each class, lk � lk0 is normal with variance (✓k � ✓k0)T⌃(✓k � ✓k00). Therefore,

Pr(|lk � lk0 |  ✏0 for some k, k
0) 

X

k00

Pr(|lk � lk0 |  ✏0 | Y = k
00
)⇡k00


X

k,k0 ,k00

⇡k00
C✏0

{(✓k � ✓k0)T⌃(✓k � ✓k0)}1/2

 CK
2
✏0.

On the other hand, conditional on training data, l̂k � lk is normal with mean

u(k, k0) = µT
k0(✓̂k � ✓k)�

(µ̂1 + µ̂k)T✓̂k

2
+

(µ1 + µk)T✓k

2
+ log ⇡̂k/⇡̂1 � log ⇡k/⇡1

and variance (✓̂k � ✓k)T⌃(✓̂k � ✓k) within class k0. By Markov’s inequality, we have

Pr(|l̂k � lk| � ✏0/2 for some k) =
X

k0

⇡k0 Pr(|l̂k � lk| � ✏0/2 | Y = k
0)

 CE{maxk(✓̂k � ✓k)T⌃(✓̂k � ✓k)

(✏0 � u(k, k0))2
}.

Moreover, under the event A(✏) \ B(✏) \ C(✏), by Lemma 12,

max
k

(✓̂k � ✓k)
T⌃(✓̂k � ✓k)  max

k
k✓̂k � ✓kk1k⌃k1k✓̂k � ✓kk1

 max
k

(k✓̂kk1 + k✓kk1)k⌃k1k✓̂k � ✓kk1  C�

|u(k, k0)|  |µT
k0(✓̂k � ✓k)|+

1

2
|{(µ̂1 + µ̂k)� (µ1 + µk)}T(✓̂k � ✓k)|

+
1

2
|{(µ̂1 + µ̂k)� (µ1 + µk)}T✓k|+

1

2
|(µ1 + µk)

T(✓̂k � ✓k)|
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+| log ⇡̂k/⇡̂1 � log ⇡k/⇡1|

 C1�

Hence, pick ✏0 = M2�
1/3 such that ✏0 � C1�/2, for C1 in (56). Then Pr(|l̂k�lk| � ✏0/2 for some k) 

C�
1/3. It follows that |Rn �R|  M1�

1/3 for some positive constant M1.

Under Conditions (C2)–(C4), the second conclusion is a direct consequence of the first conclu-

sion.

We need the result in the following proposition to show Lemma 3. A slightly different version

of the proposition has been presented in Fukunaga (1990) (Pages 446-450), but we include the

proof here for completeness.

Proposition 3. The solution to (4) consists of all the right eigenvectors of ⌃�1⌃b corresponding

to positive eigenvalues.

Proof. For any ⌘k, set uk = ⌃1/2⌘k. It follows that solving (4) is equivalent to finding

(u⇤
1
, . . . ,u⇤

K�1
) = argmax

uk

uT
k⌃

�1/2�0�
T
0
⌃�1/2uk, s.t. uT

kuk = 1 and uT
kul = 0 for any l < k.

(56)

and then setting ⌘k = ⌃�1/2u⇤
k. It is easy to see that u⇤

1
, . . . , u

⇤
K�1

are the eigenvectors corre-

sponding to positive eigenvalues of ⌃�1/2�0�T
0
⌃�1/2. By Proposition 4, let A = ⌃�1/2�0�T

0
, and

B = ⌃�1/2 and we have that ⌘ consists of all the eigenvectors of ⌃�1�0�T
0

corresponding to

positive eigenvalues.

Proposition 4. (Mardia et al. (1979), Page 468, Theorem A.6.2) For two matrices A and B, if x is

a non-trivial eigenvector of AB for a nonzero eigenvalue, then y = Bx is a non-trivial eigenvector

of BA.
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Proof of Lemma 3. Set �̃ = (0p, �) and �0 = (µ1� µ̄, . . . ,µK � µ̄). Note that �1K =
PK

k=2
µk�

(K � 1)µ1 = K(µ̄� µ1). Therefore, �0 = �̃ � 1

K �̃1K1T
K = �̃(IK � 1

K 1K1T
K) = �̃⇧.

Then, since ✓0 = ⌃�1�̃, we have ✓0⇧ = ⌃�1�0 and ✓0⇧�T
0
= ⌃�1�0�T

0
. By Proposition 3,

we have the desired conclusion.
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