
Appendices

A.1 Connections with Fisher’s discriminant analysis

For simplicity, in this subsection we denote ⌘ as the discriminant directions defined by Fisher’s

discriminant analysis in (4), and ✓ as the discriminant directions defined by Bayes rule. Our

method gives a sparse estimate of ✓. In this section, we discuss the connection between ✓ and

⌘, and hence the connection between our method and Fisher’s discriminant analysis. We first

comment on the advantage of directly estimating ✓ rather than estimating ⌘. Then we discuss how

to estimate ⌘ once ✓̂ is available.

There are two advantages of estimating ✓ rather than ⌘. Firstly, estimating ✓ allows for simul-

taneous estimation of all the discriminant directions. Note that (4) requires that ⌘T
k⌃⌘l = 0 for

any l < k. This requirement almost necessarily leads to a sequential optimization problem, which

is indeed the case for sparse optimal scoring and `1 penalized Fisher’s discriminant analysis. In

our proposal, the discriminant direction ✓k is determined by the covariance matrix and the mean

vectors µk within Class k, but is not related to ✓l for any l 6= k. Hence, our proposal can simulta-

neously estimate all the directions by solving a convex problem. Secondly, it is easy to study the

theoretical properties if we focus on ✓. On the population level, ✓ can be written out in explicit

forms and hence it is easy to calculate the difference between ✓ and ✓̂ in the theoretical studies.

Since ⌘ do not have closed-form solutions even when we know all the parameters, it is relatively

harder to study its theoretical properties.

Moreover, if one is specifically interested in the discriminant directions ⌘, it is very easy to

obtain a sparse estimate of them once we have a sparse estimate of ✓. For convenience, for any

positive integer m, denote 0m as an m-dimensional vector with all entries being 0, 1m as an m-

dimensional vector with all entries being 1, and Im as the m ⇥ m identity matrix. The following

lemma provides an approach to estimating ⌘ once ✓̂ is available. The proof is relegated to Section

A.2.

Lemma 3. The discriminant directions ⌘ contain all the right eigenvectors of ✓0⇧�T
0

correspond-

ing to positive eigenvalues, where ✓0 = (0p,✓), ⇧ = IK� 1

K 1K1T
K , and �0 = (µ1�µ̄, . . . ,µK�µ̄)

with µ̄ =
PK

k=1
⇡kµk.

Therefore, once we have obtained a sparse estimate of ✓, we can estimate ⌘ as follows. Without
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loss of generality write ✓̂ = (✓̂T

D̂, 0)
T, where D̂ = {j : ✓̂·j 6= 0}. Then ✓̂0 = (0, ✓̂). On the other

hand, set �̂0 = (µ̂1 � ˆ̄µ, . . . , µ̂K � ˆ̄µ) where µ̂k are sample estimates and ˆ̄µ =
PK

k=1
⇡̂kµ̂k. It

follows that ✓̂0⇧�̂0 = ((✓̂
0,D̂⇧�̂T

0,D̂)
T
, 0)T. Consequently, we can perform eigen-decomposition

on ✓̂
0,D̂⇧�̂T

0,D̂ to obtain ⌘̂D̂. Because D̂ is a small subset of the original dataset, this decomposition

will be computationally efficient. Then ⌘̂ would be (⌘̂T

D̂, 0)
T.

A.2 Technical Proofs

Proof of Proposition 1. We first show (15).

For a vector ✓ 2 Rp, define

L
MSDA(✓,�) =

1

2
✓T⌃̂✓ � (µ̂2 � µ̂1)

T✓ + �k✓k1, (22)

L
ROAD(✓,�) = ✓T⌃̂✓ + �k✓k1 (23)

Set ✓̃ = c0(�)�1✓̂MSDA(�). Since ✓̃T(µ̂2 � µ1) = 1, it suffices to check that, for any ✓̃0 such

that (✓̃0)T(µ̂2 � µ1) = 1, we have L
ROAD(✓̃, 2�

|c0(�)|)  L
ROAD(✓̃0

,
2�

|c0(�)|). Now for any such ✓̃0,

L
MSDA(c0(�)✓̃

0
,�) = c0(�)

2
L
ROAD(✓̃0

,
2�

|c0(�)|
)� c0(�) (24)

Similarly,

L
MSDA(c0(�)✓̃,�) = c0(�)

2
L
ROAD(✓̃,

2�

|c0(�)|
)� c0(�). (25)

Since L
MSDA(c0(�)✓̃,�)  L

MSDA(c0(�)✓̃0
,�), we have (15).

On the other hand, by Theorem 1 in Mai & Zou (2013b), we have

✓̂DSDA(�) = c1(�)✓̂
ROAD(

�

n|c1(�)|
) (26)
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Therefore,

✓̂ROAD(
2�

|c0(�)|
) = ✓̂ROAD

✓
(
2n|c1(�)|�
|c0(�)|

)/(n|c1(�)|)
◆

(27)

=

✓
c1(

2n|c1(�)|�
|c0(�)|

)

◆�1

✓̂DSDA

✓
2n|c1(�)|�
|c0(�)|

◆
(28)

= (c1(a�))
�1✓̂DSDA(a�) (29)

Combine (29) with (15) and we have (16).

Proof of Lemma 1. We start with simplifying the first part of our objective function, 1

2
✓T
k ⌃̂✓k �

(µ̂k � µ̂1)T✓k.

First, note that

1

2
✓T
k ⌃̂✓k =

1

2

pX

l,m=1

✓kl✓km�̂lm (30)

=
1

2
✓
2

kj�̂jj +
1

2

X

l 6=j

✓kl✓kj�̂lj +
1

2

X

m 6=j

✓kj✓km�̂jm +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm (31)

(32)

Because �̂lj = �̂jl, we have
P

l 6=j ✓kl✓kj�̂lj =
P

m 6=j ✓kj✓km�̂jm. It follows that

1

2
✓T
k ⌃̂✓k =

1

2
✓
2

kj�̂jj +
X

l 6=j

✓kj✓kl�̂lj +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm (33)

Then recall that �̂k = µ̂k � µ̂1. We have

(µ̂k � µ̂1)
T✓k =

pX

l=1

�
k
l ✓kl = �

k
j ✓kj +

X

l 6=j

�
k
l ✓kl (34)

Combine (33) and (34) and we have

1

2
✓T
k ⌃̂✓k � (µ̂k � µ̂1)

T✓k (35)

=
1

2
✓
2

kj�̂jj +
X

l 6=j

✓kj✓kl�̂lj +
1

2

X

l 6=j,m 6=j

✓kl✓km�̂lm � �
k
j ✓kj �

X

l 6=j

�
k
l ✓kl (36)

=
1

2
✓
2

kj�̂jj + (
X

l 6=j

�̂l,j✓kl � �̂
k
j )✓kj +

1

2

X

m 6=j,l 6=j

✓kl✓km�̂lm �
X

l 6=j

�̂
k
l ✓kl (37)
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Note that the last two terms does not involve ✓.j . Therefore, given {✓.j0 , j
0 6= j}, the solution

of ✓.j is defined as

arg min
✓2,j ,...,✓K,j

KX

k=2

{1
2
✓
2

kj�̂jj + (
X

l 6=j

�̂lj✓kl � �̂
k
j )✓kj}+ �k✓.jk,

which is equivalent to (17). It is easy to get (18) from (17) (Yuan & Lin 2006).

Proof of Lemma 2. We start with the first conclusion. If all elements in ⌃D,DC are equal to 0, then

we must have ⌃j,D⌃
�1

D,Dtk,D = 0 and hence maxj2Dc{
PK

k=2
(⌃j,D⌃

�1

D,Dtk,D)
2}1/2 = 0. It follows

that Condition (C0) holds.

For the second conclusion, note that, when �ij = ⇢
|i�j| and D = {1, . . . , d}, for j 2 DC , we have

⌃j,D = ⇢
j�d⌃d,D. Consequently,

⌃j,D⌃
�1

D,D = ⇢
j�d(0d�1, 1).

Hence,
KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2 = ⇢

2(j�d)
KX

k=2

t
2

kd = ⇢
2(j�d)

< 1

which implies Condition (C0).

For the third conclusion, note that, if ⌃ is compound symmetry, then we can write ⌃D,D = (1 �

⇢)Id + ⇢1d1T
d . Straightforward calculation verifies that

⌃�1

D,D =
1

1� ⇢
Id �

⇢

[1 + (d� 1)⇢](1� ⇢)
1d1

T
d .

Consequently, for any j 2 DC ,

⌃j,D⌃
�1

D,D = a1T
d
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where a =
⇢

1� ⇢
(1� d⇢

1 + (d� 1)⇢
). Therefore, by Cauchy-Schwarz inequality, we have

KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2 = a

2

KX

k=2

(1T
dtk,D)

2  a
2

KX

k=2

{(1T
d1d)(t

T
k,Dt

T
k,D)}

= a
2
d

KX

k=2

X

j2D

t
2

kj = a
2
d

X

j2D

KX

k=2

t
2

kj = a
2
d
2

where we use the fact
PK

k=2
t
2

kj = 1 for any j 2 D. Hence,

{
KX

k=2

(⌃j,D⌃
�1

D,Dtk,D)
2}1/2 = ad =

d⇢

1� ⇢
(1� d⇢

1 + (d� 1)⇢
) =

d⇢

1 + (d� 1)⇢
< 1

and we have the desired conclusion.

In what follows we use C to denote a generic constant for convenience.

Now we define an oracle “estimator" that relies on the knowledge of D for a specific tuning

parameter �:

✓̂oracle

D = arg min
✓2,D,...,✓K,D

KX

k=2

{1
2
✓T
k,D⌃̂D,D✓k,D � (µ̂k,D � µ̂1,D)

T✓k,D}+ �

X

j2D

k✓.jk. (38)

The proof of Theorem 1 is based on a series of technical lemmas. For convenience, in what

follows we simply write ✓Bayes as ✓. This convention shall not be confused with the generic ✓ in

an objective function.

Lemma 4. Define ✓̂oracle

D (�) as in (38). Then ✓̂k = (✓̂oracle

k,D , 0), k = 2, . . . , K is the solution to (10)

if

max
j2Dc

[
KX

k=2

{(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)}2]1/2 < �. (39)

Proof of Lemma 4. The proof is completed by checking that ✓̂k = (✓̂oracle

k,D (�), 0) satisfies the KKT

condition of (10).

Lemma 5. For each k, ⌃DC ,D⌃
�1

D,D(µk,D � µ1,D) = µk,DC � µ1,DC .
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Proof of Lemma 5. For each k, we have ✓k,DC = 0. By definition, ✓DC = (⌃�1(µk � µ1))DC .

Then by block inversion, we have that

✓k,DC = �(⌃DC ,DC �⌃DC ,D⌃D,D⌃D,DC)�1(⌃DC ,D⌃
�1

D,D(µk,D � µ1,D)� (µk,DC � µ1,DC)),

and the conclusion follows.

Proposition 2. Under Condition (C1), there exists a constant ✏0 such that for any 0 < ✏  ✏0 we

have

pr{|(µ̂kj � µ̂1j)� (µkj � µ1j)| � ✏}  C exp(�C
n✏

2

K
) + C exp(�Cn

K2
), (40)

k = 2, . . . , K, j = 1, . . . , p;

pr(|�̂ij � �ij| � ✏)  C exp(�C
n✏

2

K
) + C exp(�Cn

K2
), i, j = 1, . . . , p. (41)

Proof of Proposition 2. We first show (40). We start with the fact that, conditional on Y, µ̂kj ⇠

N(µkj,
�jj

nk
). Therefore, for any s > 0, we have

pr(µ̂kj � µkj � ✏ | Y ) = pr(es(µ̂kj�µkj) � e
s✏ | Y )  e

�s✏
E
�
e
s(µ̂kj�µkj) | Y

 
= e

�s✏+
�jjs

2

2nk

Let s =
nk✏

�jj
and we have

pr(µ̂kj � µkj � ✏ | Y )  exp(�nk✏
2

2�jj
)  exp(�Cnk✏

2),

where the last inequality follows from the assumption that �jj are bounded from above. Repeat

these steps for µkj � µ̂kj and we have

pr(µ̂kj � µkj  �✏ | Y )  exp(�Cnk✏
2)

Hence,

pr(|µ̂kj � µkj| � ✏ | Y )  C exp(�Cnk✏
2)
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It follows that

pr(|µ̂kj � µkj| � ✏)  E(pr(|µ̂kj � µkj| � ✏ | Y ))  E(C exp(�Cnk✏
2)) (42)

= E
�
C exp(�Cnk✏

2)1(nk > ⇡kn/2)
 
+ E

�
C exp(�Cnk✏

2)1(nk < ⇡kn/2)
 

(43)

For the first term, note that, if nk > ⇡kn/2, we must have

C exp(�Cnk✏
2)  C exp(�C⇡kn✏

2)  C exp(�C
n✏

2

K
),

where the last inequality follows from Condition (C1). Hence,

E
�
C exp(�Cnk✏

2)1(nk > ⇡kn/2)
 
 C exp(�C

n✏
2

K
). (44)

For the second term, note that

E
�
C exp(�Cnk✏

2)1(nk < ⇡kn/2)
 
 Cpr(nk < ⇡kn/2)),

Define W
i = 1(Y i = k). Then W

i ⇠ Bernoulli(⇡k) and nk =
Pn

i=1
W

i. By Hoeffding’s

inequality we have that

pr(nk < ⇡kn/2)) = pr(| 1
n

nX

i=1

W
i � E(W i)| > ⇡k/2) (45)

 C exp(�Cn⇡
2

k)  C exp(�C
n

K2
), (46)

where the last inequality again follows from Condition (C1). Combine (43),(44) and (46), and we

have the desired conclusion.

A similar inequality holds for µ̂1j , and (40) follows.
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For (41), note that

�̂ij =
1

n�K

KX

k=1

X

Y m=k

(Xm
i � µ̂ki)(X

m
j � µ̂kj)

=
1

n�K

KX

k=1

X

Y m=k

(Xm
i � µ

m
i )(X

m
j � µ

m
j ) +

1

n�K

KX

k=1

nk(µ̂ki � µki)(µ̂kj � µkj)

= �̂
(0)

ij +
1

n�K

KX

k=1

nk(µ̂ki � µki)(µ̂kj � µkj).

Now by Chernoff bound, pr(|�̂(0)

ij � �ij| � ✏)  C exp(�Cn✏
2). Combining this fact with (40),

we have the desired result.

Now we consider two events depending on a small ✏ > 0:

A(✏) = {|�̂ij � �ij| <
✏

d
for any i = 1, · · · , p and j 2 D},

B(✏) = {|(µ̂kj � µ̂1j)� (µkj � µ1j)| < ✏ for any k and j}.

By simple union bounds, we can derive Lemma 4 and Lemma 5.

Lemma 6. There exist a constant ✏0 such that for any ✏  ✏0 we have

1. pr(A(✏)) � 1� Cpd exp(�Cn
✏
2

Kd2
)� CK exp(�Cn

K2
);

2. pr(B(✏)) � 1� Cp(K � 1) exp(�C
n✏

2

K
)� CK exp(�Cn

K2
);

3. pr(A(✏) \ B(✏)) � 1� �(✏), where

�(✏) = Cpd exp(�C
n✏

2

d2
) + Cp(K � 1) exp(�C

n✏
2

K
) + 2CK exp(�Cn

K2
).
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Lemma 7. Assume that both A(✏) and B(✏) have occurred. We have the following conclusions:

k⌃̂D,D �⌃D,Dk1 < ✏;

k⌃̂DC ,D �⌃DC ,Dk1 < ✏;

k(µ̂k � µ̂1)� (µk � µ1)k1 < ✏;

k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1 < ✏.

Lemma 8. If both A(✏) and B(✏) have occurred for ✏ <
1

'
, we have

k⌃̂�1

D,D �⌃�1

D,Dk1 < ✏'
2(1� '✏)�1

,

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1 <
'✏

1� '✏
.

Proof of Lemma 8 . Let ⌘1 = k⌃̂D,D�⌃D,Dk1, ⌘2 = k⌃̂DC ,D�⌃DC ,Dk1 and ⌘3 = k(⌃̂D,D)�1�

(⌃D,D)�1k1. First we have

⌘3  k(⌃̂D,D)
�1k1 ⇥ k(⌃̂D,D �⌃D,D)k1 ⇥ k(⌃D,D)

�1k1 = ('+ ⌘3)'⌘1.

On the other hand,

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1  k⌃̂DC ,D �⌃DC ,Dk1 ⇥ k(⌃̂D,D)
�1 � (⌃D,D)

�1k1

+k⌃̂DC ,D �⌃DC ,Dk1 ⇥ k(⌃D,D)
�1k1

+k⌃DC ,Dk1 ⇥ k(⌃̂D,D)
�1 � (⌃D,D)

�1k1

 ⌘2⌘3 + ⌘2'+ '⌘3.

By '⌘1 < 1 we have ⌘3  '
2
⌘1(1� '⌘1)�1 and hence

k⌃̂DC ,D(⌃̂D,D)
�1 �⌃DC ,D(⌃D,D)

�1k1 <
'✏

1� '✏
.
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Lemma 9. Define

✓̂0

k,D = ⌃̂�1

D,D(µ̂k,D � µ̂1,D). (47)

Then k✓̂0

k,D � ✓k,Dk1 
'✏(1 + '�)

1� '✏
.

Proof of Lemma 9. By definition, we have

k⌃̂�1

D,D(µ̂k,D � µ̂1,D)�⌃�1

D,D(µk,D � µ1,D)k1

 k⌃̂�1

D,D �⌃�1

D,Dk1k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1

+k⌃�1

D,Dk1k(µ̂k,D � µ̂1,D)� (µk,D � µ1,D)k1 + k⌃̂�1

D,D �⌃�1

D,Dk1kµk,D � µ1,Dk1

 '✏(1 + '�)

1� '✏
.

Lemma 10. If A(✏) and B(✏) have occurred for ✏ < min{ 1

2' ,
�

1 + '�
}, then for all k

k✓̂(oracle)

k,D (�)� ✓k,Dk1  4�'.

Proof of Lemma 10. Observe ✓̂oracle

k = ⌃̂�1

D,D(µ̂k,D � µ̂1,D)� �⌃̂�1

D,Dt̂k,D. Therefore,

k✓̂oracle

k,D � ✓k,Dk1

 k✓̂0

k,D � ✓k,Dk1 + �k⌃̂�1

D,D �⌃�1

D,Dk1kt̂k,Dk1 + �k⌃�1

D,Dk1kt̂k,Dk1

where ✓̂0

k,D is defined as in (47). Now kt̂k,Dk1  1 and we have

k✓̂oracle

k,D � ✓k,Dk1  '✏(1 + '�) + �'

1� '✏
< 4'�.

Lemma 11. For a sets of real numbers {a1, . . . , aN}, if
PN

i=1
a
2

i  
2
< 1, then

PN
i=1

(ai+b)2 < 1

as long as b <
1� p

N
.
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Proof. By the Cauchy-Schwartz inequality, we have that

NX

i=1

(ai + b)2 =
NX

i=1

a
2

i + 2
NX

i=1

aib+Nb
2 (48)


NX

i=1

a
2

i + 2

vuut(
NX

i=1

a2i ) ·Nb2 +Nb
2 (49)

 
2 + 2

p
Nb2 +Nb

2 (50)

which is less than 1 when b <
1� p

N
.

We are ready to complete the proof of Theorem 1.

Proof of Theorem 1. We first consider the first conclusion. For any � <
✓min
8' and ✏ < min{ 1

2' ,
�

1 + '�
},

consider the event A(✏) \ B(✏). By Lemmas 4, 6 & 10 it suffices to verify (39).

For any j 2 Dc, by Lemma 5 we have

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)|

 |(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ |(µ̂kj � µ̂1j)� (µkj � µ1j)|

 |(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ ✏

 |(⌃̂DC ,D✓̂
(0)

k,D)j � (⌃DC ,D✓k,D)j|+ ✏+ �|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j|

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (⌃DC ,D✓k,D)j|+ ✏

 k(⌃̂DC ,D)j � (⌃DC ,D)jk1k✓̂0

k,D � ✓k,Dk1 + k✓k,Dk1k(⌃̂DC ,D)j � (⌃DC ,D)jk1

+k(⌃DC ,D)jk1k✓̂0

k,D � ✓k,Dk1 + ✏

 C✏. (51)
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|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j � (⌃DC ,D⌃
�1

D,Dtk,D)j|

 k⌃̂DC ,D⌃̂
�1

D,D �⌃DC ,D⌃
�1

D,Dk1kt̂k,D � tk,Dk1

+k⌃DC ,D⌃
�1

D,Dk1kt̂k,D � tk,Dk1 + k⌃̂DC ,D⌃̂
�1

D,D �⌃DC ,D⌃
�1

D,Dk1|(tk,D)j|

|t̂kj � tkj| = | ✓̂kjk✓.jk � ✓kjk✓̂.jk
k✓.jkk✓̂.jk

|

 |✓̂kj � ✓kj|k✓.jk+ ✓maxk✓.j � ✓̂.jk
k✓.jkk✓̂.jk

 C'

✓min

p
(K � 1)

�.

Therefore,

�|(⌃̂DC ,D⌃̂
�1

D,Dt̂k,D)j|

 �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ �(
C'✏

1� '✏
+ ⌘

⇤ C'�

✓min

p
K � 1

) (52)

 �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ C�
2 (53)

Under condition (C0), it follows from (51) and (53) that

|(⌃̂DC ,D✓̂
(oracle)

k,D )j � (µ̂kj � µ̂1j)|  �|(⌃DC ,D⌃
�1

D,Dtk,D)j|+ C�
2 (54)

Combine condition (C0) with Lemma 11, we have that, there exists a generic constant M > 0,

such that when � < M(1� ), (39) is true. Therefore, the first conclusion is true.

Under conditions (C2)–(C4), the second conclusion directly follows from the first conclusion.

Lemma 12. Under the conditions in Theorem 1, under A(✏) [B(✏), we have that

k✓̂kk1  K(�+
'✏(1 + '�)

1� '✏
).

28



Proof. Under the conditions in Theorem 1, we have that, under A(✏) [ B(✏), ✓̂k = (✓̂oracle

k,D , 0). It

follows that

KX

k=2

{1
2
(✓̂oracle

k,D )T⌃̂D,D✓̂
oracle

k,D � (µ̂k � µ̂1)
T✓̂oracle

k,D }+ �

pX

j=1

vuut
KX

k=2

(✓̂oraclekj )2


KX

k=2

{1
2
(✓̂0

k,D)
T⌃̂D,D✓̂

0

k,D � (µ̂k � µ̂1)
T✓̂0

k,D}+ �

pX

j=1

vuut
KX

k=2

(✓̂0kj)
2

while by the definition of ✓̂0

k,D, we must have

1

2
(✓̂oracle

k,D )T⌃̂D,D✓̂
oracle

k,D � (µ̂k � µ̂1)
T✓̂oracle

k,D � 1

2
(✓̂0

k,D)
T⌃̂D,D✓̂

0

k,D � (µ̂k � µ̂1)
T✓̂0

k,D

Hence,

pX

j=1

vuut
KX

k=2

(✓̂oraclekj )2 <
pX

j=1

vuut
KX

k=2

(✓̂0kj)
2 

KX

k=2

k✓̂0

kk1  K�+K
'✏(1 + '�)

1� '✏

where the last inequality follows from Lemma 8. Finally, note that k✓̂kk1 
Pp

j=1

qPK
k=2

(✓̂oraclekj )2

and we have the desired conclusion.

Proof of Theorem 2. We first show the first conclusion. Define Ŷ (✓2, . . . ,✓K) as the prediction

by the Bayes rule and Ŷ (✓̂2, . . . , ✓̂K) as the prediction by the estimated classification rule. Also

define lk = (X� µk + µ1

2
)T✓k + log(⇡k/⇡1) and l̂k = (X� µ̂k + µ̂1

2
)T✓̂k + log(⇡̂k/⇡̂1).

Define C(✏) = {|⇡̂k � ⇡k|  min{mink ⇡k/2, ✏}}. By the Bernstein inequality we have that

Pr(C(✏))  C exp(�Cn/K
2).

Assume that the event A(✏) \ B(✏) \ C(✏) for ✏ < min{ 1

2'
,

�

1 + '�
} has happened. By

Lemma 6, we have

Pr(A(✏)\B(✏)\C(✏)) � 1�Cpd exp(�Cn
✏
2

Kd2
)�CK exp(�C

n

K2
)�Cp(K�1) exp(�Cn

✏
2

K
)

(55)
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For any ✏0 > 0,

Rn �R  Pr(Ŷ (✓2, . . . ,✓K) 6= Ŷ (✓̂2, . . . , ✓̂K))

 1� Pr(|l̂k � lk| < ✏0/2, |lk � lk0 | > ✏0, for any k, k
0)

 Pr(|l̂k � lk| � ✏0/2 for some k) + Pr(|lk � lk0 |  ✏0 for some k, k
0).

Now, for X in each class, lk � lk0 is normal with variance (✓k � ✓k0)T⌃(✓k � ✓k00). Therefore,

Pr(|lk � lk0 |  ✏0 for some k, k
0) 

X

k00

Pr(|lk � lk0 |  ✏0 | Y = k
00
)⇡k00


X

k,k0 ,k00

⇡k00
C✏0

{(✓k � ✓k0)T⌃(✓k � ✓k0)}1/2

 CK
2
✏0.

On the other hand, conditional on training data, l̂k � lk is normal with mean

u(k, k0) = µT
k0(✓̂k � ✓k)�

(µ̂1 + µ̂k)T✓̂k

2
+

(µ1 + µk)T✓k

2
+ log ⇡̂k/⇡̂1 � log ⇡k/⇡1

and variance (✓̂k � ✓k)T⌃(✓̂k � ✓k) within class k0. By Markov’s inequality, we have

Pr(|l̂k � lk| � ✏0/2 for some k) =
X

k0

⇡k0 Pr(|l̂k � lk| � ✏0/2 | Y = k
0)

 CE{maxk(✓̂k � ✓k)T⌃(✓̂k � ✓k)

(✏0 � u(k, k0))2
}.

Moreover, under the event A(✏) \ B(✏) \ C(✏), by Lemma 12,

max
k

(✓̂k � ✓k)
T⌃(✓̂k � ✓k)  max

k
k✓̂k � ✓kk1k⌃k1k✓̂k � ✓kk1

 max
k

(k✓̂kk1 + k✓kk1)k⌃k1k✓̂k � ✓kk1  C�

|u(k, k0)|  |µT
k0(✓̂k � ✓k)|+

1

2
|{(µ̂1 + µ̂k)� (µ1 + µk)}T(✓̂k � ✓k)|

+
1

2
|{(µ̂1 + µ̂k)� (µ1 + µk)}T✓k|+

1

2
|(µ1 + µk)

T(✓̂k � ✓k)|

30



+| log ⇡̂k/⇡̂1 � log ⇡k/⇡1|

 C1�

Hence, pick ✏0 = M2�
1/3 such that ✏0 � C1�/2, for C1 in (56). Then Pr(|l̂k�lk| � ✏0/2 for some k) 

C�
1/3. It follows that |Rn �R|  M1�

1/3 for some positive constant M1.

Under Conditions (C2)–(C4), the second conclusion is a direct consequence of the first conclu-

sion.

We need the result in the following proposition to show Lemma 3. A slightly different version

of the proposition has been presented in Fukunaga (1990) (Pages 446-450), but we include the

proof here for completeness.

Proposition 3. The solution to (4) consists of all the right eigenvectors of ⌃�1⌃b corresponding

to positive eigenvalues.

Proof. For any ⌘k, set uk = ⌃1/2⌘k. It follows that solving (4) is equivalent to finding

(u⇤
1
, . . . ,u⇤

K�1
) = argmax

uk

uT
k⌃

�1/2�0�
T
0
⌃�1/2uk, s.t. uT

kuk = 1 and uT
kul = 0 for any l < k.

(56)

and then setting ⌘k = ⌃�1/2u⇤
k. It is easy to see that u⇤

1
, . . . , u

⇤
K�1

are the eigenvectors corre-

sponding to positive eigenvalues of ⌃�1/2�0�T
0
⌃�1/2. By Proposition 4, let A = ⌃�1/2�0�T

0
, and

B = ⌃�1/2 and we have that ⌘ consists of all the eigenvectors of ⌃�1�0�T
0

corresponding to

positive eigenvalues.

Proposition 4. (Mardia et al. (1979), Page 468, Theorem A.6.2) For two matrices A and B, if x is

a non-trivial eigenvector of AB for a nonzero eigenvalue, then y = Bx is a non-trivial eigenvector

of BA.
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Proof of Lemma 3. Set �̃ = (0p, �) and �0 = (µ1� µ̄, . . . ,µK � µ̄). Note that �1K =
PK

k=2
µk�

(K � 1)µ1 = K(µ̄� µ1). Therefore, �0 = �̃ � 1

K �̃1K1T
K = �̃(IK � 1

K 1K1T
K) = �̃⇧.

Then, since ✓0 = ⌃�1�̃, we have ✓0⇧ = ⌃�1�0 and ✓0⇧�T
0
= ⌃�1�0�T

0
. By Proposition 3,

we have the desired conclusion.

References

Bach, F. R. (2008), ‘Consistency of the group lasso and multiple kernel learning’, Journal of

Machine Learning Research 9, 1179–1225.

Bickel, P. J. & Levina, E. (2004), ‘Some theory for fisher’s linear discriminant function, ’naive

bayes’, and some alternatives when there are many more variables than observations’, Bernoulli

10, 989–1010.

Burczynski, M. E., Peterson, R. L., Twine, N. C., Zuberek, K. A., Brodeur, B. J., Casciotti, L.,

Maganti, V., Reddy, P. S., Strahs, A., Immermann, F., Spinelli, W., Schwertschlag, U., Slager,

A. M., Cotreau, M. M. & Dorner, A. J. (2006), ‘Molecular classification of crohn’s disease and

ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells’,

Journal of Molecular Diagnostics 8, 51–61.

Cai, T. & Liu, W. (2011), ‘A direct estimation approach to sparse linear discriminant analysis’, J.

Am. Statist. Assoc. 106, 1566–1577.

Candes, E. & Tao, T. (2007), ‘The Dantzig selector: Statistical estimation when p is much larger

than n’, Ann. Statist. 35, 2313–2351.

Clemmensen, L., Hastie, T., Witten, D. & Ersbøll, B. (2011), ‘Sparse discriminant analysis’, Tech-

nometrics 53, 406–413.

Donoho, D. & Jin, J. (2008), ‘Higher criticism thresholding: optimal feature selection when useful

features are rare and weak’, Proceedings of the National Academy of Sciences 105, 14790–

14795.

32



Fan, J. & Fan, Y. (2008), ‘High dimensional classification using features annealed independence

rules’, Ann. Statist. 36, 2605–2637.

Fan, J., Feng, Y. & Tong, X. (2012), ‘A ROAD to classification in high dimensional space’, J. R.

Statist. Soc. B 74, 745–771.

Fan, J. & Li, R. (2001), ‘Variable selection via nonconcave penalized likelihood and its oracle

properties’, J. Am. Statist. Assoc. 96, 1348–1360.

Fan, J. & Song, R. (2010), ‘Sure independence screening in generalized linear models with NP-

dimensionality’, Ann. Statist. 38(6), 3567–3604.

Fukunaga, K. (1990), Introduction to Statistical Pattern Recognition, Academic Press Professional,

Inc., 2nd Edition.

Hand, D. J. (2006), ‘Classifier technology and the illusion of progress’, Statistical Science 21, 1–

14.

Hastie, T. J., Tibshirani, R. J. & Friedman, J. H. (2009), Elements of statistical learning: data

mining, inference, and prediction, second edn, Springer Verlag.

Mai, Q. & Zou, H. (2013a), ‘The Kolmogorov filter for variable screening in high-dimensional

binary classification.’, Biometrika 100, 229–234.

Mai, Q. & Zou, H. (2013b), ‘A note on the connection and equivalence of three sparse linear

discriminant analysis methods’, Technometrics 55, 243–246.

Mai, Q., Zou, H. & Yuan, M. (2012), ‘A direct approach to sparse discriminant analysis in ultra-

high dimensions’, Biometrika 99, 29–42.

Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979), Multivariate Analysis, Academic Press.

Michie, D., Spiegelhalter, D. & Taylor, C. (1994), Machine Learning, Neural and Statistical Clas-

sification, first edn, Ellis Horwood.

Shao, J., Wang, Y., Deng, X. & Wang, S. (2011), ‘Sparse linear discriminant analysis with high

dimensional data’, Ann. Statist. .

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, J. R. Statist. Soc. B

58, 267–288.

33



Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. (2002), ‘Diagnosis of multiple cancer types

by shrunken centroids of gene expression’, Proc. Nat. Acad. Sci. 99, 6567–6572.

Trendafilov, N. T. & Jolliffe, I. T. (2007), ‘DALASS: Variable selection in discriminant analysis

via the lasso’, Computational Statistics and Data Analysis 51, 3718–3736.

Witten, D. & Tibshirani, R. (2011), ‘Penalized classification using fisher’s linear discriminant’, J.

R. Statist. Soc. B 73, 753–772.

Wu, M., Zhang, L., Wang, Z., Christiani, D. & Lin, X. (2008), ‘Sparse linear discriminant analysis

for simultaneous testing for the significance of a gene set/pathway and gene selection’, Bioin-

formatics 25, 1145–1151.

Yuan, M. & Lin, Y. (2006), ‘Model selection and estimation in regression with grouped variables’,

J. R. Statist. Soc. B 68, 49–67.

34


