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In this supplemental document, we provide technical proofs for the theorems in “Performance

Assessment of High-dimensional Variable Identification” with additional remarks, and give further

numerical results, including one on sensitivity of the complexity parameter ψ and one on the impact

of the candidate models.

1. Proof of Theorem 1

Part I: F -measure

Proof. Denote by ∇ the symmetric difference between two sets. Estimated F -measure can be

rewritten as

F̂ (A0) =
∑
k

wkF (A0;Ak), F (A0;Ak) = |A
0|+ |Ak| − |A0∇Ak|
|A0|+ |Ak|

.
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We have

|F̂ (A0)− F (A0)| =

∣∣∣∣∣∑
k

wkF (A0;Ak)− F (A0)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

wk(F (A0;Ak)− F (A0))

∣∣∣∣∣ ≤∑
k

wk|F (A0;Ak)− F (A0)|

=
∑
k

wk

∣∣∣∣1− |A0∇Ak|
|A0|+ |Ak|

− 1 +
|A0∇A∗|
|A0|+ |A∗|

∣∣∣∣
=
∑
k

wk

∣∣∣∣ |A0| · (|A0∇A∗| − |A0∇Ak|) + |Ak| · |A0∇A∗| − |A∗| · |A0∇Ak|
(|A0|+ |Ak|)(|A0|+ |A∗|)

∣∣∣∣
≤
∑
k

wk
|A0| · ||A0∇A∗| − |A0∇Ak||
(|A0|+ |Ak|)(|A0|+ |A∗|)︸ ︷︷ ︸

A

+
∑
k

wk
|Ak| · ||A0∇A∗| − |A0∇Ak||
(|A0|+ |Ak|)(|A0|+ |A∗|)︸ ︷︷ ︸

B

+
∑
k

wk
||Ak| − |A∗|| · |A0∇Ak|

(|A0|+ |Ak|)(|A0|+ |A∗|)︸ ︷︷ ︸
C

.

For ease of notation, we divide the right-most hand side of the above inequality into three parts and

denote them by A, B, and C respectively. Note that since
∣∣|A0∇A∗| − |A0∇Ak|

∣∣ ≤ |A∗∇Ak|, we

have

A ≤
∑
k

wk
|A0| · |A∗∇Ak|

(|A0|+ |Ak|)(|A0|+ |A∗|)
≤
∑
k

wk
|A∗∇Ak|
|A∗|

.

Similarly, it can be shown that

B ≤
∑
k

wk
|A∗∇Ak|
|A∗|

.

Let us now prove a similar bound also holds for C. Specifically, we have

C =
∑
k

wk
||Ak| − |A∗|| · |A0∇Ak|

(|A0|+ |Ak|)(|A0|+ |A∗|)
≤
∑
k

wk

∣∣|Ak| − |A∗|∣∣
|A0|+ |A∗|

=
∑
k

wk

∣∣(|Ak\A∗|+ |Ak ∩ A∗|)− (|A∗\Ak|+ |Ak ∩ A∗|)
∣∣

|A0|+ |A∗|

=
∑
k

wk

∣∣|Ak\A∗| − |A∗\Ak|∣∣
|A0|+ |A∗|

≤
∑
k

wk
|Ak\A∗|+ |A∗\Ak|
|A0|+ |A∗|

=
∑
k

wk
|Ak∇A∗|
|A0|+ |A∗|

≤
∑
k

wk
|Ak∇A∗|
|A∗|

.
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It follows that for any A0 in C

|F̂ (A0)− F (A0)| ≤ A+B + C ≤ 3
∑
k

wk
|A∗∇Ak|
|A∗|

.

Therefore,

sup
A0∈C

|F̂ (A0)− F (A0)| ≤ 3
∑
k

wk
|A∗∇Ak|
|A∗|

.

Now under the assumption that the model weighting w is weakly consistent,

∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0.

We have proved supA0∈C |F̂ (A
0)− F (A0)| p→ 0.

Part II: G-measure

Proof. For a given A0 in C, the estimated G-measure can be rewritten as

Ĝ(A0) =
∑
k

wkG(A0;Ak), G(A0;Ak) = |A
0|+ |Ak| − |A0∇Ak|
2
√
|A0| · |Ak|

.

Suppose |Ĝ(A0) − G(A0)| does not converge to 0 in probability uniformly over C, then there

exist some subsequence n1, n2, · · · , ε1 > 0, δ > 0, A0
nj
∈ C, and sets Snj

, s.t. P (Snj
) ≥ δ and

|Ĝ(A0
nj
)−G(A0

nj
)| > ε1 on Snj

. For ease of notation, we denote A0
nj

as A0 in the following proof.

With the above, we first prove that we must have |A
0|

|A∗|
p→0 on Snj

as nj →∞. If not, then there

exist ε2 > 0, a subsequence njl and sets Nnjl
such that on Nnjl

we have |A
0|

|A∗| > ε2 > 0. Then we

can actually prove |Ĝ(A0)−G(A0)| p−→ 0 on Nnjl
as follows.
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By definition of Ĝ and G, and |A
0|

|A∗| > ε2 > 0 on Nnjl
, we have

|Ĝ(A0)−G(A0)| = |
∑
k

wkG(A0;Ak)−G(A0)| ≤
∑
k

wk|G(A0;Ak)−G(A0)|

=
∑
k

wk

∣∣∣∣∣ |A0|+ |Ak| − |A0∇Ak|
2
√
|A0| · |Ak|

− |A
0|+ |A∗| − |A0∇A∗|
2
√
|A0| · |A∗|

∣∣∣∣∣
≤
∑
k

wk
|
√
|A∗| −

√
|Ak|| · ||A0|+ |Ak| − |A0∇Ak||
2
√
|A∗| · |A0| · |Ak|

+
∑
k

wk

√
|Ak| · ||Ak| − |A∗|+ |A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0| · |Ak|

≤
∑
k

wk
|
√
|A∗| −

√
|Ak|| · ||A0|+ |Ak| − |A0∇Ak||
2
√
|A∗| · |A0| · |Ak|︸ ︷︷ ︸

A

+
∑
k

wk
||Ak| − |A∗||
2
√
|A∗| · |A0|︸ ︷︷ ︸
B

+
∑
k

wk
||A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0|︸ ︷︷ ︸
C

.

For notational convenience, we divide the right-most-hand side of the above inequality into three

parts and denote them by A, B, and C respectively. For part A, because |A0|+ |Ak| − |A0∇Ak| =
2|A0 ∩ Ak| and

∣∣|A∗| − |Ak|∣∣ ≤ |A∗∇Ak|, together with |A0 ∩ Ak| ≤
√
|A0| · |Ak|, we have

A =
∑
k

wk

∣∣|A∗| − |Ak|∣∣ · |A0 ∩ Ak|(√
|A∗|+

√
|Ak|

)√
|A∗| · |A0| · |Ak|

≤
∑
k

wk
|A∗∇Ak|
|A∗|

.

For part B, since ||Ak| − |A∗|| ≤ |Ak∇A∗| and |A
0|

|A∗| > ε2 > 0 on Nnjl
, we have

B =
∑
k

wk

∣∣|Ak| − |A∗|∣∣
2
√
|A∗| · |A0|

≤ 1

2
√
ε2

∑
k

wk
|Ak∇A∗|
|A∗|

.

For part C, it follows from the facts that ||A0∇A∗| − |A0∇Ak|| ≤ |A∗∇Ak| and that |A
0|

|A∗| > ε2 > 0

on Nnjl
, we have

C =
∑
k

wk
||A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0|

≤ 1

2
√
ε2

∑
k wk|A∗∇Ak|
|A∗|

.
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Consequently, we have that on Nnjl
,

|Ĝ(A0)−G(A0)| ≤ A+B + C ≤ (1 +
1
√
ε2
)
∑
k

wk
|A∗∇Ak|
|A∗|

.

Under the assumption that the model weighting w is weakly consistent,

∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0,

we must have |Ĝ(A0)−G(A0)| p→ 0 on Nnjl
. This contradicts with the statement that |Ĝ(A0)−

G(A0)| > ε1 > 0 on Snj
. Therefore, we have proved that |A

0|
|A∗|

p−→ 0 on Snj
under the beginning

supposition.

Next, we prove actually we must have |Ĝ(A0) − G(A0)| p→ 0 on Snj
as nj → ∞. Because

|A0|
|A∗|

p→ 0 on Snj
, we can set δn =

√
|A0|
|A∗| , then δn

p→ 0 and |A0|
|A∗|·δn = δn

p→ 0. Then

|G(A0)| = ||A
0|+ |A∗| − |A0∇A∗||
2
√
|A∗| · |A0|

=
|A0 ∩ A∗|√
|A0| · |A∗|

≤

√
|A0|
|A∗|

p→ 0,

that is, G(A0)
p→ 0. Now we prove that we also have Ĝ(A0)

p→ 0 as follows. Observe on Snj

Ĝ(A0) =
∑
k

I(|Ak| ≤ |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

+
∑
k

I(|Ak| > |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

≤
∑
k

I(|Ak| ≤ |A∗| · δn) · wk +
∑
k

I(|Ak| > |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

.

Then because
∑

k wk
|Ak∇A∗|
|A∗|

p→ 0 and

∑
k

wk
|Ak∇A∗|
|A∗|

≥
∑
k

wk
||A∗| − |Ak||
|A∗|

≥
∑
k

wk
||A∗| − |Ak||
|A∗|

· I(|Ak| ≤ |A∗| · δn)

≥ 1

2

∑
k

wk · I(|Ak| ≤ |A∗| · δn),
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we know
∑

k I(|Ak| ≤ |A∗| · δn) · wk
p→ 0. On Snj

, we also have

∑
k

I(|Ak| > |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

≤
∑
k

I(|Ak| > |A∗| · δn) · wk

√
|A0|
|Ak|

≤
∑
k

I(|Ak| > |A∗| · δn) · wk

√
|A0|
|A∗| · δn

p→ 0,

since |A0|
|A∗|·δn

p→ 0 on Snj
. Therefore, we have shown Ĝ(A0)

p→ 0 on Snj
.

Now since we have proved that on Snj
, G(A0)

p→ 0 and Ĝ(A0)
p→ 0, so |Ĝ(A0)−G(A0)| p→ 0

on Snj
, which contradicts with the beginning supposition that |Ĝ(A0)−G(A0)| > ε1 > 0 on Snj

.

Therefore the supposition does not hold, and we have proved the |Ĝ(A0)−G(A0)| does converge

to 0 in probability uniformly over C.

2. Proof of Theorem 2

Part I: standard deviation of F -measure

Proof. For any A0 in C, by definition of the standard deviation of F -measure, we have

sd
(
F̂ (A0)

)
≡
√∑

k

wk
(
F (A0;Ak)− F̂ (A0)

)2
≤
√∑

k

wk|F (A0;Ak)− F̂ (A0)|

≤
√∑

k

wk|F (A0;Ak)− F (A0)|+ |F (A0)− F̂ (A0)|.

Using the facts proved in the proof for Theorem 1,

|F̂ (A0)− F (A0)| ≤
∑
k

wk|F (A0;Ak)− F (A0)| ≤ 3
∑
k

wk
|A∗∇Ak|
|A∗|

,
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we know

sd(F̂ (A0)) ≤
√

6
∑
k

wk
|A∗∇Ak|
|A∗|

,

and

sup
A0∈C

sd(F̂ (A0)) ≤
√

6
∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0

under the assumption that the model weighting w is weakly consistent.

Part II: standard deviation of G-measure

Proof. For any A0 in C, by definition of the standard deviation of G-measure, we have

sd
(
Ĝ(A0)

)
≡
√∑

k

wk
(
G(A0;Ak)− Ĝ(A0)

)2
≤
√∑

k

wk|G(A0;Ak)− Ĝ(A0)|

≤
√∑

k

wk|G(A0;Ak)−G(A0)|+ |G(A0)− Ĝ(A0)|.

Using the facts in Theorem 1, we have

|Ĝ(A0)−G(A0)| p→ 0.

So it suffices to show
∑

k wk|G(A0;Ak)−G(A0)| p→ 0. The arguments are similar to those in the

proof of Theorem 1. For completeness, the full proof is given below.

Suppose
∑

k wk|G(A0;Ak)−G(A0)| does not converge to 0 in probability uniformly over C,

then there exist some subsequence n1, n2, · · · , ε1 > 0, δ > 0,A0
nj
∈ C, and sets Snj

, s.t. P (Snj
) ≥ δ

and
∑

k wk|G(A0
nj
;Ak) − G(A0

nj
)| > ε1 on Snj

. For ease of notation, we denote A0
nj

as A0. We

first prove that we must have |A
0|

|A∗|
p→0 on Snj

as nj → ∞. If not, then there exist ε2 > 0, a

subsequence njl and setsNnjl
such that onNnjl

we have |A
0|

|A∗| > ε2 > 0. Then we can actually prove∑
k wk|G(A0;Ak)−G(A0)| p−→ 0 onNnjl

as follows. OnNnjl
, since |A

0|
|A∗| > ε2 > 0 , we have that
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∑
k

wk|G(A0;Ak)−G(A0)|

≤
∑
k

wk
|
√
|A∗| −

√
|Ak|| · ||A0|+ |Ak| − |A0∇Ak||
2
√
|A∗| · |A0| · |Ak|︸ ︷︷ ︸

A

+
∑
k

wk
||Ak| − |A∗||
2
√
|A∗| · |A0|︸ ︷︷ ︸
B

+
∑
k

wk
||A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0|︸ ︷︷ ︸
C

≤ (1 +
1
√
ε2
)
∑
k

wk
|A∗∇Ak|
|A∗|

.

Under the assumption that the model weighting w is weakly consistent,

∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0,

we must have
∑

k wk|G(A0;Ak)−G(A0)| p→ 0 on Nnjl
. This contradicts with the statement that∑

k wk|G(A0;Ak)−G(A0)| > ε1 > 0 on Snj
. Therefore, we have proved that |A

0|
|A∗|

p−→ 0 on Snj

under the beginning supposition.

Next, we prove actually we must have
∑

k wk|G(A0;Ak) − G(A0)| p→ 0 on Snj
as nj → ∞.

Similar to the proof in Theorem 1, we can prove that G(A0)
p→ 0 and Ĝ(A0)

p→ 0 on Snj
. We then

have

∑
k

wk|G(A0;Ak)−G(A0)| ≤
∑
k

wkG(A0;Ak) +G(A0) = Ĝ(A0) +G(A0)
p→ 0

on Snj
, which contradicts with the beginning supposition that

∑
k wk|G(A0

nj
;Ak)−G(A0

nj
)| > ε1 >

0 on Snj
. Therefore the supposition does not hold, and we have proved the

∑
k wk|G(A0

nj
;Ak)−

G(A0
nj
)| does converge to 0 in probability uniformly over C. Since we have sd

(
Ĝ(A0)

)
≤√∑

k wk|G(A0;Ak)−G(A0)|+ |G(A0)− Ĝ(A0)| p→ 0 for any A0 ∈ C, we have proved

sup
A0∈C

|sd
(
Ĝ(A0)

)
| p−→ 0 as n→∞.

8



3. Proof of Theorem 3

Proof. When a model screening is used to obtain the reduced candidate model list S, the weights of

the models in S are renormalized as w̃k = wk/wS, where wS =
∑

k∈Swk. We next show that this

renormalized weighting, though random, is still weakly consistent (in spite of possibly missing the

true model in S). Indeed,

∑
k∈S

w̃k
|A∗∇Ak|
|A∗|

=

(∑
k∈S

wk
|A∗∇Ak|
|A∗|

)
/wS ≤

(∑
k∈C

wk
|A∗∇Ak|
|A∗|

)
/wS,

which clearly converges to zero in probability under the weak consistency of w and the weak

inclusion property of S. Then the arguments for the convergence of F̂ and Ĝ in the proofs of

Theorems 1 and 2 continue to work. Thus we know that the conclusions of Theorems 1 and 2 still

hold.

4. Remarks on Theorem 3

Theorem 3 relies on a good quality of the set of candidate models obtained from a model screening

step. The weak inclusion property demands S to contain some (good) models with non-vanishing

cumulated weight, but does not requireA∗ to be in S with high-probability. If the true model is really

strong, it is not very likely to be missed by S. In contrast, if there are very weak true coefficients, the

true model may not be included in S. Fortunately, in this case, as long as the number of small effects

is asymptotically negligible compared to the true model size, some models close to A∗ are most

likely to be included in S, and the weak inclusion property may hold. For example, suppose the

true model size is of order log n and there are no more than (log n)1/2 small coefficients. Then the

models without some of the small-effect variables are likely to receive comparable or even higher

weights than the true model. Then, even if the true model is missed in S, the weak inclusion property

holds.

In particular, if S is obtained as the solution path of a penalized method and has the weak

inclusion property, the method is said to be weakly path-inclusive or weakly path-consistent. Note

that for a consistent weighting, our definition here on S is weaker than the path-consistency that

requires the true model to be included on the solution path with probability going to 1.

In the high-dimensional case, we can set S as a large collection of the models obtained from the

solution paths of multiple penalized methods, such as (adaptive) Lasso, SCAD and MCP. Specifically,
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we can obtain the models SLasso, SSCAD, SMCP for (adaptive) Lasso, SCAD and MCP respectively

on the solution paths {β̂
λ1
, . . . , β̂

λL} for decreasing sequences of tuning parameters {λ1, . . . , λL}.
These models are then combined together as a union of candidate models S = {SLasso, SSCAD,SMCP}.
These penalized methods are good choices, since according to existing theories (Tibshirani, 1996;

Zou, 2006; Fan and Li, 2001; Zhang, 2010), S produced by the solution paths of these methods

ensure path-consistency under certain regularity conditions. In fact, in order to get Theorem 3, only

one of SLasso, SSCAD and SMCP needs to be weakly path-consistent. Of course, users are not limited

to these options, they can add models obtained from any other weakly path-consistent variable

selection methods into S to further enhance the chance of capturing the true/best model. More details

about candidate models are discussed in Section 4.1 of the main paper.

5. Additional Simulation Results

Table A1: Classification case (Example 2).

F G dF dG

Lasso
True 0.631 (0.008) 0.680 (0.006)
ARM 0.697 (0.007) 0.734 (0.006) 0.066 (0.002) 0.054 (0.002)
BIC-p 0.639 (0.008) 0.686 (0.006) 0.008 (0.001) 0.006 (0.001)

AdLasso
True 0.989 (0.004) 0.989 (0.004)
ARM 0.929 (0.002) 0.935 (0.002) 0.067 (0.002) 0.062 (0.002)
BIC-p 0.987 (0.003) 0.988 (0.002) 0.009 (0.001) 0.008 (0.001)

MCP
True 0.964 (0.008) 0.967 (0.008)
ARM 0.922 (0.004) 0.929 (0.004) 0.065 (0.002) 0.059 (0.002)
BIC-p 0.965 (0.008) 0.968 (0.007) 0.009 (0.001) 0.008 (0.001)

SCAD
True 0.955 (0.010) 0.960 (0.009)
ARM 0.919 (0.005) 0.926 (0.004) 0.065 (0.002) 0.059 (0.002)
BIC-p 0.956 (0.009) 0.961 (0.008) 0.009 (0.001) 0.008 (0.001)
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Table A2: Classification case (Example 3).

F G dF dG

Lasso
True 0.154 (0.011) 0.278 (0.010)
ARM 0.129 (0.009) 0.251 (0.009) 0.025 (0.002) 0.028 (0.002)
BIC-p 0.159 (0.011) 0.283 (0.010) 0.010 (0.002) 0.010 (0.002)

AdLasso
True 0.712 (0.021) 0.751 (0.018)
ARM 0.627 (0.020) 0.682 (0.016) 0.091 (0.006) 0.076 (0.005)
BIC-p 0.716 (0.021) 0.754 (0.017) 0.030 (0.006) 0.026 (0.005)

MCP
True 0.498 (0.015) 0.576 (0.012)
ARM 0.433 (0.015) 0.523 (0.012) 0.067 (0.004) 0.056 (0.003)
BIC-p 0.511 (0.015) 0.586 (0.012) 0.026 (0.005) 0.020 (0.004)

SCAD
True 0.214 (0.006) 0.344 (0.005)
ARM 0.183 (0.006) 0.312 (0.006) 0.032 (0.002) 0.033 (0.002)
BIC-p 0.225 (0.007) 0.352 (0.006) 0.017 (0.004) 0.014 (0.003)

Table A3: Classification case (Example 4).

F G dF dG

Lasso
True 0.720 (0.005) 0.734 (0.005)
ARM 0.493 (0.006) 0.572 (0.004) 0.227 (0.007) 0.163 (0.006)
BIC-p 0.616 (0.006) 0.667 (0.004) 0.109 (0.005) 0.077 (0.005)

AdLasso
True 0.794 (0.005) 0.800 (0.005)
ARM 0.722 (0.006) 0.755 (0.005) 0.081 (0.006) 0.059 (0.005)
BIC-p 0.876 (0.006) 0.883 (0.005) 0.096 (0.006) 0.094 (0.006)

MCP
True 0.751 (0.005) 0.770 (0.005)
ARM 0.793 (0.004) 0.813 (0.004) 0.063 (0.005) 0.056 (0.004)
BIC-p 0.932 (0.005) 0.934 (0.005) 0.182 (0.006) 0.164 (0.005)

SCAD
True 0.778 (0.006) 0.789 (0.006)
ARM 0.755 (0.005) 0.781 (0.004) 0.064 (0.006) 0.055 (0.005)
BIC-p 0.913 (0.006) 0.916 (0.005) 0.141 (0.007) 0.132 (0.006)

Table A4: Classification case (Example 5).

F G dF dG

Lasso
True 0.386 (0.006) 0.440 (0.005)
ARM 0.223 (0.004) 0.348 (0.004) 0.163 (0.006) 0.093 (0.005)
BIC-p 0.359 (0.006) 0.465 (0.005) 0.039 (0.004) 0.043 (0.003)

AdLasso
True 0.726 (0.005) 0.735 (0.005)
ARM 0.616 (0.008) 0.669 (0.006) 0.118 (0.007) 0.079 (0.005)
BIC-p 0.859 (0.008) 0.865 (0.008) 0.137 (0.007) 0.133 (0.006)

MCP
True 0.683 (0.008) 0.695 (0.008)
ARM 0.639 (0.009) 0.687 (0.007) 0.079 (0.006) 0.063 (0.005)
BIC-p 0.868 (0.008) 0.871 (0.008) 0.186 (0.006) 0.177 (0.006)

SCAD
True 0.634 (0.008) 0.637 (0.008)
ARM 0.506 (0.010) 0.580 (0.008) 0.131 (0.007) 0.072 (0.005)
BIC-p 0.743 (0.009) 0.766 (0.008) 0.110 (0.006) 0.130 (0.006)
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6. Sensitivity Analysis of ψ

In this simulation, we study how the choices of the prior weight parameter ψ impact the estimation

performance of PAVI. We only present results for the regression case, since we found that the

classification case gives similar results. We adopt the simulation setting of Example 3 defined

in Section 5.1, except that we let σ2 = 1, n = 100 and we vary p = {200, 2000}. We compare

F̂ (A0) and Ĝ(A0) with the true F (A0) and G(A0) under nine different values of ψ, that is, ψ ∈
{0, 0.5, 1, 2, 4, 6, 8, 10, 20}.

All simulation cases are repeated for 100 times and the corresponding values are computed and

averaged. The results are shown in Figure A5 for p = 200 case and A6 for p = 2000 case. We can

see that by using either the ARM or BIC-p weighting with ψ = 1 or 2, the estimated F̂ (A0) and

Ĝ(A0) can better reflect the true F (A0) and G(A0) for all four different variable selection methods

under evaluation. We observed similar results in other simulation settings. We conclude that overall,

under ψ = 1 or 2 setting, PAVI is stably reliable in our simulation, while either a too large or too

small value of ψ leads to poor estimation performance.
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Figure A1: Regression case (Example 2).
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Figure A2: Regression case (Example 3)
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Figure A3: Regression case (Example 4).
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Figure A4: Regression case (Example 5).
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Figure A5: Sensitivity analysis of ψ. Regression case, n = 100 and p = 200.
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Figure A6: Sensitivity analysis of ψ. Regression case, n = 100 and p = 2000.
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7. Impact of Candidate Models

In this simulation study, we investigate how the quality of the candidate models impacts the

estimation performance of PAVI:

• How heterogeneity of the candidate model S affects the estimation performance.

• How it affects estimation performance when S contains/not contain the true model.

We only present the results from the regression case. The data are generated using the setting

described in Example 3 of Section 5.1, under eight different noise levels σ ranging from 0.01 to 4.

We set n = 50 and p = 100. The true model is represented by the vectorA∗ = (1, 1, 1, 0, 0, 0, . . . , 0)

with |A∗| = 3, i.e. only the first three variables are nonzero, the remaining 97 are noise variables.

Suppose that a given MCP modelA0 is evaluated by using the estimated F -measure F̂ (A0) obtained

from the BIC-p (the modified BIC) weighting with prior adjustment ψ = 1. The sets of candidate

models used in estimation of F̂ (A0) are generated under the following two settings:

Setting I (A∗ is not included in S.) We use a union of 100 models as the set of candidate models

S = {Ak}100k=1. Each Ak is a contaminated version of the true model A∗ with a pre-specified

contamination level r ∈ (0, 1). Specifically, each Ak is generated in the following way: we

take A∗, randomly select 100r% of its elements and flip their values, i.e. switch to 1 if the

original value is 0, and to 0 if the original value is 1. Thus r controls heterogeneity of S: the

smaller r becomes, the closer the candidate model gets to the true model.

Setting II (A∗ is included in S.) The set of candidate models S = {Ak}100k=1 is also generated using

Setting I, except that one of Ak’s is replaced by A∗.

We compare estimation performances of F̂ (A0) under Setting I and II with varying contamination

levels r = {0.01, 0.03, 0.05, 0.1, 0.2}. All simulation cases are repeated for 100 times and the

corresponding values are computed and averaged. The results are shown in Figure A7: (1) The left

panel shows the results under Setting I. We find that less heterogeneity in S leads to better estimation

performance of F̂ (A0) when A∗ /∈ S. This indicates that, if the true model is not included in the

candidate models, it leads to better performance when S has most of its models being close to the

true model; (2) However, from the results under Setting II shown in the right panel, we can see

that if the true model is included in S, then heterogeneity of S becomes not much influential on the

estimation performance.
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Figure A7: Impact of candidate models on estimation performance of F -measures in the
regression case, n = 50 and p = 100, under Setting I: A∗ is not included in S (left
panel); Setting II: A∗ is included in S (right panel) with varying contamination levels
r = {0.01, 0.03, 0.05, 0.1, 0.2}.

20



8. Additional Real Data Examples

Table A5: Estimated F - and G-measures and standard deviations for Prostate. L10 has
numerically zero F̂ and Ĝ values (bolded in the Table).

ARM BIC-p
F sd.F G sd.G F sd.F G sd.G

Lasso 0.064 0.004 0.181 0.005 0.064 0.003 0.181 0.004
AdLasso 0.190 0.011 0.323 0.009 0.189 0.008 0.323 0.007
MCP 0.018 0.019 0.027 0.022 0.018 0.012 0.027 0.014
SCAD 0.097 0.006 0.225 0.007 0.096 0.005 0.225 0.005
ImpS 0.333 0.011 0.447 0.008 0.333 0.012 0.447 0.009
S12 0.395 0.037 0.494 0.047 0.400 0.003 0.500 0.007
L10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A6: Labels of selected genes for Colon.

Labels of selected genes
Lasso {66, 249, 377, 493, 765, 1325, 1346, 1423, 1582, 1644, 1772, 1870}
AdLasso {249, 377, 765, 1582, 1772, 1870}
MCP {249, 377, 1644, 1772, 1870}
SCAD {377, 617, 765, 1024, 1325, 1346, 1482, 1504, 1582, 1644, 1772, 1870}
ImpS {249, 1772}
L11 {249, 286, 765, 1058, 1485, 1671, 1771, 1836}
Y10 {14, 161, 249, 377, 492, 493, 576, 792, 822, 1042, 1210,

1346, 1400, 1423, 1549, 1635, 1772, 1843, 1924}
C11 {249, 399, 513, 515, 780, 1042, 1325, 1582, 1771, 1772}
L10 {732, 994, 1473, 1763, 1794, 1843}

Table A7: Labels of selected genes for Leukemia.

Labels of selected genes
Lasso {804, 1239, 1674, 1745, 1779, 1796, 1834, 1882, 1928, 1933,

1941, 2121, 2288, 3847, 4196, 4328, 4847, 4951, 4973, 5002,
5107, 5335, 5766, 6055, 6169, 6539, 6855}

AdLasso {1779, 1834, 4328, 4847, 4951}
MCP {804, 1941, 3837, 4714, 4847, 4951, 6539}
SCAD {804, 1674, 1745, 1779, 1834, 1882, 1928, 1941, 2288, 3847, 4196,

4328, 4847, 4951, 4973, 5002, 5766, 5772, 6169, 6225, 6281, 6539, 6855}
ImpS {1239, 4847, 4951}
J111 {1376, 1394, 1674, 1882, 2186, 2402, 6200, 6201, 6803}
J112 {1394, 1674, 1882, 2186, 5976, 6200, 6201, 6806}
Y10 {760, 804, 1745, 1829, 1834, 1882, 2354, 3320, 4052,

4211, 4377, 4535, 4847, 5039, 6041, 6218, 6376, 6540}
L10 {220, 1086, 1834, 2020}
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Table A8: Labels of selected genes for Prostate.

Labels of selected genes
Lasso {1107, 3617, 4282, 4438, 4525, 4636, 5661, 5838, 5890, 6145, 6185,

6838, 7375, 7428, 7539, 7623, 7915, 8123, 8965, 9034, 9093, 9816,
9850, 10234, 10537, 10956, 11858, 11871, 12153, 12462}

AdLasso {5661, 5890, 6185, 7539, 7623, 8965, 9034, 9093, 10234, 11858}
MCP {7623, 7924, 8965, 9034, 9816, 10234, 11858}
SCAD {1107, 3540, 4636, 5661, 5838, 5890, 6185, 7623, 8603, 8965, 9034,

9093, 9816, 10234, 10956, 11858, 11871, 12153}
ImpS {8965, 9034, 10234, 11858}
S12 {4377, 6185, 6390, 6915}
L10 {4743, 6096, 8475, 9575, 9927, 12331}
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