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Web Appendix A More about quadratic min-cost flow problem, network flow

algorithm, and the mini-cut theorem.

The quadratic minimum-cost flow problem is a fundamental optimization challenge that

arises in various fields, including transportation, network design, and resource allocation

(Cohen et al., 2014). In this problem, the goal is to determine the most cost-effective way to

send flow through a network, subject to capacity constraints, while minimizing the overall

cost (Skutella, 2013). Unlike the linear minimum-cost flow problem, which assumes linear

cost functions, the quadratic variant incorporates quadratic cost functions, making it more

expressive and capturing nonlinear relationships between flow and cost (Magdon-Ismail and

Atiya, 2016). The quadratic terms often represent additional costs associated with flow, such

as congestion or utilization-dependent expenses (Dadush et al., 2019). Solving the quadratic

minimum-cost flow problem involves finding the flow rates that minimize the total cost,

taking into account both linear and quadratic cost components, thereby optimizing resource

utilization and minimizing operational expenses (Gabow et al., 2020).

Network flow algorithms (Ford and Fulkerson, 1956; Ahuja et al., 1993; Goldberg and Tar-

jan, 1988; Gallo et al., 1993) offer powerful solutions for addressing the quadratic minimum-

cost flow problem by leveraging their ability to efficiently handle flow optimization in net-

works with nonlinear cost functions. These algorithms, such as the push-relabel algorithm

and its variants, have been extended to accommodate quadratic cost functions, allowing

for the optimization of resource allocation while minimizing operational expenses (Gabow

et al., 2020). By incorporating quadratic terms into the cost functions, these algorithms

can capture complex relationships between flow rates and associated costs, such as conges-

tion or utilization-dependent expenses (Dadush et al., 2019). The adaptation of network

flow algorithms to handle quadratic cost functions enables the determination of the most

cost-effective flow distribution through a network, subject to capacity constraints, thereby
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optimizing resource utilization (Magdon-Ismail and Atiya, 2016). Moreover, these algorithms

provide efficient solutions to the quadratic minimum-cost flow problem, even in large-scale

networks, making them valuable tools in various applications, including transportation,

telecommunications, and supply chain management (Cohen et al., 2014).

Network flow algorithms utilize the mini-cut theorem as a foundational concept to effi-

ciently compute flows in networks. The mini-cut theorem states that in any directed graph

with a source and a sink, there exists a minimum cut separating the source from the sink,

where the capacity of the cut equals the maximum flow from the source to the sink (Ford

and Fulkerson, 1956). This theorem is pivotal in algorithms such as the Ford-Fulkerson

algorithm and its variants, which iteratively augment flow along augmenting paths until

no more paths can be found, effectively determining the maximum flow in the network

(Goldberg and Tarjan, 1988). By leveraging the mini-cut theorem, these algorithms identify

critical edges whose removal would disrupt the flow from the source to the sink, guiding

their search for optimal flow solutions. Furthermore, the theorem provides insights into the

relationship between flow capacities and network connectivity, enabling the development of

efficient algorithms for flow optimization (Ahuja et al., 1993).

Web Appendix B Steps of computeFlow

Table S1 shows the steps of computeFlow.

Web Appendix C More implementation details on cross-validation and

one-standard-error-rule

The algorithm has a worst-case complexity of O(|V |2|E|1/2) (Cherkassky and Goldberg,

1997), and is well-suited for efficient distributed and parallel implementations. Consider a

canonical graph where each node v ∈ V can be a source s1, and sink s2, a single variable

(Xj ∈ V), or a set of variables (gk ∈ G), that is, V = {s1, s2} ∪ V ∪ G. In addition, there
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Step Details
Projection step solve a relaxed version of (4) to calculate γ, which is the lower

bound of 1
2t

∥∥∥{β̃ − t∇f(β̃)
}
− γ

∥∥∥2

2
, and also satisfies

∑
j γj ⩽

λ
∑

g∈G ω|g. The value of γ is the projection of the vectors ξ|g.

Updating step update (
∑

g∈G ξj|g)Xj∈V by maximizing
∑

Xj∈V

∑
g∈G ξj|g, while keep-

ing
∑

Xj∈g ξ
j
|g ⩽ λωg. By doing so, we can ensure that the constraint

in (4) holds. This can be done by the max flow algorithm. Details
of the implementation can be found in Section 4.

Recursion
step/divide and
conquer

According to the mini-cut theorems (Ford and Fulkerson, 1956),
define V∗ = {Xj ∈ V :

∑
g∈G ξj|g = γj}, and G∗ = {g ∈ G :∑

Xj∈g ξ
j
|g < λωg}. Then apply steps 1 and 2 to (V∗,G∗) and their

respective complements until (
∑

g∈G ξj|g)Xj∈V (obtained from step

2) matches γ (obtained from step 1).

Table S1: Steps of computeFlow

is an arc e ∈ E ⊆ V × V from s1, gk, and Xj to gk, Xj, and s2 respectively. From one

vertex v to another w, each arc has attributes such as non-negative functions of flow f(v, w),

which equals −f(w, v)), capacity c(v, w) ⩾ f(v, w), the flow excess h(v) =
∑

u∈V f(u, v) ⩾

0,∀v ∈ {V −{s1}}, and the residual capacity r(v, w) = c(v, w)− f(v, w). See Table 1 for the

definitions of those functions. Therefore, the updating step in Algorithm 1 can be formulated

as “finding the maximum value of the flow while ensuring that the flow on each arc does not

exceed its capacity”.

There are two basic operations in the max flow algorithm. One is push, which pushes the

excess from v to w by min{h(v), r(v, w)} when h(v) > 0 and r(v, w) > 0. The other is relabel,

which estimates the distance from a vertex v to the sink s2. Define the distance as d(v), where

d(s1) = |V |. Relabeling updates the d(v) to min{d(w) + 1|r(v, w) > 0, d(v) < d(w)}.
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Web Appendix D Grouping structure identification in the simulation

The developed methods (similar to the overlapping group Lasso in (Wang et al., 2024)) can

enforce a number of groups of variable coefficients to be 0 with a certain level of penalization.

The remaining variables are said to be selected.

For the ease of notation, we useA to representA(t). Consider the selection rule “if {A1B,A2B}

is selected, then {A1, A2, B} must be selected”. Suppose for now all candidate variables are

V = {A1, A2, B,A1B,A2B}, which are the variables that are involved in this rule. According

to Table 2 in (Wang et al., 2024), the selection dictionary (all permissible subsets of covariates

that respect the selection dependency) is

D = {∅, {A1, A2}, {B}, {A1, A2, B}, {A1, A2, B,A1B,A2B}} .

Based on Theorem 5 in (Wang et al., 2024), we need to create groups whose complements (and

their combinations) are equal to D\V. We thus postulate three groups: {A1, A2, A1B,A2B} ,

{B,A1B,A2B} and {A1B,A2B}, which satisfy the requirement. Similarly, to respect the

selection dependency “if {C1B,C2B} is selected, then {C1, C2, B} must be selected”, we

postulate another three groups {C1, C2 , C1B , C2B} , {B,C1B,C2B} and {C1B,C2B}.

However, the two rules share a same variable B: if either {A1B,A2B} or {C1B,C2B} is

selected, then B must be selected. To satisfy this requirement, we need to merge the two

groups {B,A1B,A2B} and {B,C1B,C2B} into one group {A1B , A2B , B , C1B , C2B}

to prevent the occurrence of rule-breaking combinations for example, {C1B,C2B} being

selected without B.

We also need to respect another selection rule: the dummy variables for a categorical variable

need to be selected collectively. The categorical interaction variables AB and BC are already

being selected collectively because of the above selection dependencies. However, additional

groups for {A1, A2} are unnecessary as this would make it possible to select {A1B,A2B}
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without A. In addition, with the above groups, A1, and A2 would never be selected individ-

ually because they are always in a same group.

Therefore, we have 5 defined groups listed below

g1 = {A1, A2, A1B,A2B}, g2 = {B,A1B,A2B,C1B,C2B},

g3 = {A1B,A2B}, g4 = {C1, C2, C1B,C2B}, g5 = {C1B,C2B}.

Our resulting selection dictionary is: {∅ , {B} , {C1, C2} , {B,C1, C2} , {B,C1, C2, C1B,C2B} ,

{A1, A2} , {A1B,A2B,B} , {A1, A2, C1 , C2} , {A1, A2, A1B,A2B,B} , {A1, A2, B, C1, C2} ,

{A1, A2, B, C1, C2, A1B,A2B} , {A1, A2, B , C1, C2, C1B,C2B} , {A1, A2 , B,A1B,A2B ,

C1, C2, C1B,C2B}}. The code to derived the selection dictionary using R is available at

https://github.com/Guanbo-W/sox_sim. One can verify the correctness of the derived

selection dictionary using Theorem 5 in (Wang et al., 2024).

Web Appendix E Additional simulation results for Section 5.2

See the results in Table S2

Web Appendix F Time-fixed sparse group Lasso and the latent overlapping

group Lasso as a special case of the proposed method

There is no structured variable selection available for time-dependent Cox models. Within

time-fixed Cox models, structured variable selection such as sparse group Lasso and the

latent overlapping group Lasso are available to perform structured variable selection.

Our proposed method solves

min
β

f(β) + λ
∑
g∈G

ωg

∥∥β|g
∥∥ , (S1)

where gi and gj, i ̸= j can be overlapped. The norm can be ℓ2 or ℓ∞ norm. In this work, we

use ℓ∞ norm. These two norms have similar performance (Jenatton et al., 2011). Because

https://github.com/Guanbo-W/sox_sim
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Method sox sox.db CoxL CoxL.db sox sox.db CoxL CoxL.db
p = 210 n = 400 n = 800
JDR 0.15 0.05 0.00 0.00 0.45 0.00 0.40 0.05
MR 0.17 0.28 0.30 0.37 0.05 0.15 0.05 0.13
FAR 0.04 0.00 0.02 0.01 0.02 0.00 0.03 0.01
R1S 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99
RCI 0.83 0.81 0.82 0.81 0.83 0.82 0.83 0.82
MSE* 7.01 6.39 9.17 6.93 5.79 5.76 6.48 5.70
CV-E 1.82 1.78 1.87 1.77 1.73 1.73 1.75 1.71
p = 465 n = 400 n = 800
MR 0.18 0.33 0.36 0.40 0.04 0.13 0.07 0.13
FAR 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.00
R1S 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99
RCI 0.84 0.81 0.83 0.81 0.83 0.82 0.83 0.82
MSE* 3.22 2.85 3.71 3.00 2.63 2.55 3.14 2.58
CV-E 1.83 1.78 1.87 1.74 1.71 1.71 1.76 1.70
p = 820 n = 400 n = 800
MR 0.20 0.31 0.40 0.45 0.04 0.18 0.10 0.16
FAR 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.00
R1S 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99
RCI 0.84 0.80 0.82 0.81 0.83 0.82 0.84 0.83
MSE* 1.89 1.69 2.27 1.87 1.49 1.46 1.78 1.40
CV-E 1.82 1.78 1.90 1.74 1.73 1.73 1.78 1.69

Table S2: Simulation results of the high-dimensional case. In the tuning process,
“lambda.1se” is used. Results are averaged over 20 independent replications. CoxL: un-
structured ℓ1 penalty (glmnet with "cox" family); sox: our method; .db: with additional
debiasing procedure. JDR: joint detection rate, MR: missing rate, FAR: false alarm rate,
R1S: rule 1 satisfaction, RCI: the C index of the model with the selected variables, MSE:
mean-squared error (*values are multiplied by 10−3), CV-E: cross-validated error.

of the nature of overlapping groups, many selection rules can be respected by solving this

optimization problem, such as strong heredity.

The latent overlapping group Lasso solves

min
β,γ

f(β) + λ
∑
g∈G

ωg

∥∥γ |g
∥∥
2
, s.t.β =

∑
g∈G

γ |g, (S2)

where gi and gj, i ̸= j can be overlapped. Similar types of selection rules can be incorporated

by the latent overlapping group Lasso. However, it is not scalable to high-dimensional settings

with complex grouping structures due to the built-in algorithms. For instance, the method is
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not well studied when multi-layer groups (such as tree and graph structures) have significant

overlap and the sparsity level is low.

Sparse group Lasso solves

min
β

f(β) + (1− α)λ
∑
g∈G

ωg

∥∥β|g
∥∥
2
+ αλ

∥∥β|g
∥∥
1
, (S3)

where gi and gj, i ̸= j cannot be overlapped. Only one type of selection rule can be

incorporated by using sparse group Lasso, “select a number of variable in each of the non-

overlapped groups,” where the number is from zero to the number of variables in each group.

The number cannot be pre-specified and is data-driven.

Web Appendix G Sample solution path

See Figure S1 for the sample solution path.

Web Appendix H Additional simulation: Comparison with existing sparse

group lasso methods (additional simulations)

In this simulation, we compare our method, the sparse group LASSO, and the LASSO,

implemented by sox, SGL, and glmnet respectively. We aim to show that sox can respect

certain selection rules that SGL or glmnet cannot. We follow a similar setting as the one

in Section 5.2 within the cases of (n = 400/800, p = 210). Since SGL cannot handle time-

dependent Cox models, we generate time-fixed covariates.

The sparse group LASSO, due to its inability to accommodate overlapping groups, does not

adhere to the principle of strong heredity. To define its group structure, we have organized

the groups in a specific manner: each of the 10 groups contains two consecutive main terms

along with their interaction (we have 20 main terms, so 10 such groups are specified, each

containing three variables). Additionally, the 180 remaining interactions are each treated as

individual groups. This configuration results in a total of 190 distinct groups.
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Figure S1: Sample solution paths from sox and SGL using the same data and the same λ
sequence.
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Method sox sox.db CoxL CoxL.db SGL sox sox.db CoxL CoxL.db SGL

p = 210 n = 400 n = 800

MR 0.04 0.05 0.06 0.08 0.02 0.00 0.01 0.00 0.00 0.18
FAR 0.32 0.22 0.17 0.14 0.76 0.34 0.24 0.22 0.18 0.40
R1S 1.00 1.00 0.89 0.91 0.81 1.00 1.00 0.87 0.90 0.87
RCI 0.84 0.84 0.84 0.84 0.88 0.82 0.82 0.82 0.82 0.72
MSE* 3.41 2.37 3.77 3.18 3727 2.21 1.50 2.37 1.80 3242
CV-E 5.51 5.34 5.52 5.30 48.02 5.48 5.38 5.48 5.36 53.14

Table S3: Simulation results of interaction selection under the time-fixed, high-dimensional
setting. In the tuning process, “lambda.1se” is used. Results are averaged over 20 independent
replications. CoxL: unstructured ℓ1 penalty (glmnet with "cox" family); sox: our method;
SGL: the sparse group LASSO; .db: with additional debiasing procedure. JDR: joint detection
rate, MR: missing rate, FAR: false alarm rate, R1S: rule 1 satisfaction, RCI: the C index of
the model with the selected variables, MSE: mean-squared error (*values are multiplied by
10−3), CV-E: cross-validated error.

The results, presented in Table S3, show that sox outperforms glmnet, consistent with

the findings in Section 5.2. The inferior performance of glmnet is attributed to its inability

to incorporate selection rules. In this simulation, a flawed grouping structure was applied to

the sparse group LASSO, leading it to adhere to selection rules not aligned with the actual

data generation mechanism. This situation parallels Bayesian analysis, where an incorrect

prior leads to suboptimal outcomes, which explains why SGL demonstrates the least effective

performance in this context.

Web Appendix I Additional simulation: Timing results.

Additionally, we also tested the computational speed of sox. We adopted the simulation

setting from Section 5.2. For all (n, p) pairs, we reported the computation time (in seconds)

for solving 10-fold cross-validation on the same λ sequence of length 30 in Table S4. The

computation time of sox.db does not include the necessary procedures to acquire the initial

estimates (sox in our case) used to calculate the regularization weights. Our findings indicate

that for a complex case where the sample size is n = 800 and the number of variables
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n = 400 n = 800

sox sox.db sox sox.db
p = 210 26.80 26.47 54.13 53.93
p = 465 121.39 114.12 217.95 217.11
p = 820 391.26 359.85 704.67 698.86

Table S4: Timing results of the high-dimensional case. Results are averaged over 20 inde-
pendent replications.

is p = 820, a comprehensive analysis can be completed in approximately 10 minutes. In

contrast, for a simpler scenario with a sample size of n = 400 and p = 210 variables, the

analysis requires less than 30 seconds to finish.

Web Appendix J Additional simulation: Comparison of different group sizes,

the amount of overlap, and the sparsity levels

In this section, we delved into how group size, the amount of overlap between groups, and

sparsity level influence the performance of our method. We adopt a low-dimensional setting

(n = 400, p = 25) time-dependent (with four time-points, and each variable held constant

for two or three times-points). Each variable is independently generated by the standard

Gaussian distribution. We investigate seven grouping structures with different group sizes

and amount of overlap, the details of which are summarized in Table S5.

The results of the simulation are detailed in Table S6. A closer look at settings 1, 3, and 2,

which feature groups of 10 variables each with similar sparsity but different overlap sizes (8,

5, and 2, respectively), reveals a decrease in false alarm rates. This trend is attributed to the

fact that smaller overlaps reduce the probability of mistakenly selecting variables from both

groups, thereby lowering the chances of misidentifying noise as a significant signal. Although

setting 1 shows a slightly higher sparsity level, it does not substantially affect the outcome.

In contrast, settings 4, 3, and 5, which have identical overlap and sparsity levels but varying

group sizes (13, 10, and 7, respectively), also show a declining trend in false alarm rates. This
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Table 1

Variable index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Setting True Coefficient 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0.4 0 0 0.4 0 0 0.4 0 0 0

1 Group size 10 
Overlap size 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 Group size 10 
Overlap size 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

3 Group size 10 
Overlap size 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

4 Group size 13 
Overlap size 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5 Group size 7* 
Overlap size 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

6 Group size 7** 
Overlap size 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7 Group size 7*** 
Overlap size 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

Table S5: True coefficients and grouping structures for the simulation to evaluate the effects
of group sizes and the amount of overlaps. In all seven settings, there is a group 1 in red and
a group 2 in blue with their overlaps in purple. For the variables that are in neither groups
1 or 2, each belongs to a group of size one.

is because the selection of variables 14 and 15 may result in the selection of the variables in

group 2. When group 2 has more variables, there is an increased risk of erroneously selecting

them.

Regarding settings 5 to 7, where each group consists of 7 variables with an overlap size of

5 and varying sparsity levels for group 2 (0.7, 0.9, and complete sparsity or 1), settings 5 and

6 display similar false alarm rates. This is due to the possibility of a single signal in a group

triggering the erroneous selection of all variables in that group. However, with complete

sparsity, the false alarm rate tends to zero. Notably, setting 6 exhibits a significantly higher

missing rate, possibly because a lone signal in group 2 (variable 14) is sometimes not strong

enough for selection, leading to its omission.

These findings demonstrate that group size, overlap, and sparsity levels significantly influ-

ence the performance of sox. Nonetheless, caution should be exercised in generalizing these

results, as variations in the data-generating mechanism can alter these conclusions.
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Setting 1 2 3 4 5 6 7
Overlap size 8 2 5 5 5 5 5
Group size 10 10 10 13 7 7 7

SL* of group 2 0.8 0.7 0.7 0.7 0.7 0.9 1
SL* of group 1 1 1 1 1 1 1 1

MR 0.01 0.00 0.01 0.01 0.00 0.11 0.00
FAR 0.36 0.30 0.31 0.46 0.17 0.17 0.01
RCI 0.76 0.76 0.76 0.76 0.76 0.75 0.76

MSE** 1.64 1.57 1.61 1.66 1.51 1.76 1.55
CV-E 1.90 1.89 1.89 1.89 1.88 1.91 1.88

Table S6: Simulation results for different group sizes and amount of overlap. * Sparsity Level;
** MSEs are multiplied by 10−2.

Web Appendix K Inclusion and exclusion criteria

Figure S2 shows the inclusion and exclusion criteria for the patients of the study cohort.

Web Appendix L Covariate definitions

The 7 baseline covariates are 1) Age (⩾ 75/ < 75), 2) Sex(female/male), 3) CHA2DS2VASc

(⩾ 3/ < 3), 4) Diabetes, 5) COPD/asthma, 6) Hypertension and 7) Malignant cancer. All

other covariates are time-dependent covariates.

Heart disease: including 1) valvular heart disease, 2) peripheral vascular disease, 3) cardio-

vascular disease, 4) chronic heart failure, and 5) myocardial infarction.

DOAC: it is 1 if the patient uses DOAC, 0 if the patient is taking warfarin or not taking any

OAC at the time t.

OAC: it is 1 if the patient uses OAC, 0 if the patient is not taking any OAC at the time t.

High-dose-DOAC: it is 1 if the patient uses high-dose-DOAC, 0 if the patient is taking low-

dose-DOAC, or warfarin or not taking any OAC at the time t.

Antiplatelets: ASA low dose (⩾ 80 mg and ⩽ 260 mg), dipyridamole or clopidrogel or

ticlopidine or prasugrel or ticagrelor.
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Extraction criteria:  all patients aged of 18 years or more who received a diagnosis of 353,841   
atrial fibrillation (AF) (medical claim or hospitalisation) between 2005 and 2016

║
║
║
║
║
▼

Hospitalization with a diagnosis of AF and with a discharge date between January 198,597         (155,244)     

2010 and December 2017
║
║
▼

Complete coverage by the RAMQ drug plan for the year preceding the AF hosp. 196,451         (2,146)         
║
║
▼

At least one dispensation of oral anticoagulant (warfarine, DOAC) within the year 101,706         (94,745)       

following the AF hospistalization. The date of the first anticoagulant dispensation
was defined as the index date.

║
║
▼

Complete coverage by the RAMQ drug plan for the year preceding the index date 101,538         (168)            
║
║
▼

No use of DOAC in the year preceding the index date 81,752          (19,786)       
║
║
▼

No use of warfarine in the year preceding the index date for patients who received 50,324          (31,428)       

warfarine at the index date.
║
║
▼

No end-stage renal disease or dialysis (for a minimal period of 3 continuous months) 50,035          (289)            

within the 3 years preceding the index date (including the period of AF hosp.)
║
║
▼

No kidney transplant in the 3 years preceding the index date (including the period 50,029          (6)               

of AF hosp.)
║
║
▼

No hip/knee/pelvis fracture in the 6 weeks preceding the index date 48,450          (1,579)         
║
║
▼

No deep vein thrombosis or pulmonary embolism during the AF hosp. 46,710          (1,740)         
║
║
▼

No coagulation deficiency within the 3 years preceding the index date (including 46,695          (15)             

the period of AF hosp.)
║
║
▼

No catheterization, coronary cerebrovascular or defibrillator procedures within the 37,242          (9,453)         

3 months preceding the index date
║
║
▼

No valvular replacement/procedures within the 5 years preceding the index date 36,381          (861)            

║
║
║
║
▼

Number of patients selected in the cohort 36,381    

Total of patients in RAMQ database

Inclusion criteria
(Excluded)

Figure S2: The inclusion and exclusion criteria for the patients of the study cohort. (AF:
atrial fibrillation; OAC: oral anticoagulants).

Statin: Statin or other lipid lowering drugs.

NASIDs: Nonsteroidal anti-inflammatory drugs.
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Web Appendix M Summary statistics of all the covariates

Table S7 gives the summary statistics of all the covariates stratified by if the subject

experienced the event (death) during the follow-up. All the covariates in this analysis are

binary variables. The first two columns (% at cohort entry) show the summary statistics of

the covariates at the time of cohort entry. The second two columns (% of value changed)

show, for each covariate, the percentage of patients who experienced situation change during

the follow-up. The third two columns (% mean over population and time) show, for each

covariate, the average value of the covariates across all patients during the follow-up (the

mean, over the population, of the values of the covariates during the follow-up).

Web Appendix N Analysis using the time-dependent Cox model

Table S8 provides the crude (univariate) and adjusted hazard ratios from simple and mul-

tivariate time-dependent Cox models for death, respectively, and 95% confidence intervals

using the covariates in the analysis.

Web Appendix O Rational of the selection rules

Selection rules 1 and 2: rule 1 is needed since when DOAC is in the model, and if Apixaban

is selected, then the interpretation of the coefficient of Apixaban is the contrast of Apixaban

and Rivaroxaban. If High-dose-DOAC is also in the model, the interpretation would be the

contrast (e.g. log hazard ratio) of low-dose-Apixaban versus low-dose Rivaroxaban. However,

without DOAC, the coefficient of Apixaban would represent a contrast against warfarin and

Rivaroxaban combined, which is less interpretable. The same rationale applies to Dabigatran

in rule 2.

Selection rule 3: it is needed because when OAC is in the mode, and if DOAC is selected,

then the interpretation of the coefficient of DOAC is the contrast of DOAC and warfarin.
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Covariate % at cohort entry % of value changed % mean

Age (⩾ 75) 67 82 0 0 66 82
Sex(female/male) 54 52 0 0 54 52

Comorbidities/Medical score
CHA2DS2V ASc (⩾ 3) 80 89 0 0 79 88
Diabetes 34 39 0 0 34 39
COPD/asthma 35 51 0 0 35 49
Hypertension 81 84 0 0 81 84
Malignant cancer 23 36 0 0 23 36
Stroke 19 16 3 5 21 18
Chronic kidney disease 33 53 6 14 36 58
Heart disease 66 80 7 9 70 83
Major bleeding 28 38 9 18 33 45

OAC use
DOAC 61 51 58 47 54 38
Apixaban 31 29 26 25 27 22
Dabigatran 11 7 13 8 10 5
OAC 100 100 91 94 83 70
High-dose-DOAC 39 23 41 23 34 17

Concomitant medication use
Antiplatelets 52 59 43 34 24 37
NSAIDs 7 5 11 6 3 3
Statin 54 52 11 11 53 49
Beta-Blockers 65 63 18 12 62 62

Potential drug-drug interaction
DOAC: Antiplatelets 27 25 30 27 10 11
DOAC: NSAIDs 4 3 7 4 2 1
DOAC: Statin 30 23 33 24 29 18
DOAC: Beta-Blockers 38 30 40 32 34 22

Table S7: Summary statistics of the baseline and time-dependent covariates

However, without OAC, the coefficient of DOAC would represent a contrast against DOAC

and warfarin or taking none of OAC combined, which is less interpretable.

Selection rule 4: it is needed since when DOAC is in the model, and if High-dose-DOAC

is selected, then the interpretation of the coefficient of High-dose-DOAC is the contrast of

high-dose-DOAC versus low-dose-DOAC, which is of interest. If Apixaban and Dabigatran

are also in the model, the coefficient of High-dose-DOAC represents the contrast between

high-dose-Rivaroxaban versus low-dose-Rivaroxaban. However, without DOAC in the model,
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Covariate Crude HR Adjusted HR
Estimate CI Estimate CI

Age (⩾ 75) 2.25 (2.09, 2.44) 1.89 (1.73, 2.06)
Sex(female/male) 0.92 (0.86, 0.97) 0.98 (0.92, 1.04)

Comorbidities/Medical score
CHA2DS2VASc (⩾ 3) 2.00 (1.82, 2.20) 1.01 (0.90, 1.14)

Diabetes 1.23 (1.16, 1.31) 1.08 (1.02, 1.15)
COPD/asthma 1.84 (1.74, 1.96) 1.49 (1.40, 1.58)
Hypertension 1.20 (1.10, 1.30) 0.91 (0.83, 0.99)

Malignant cancer 1.79 (1.68, 1.90) 1.45 (1.36, 1.54)
Stroke 1.07 (1.00, 1.15) 1.00 (0.92, 1.07)

Chronic kidney disease 3.50 (3.29, 3.73) 2.10 (1.96, 2.25)
Heart disease 3.42 (3.11, 3.76) 2.41 (2.18, 2.67)
Major bleeding 2.55 (2.40, 2.70) 1.38 (1.29, 1.47)

OAC use
DOAC 0.06 (0.06, 0.07) 1.60 (1.16, 2.21)

Apixaban 0.11 (0.09, 0.13) 0.88 (0.68, 1.14)
Dabigatran 0.09 (0.07, 0.12) 0.77 (0.53, 1.13)

OAC 0.03 (0.02, 0.03) 0.84 (0.66, 1.06)
High-dose-DOAC 0.07 (0.06, 0.08) 0.80 (0.63, 1.01)

Concomitant medication use
Antiplatelets 1.37 (1.28, 1.47) 0.80 (0.74, 0.86)

NSAIDs 1.14 (0.97, 1.33) 1.50 (1.27, 1.76)
Statin 0.70 (0.66, 0.75) 0.82 (0.76, 0.87)

Beta-Blockers 0.92 (0.87, 0.98) 1.37 (1.28, 1.47)
Potential drug-drug interaction

DOAC: Antiplatelets 0.11 (0.09, 0.15) 1.09 (0.81, 1.47)
DOAC: NSAIDs 0.15 (0.09, 0.26) 0.99 (0.56, 1.78)
DOAC: Statin 0.08 (0.07, 0.09) 0.90 (0.70, 1.15)

DOAC: Beta-Blockers 0.08 (0.09, 0.10) 0.60 (0.47, 0.77)

Table S8: Crude (univariate) and adjusted hazard ratios from simple and multivariate
time-dependent Cox models for death, respectively, and 95% confidence intervals using the
covariates in the analysis.

these relevant interpretations would be lost.

Web Appendix P Grouping structure of the data analysis

In our method, we need to specify the grouping structure to respect the selection rules.

Thirteen variables are included in the 8 selection rules. For the convenience of grouping
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Figure S3: Grouping structure plot for the 13 groups

structure specification, we denote the 13 variables as such:

A: Apixaban, B: Dabigatran, C: High-dose-DOAC, D: DOAC: Antiplatelets, E: DOAC:

NSAIDs, F: DOAC: Statin, G: DOAC: Beta-Blockers, H: DOAC, I: Antiplatelets, J: NSAIDs,

K: Statin, L: Beta-Blockers, M: OAC.

According to (Wang et al., 2024, 2023). The grouping structure that relevant to these 13

variables should be

g1 = {A}, g2 = {B}, g3 = {C}, g4 = {D}, g5 = {E}, g6 = {F}, g7 = {G}, g8 = {D, I},

g9 = {E, J}, g10 = {F,K}, g11 = {G,L}, g12 = {A−H}, g13 = {A,B,C,H,M},

13 groups in total. For the remaining 11 variables, each of them has one individual group.

Therefore, we have 24 groups in total. For the 13 groups, we plot the grouping structure in

Figure S3. We can see that it presents a graph structure. Multiple groups are overlapped

with and nested in other groups.

To encode the grouping structure into our developed software, we need to specify two

matrices, both of which are 24 by 24 matrices. The first matrix has 1 in the positions (4, 8),

(5, 9), (6, 10), (7, 11), (1, 12), (2, 12), (3, 12), (4, 12), (5, 12), (6, 12), (7, 12), (1, 13) (2, 13),

(3, 13), the rest are 0. The second matrix has 1 in the positions (i, i), i = 1, . . . , 7, 13, . . . , 24,
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1, use warfarin all the time, age >75, has malign cancer
2, same to 1, but ceased OAC use at time 100
3, same to 2, but developed major bleeding at time 200

Figure S4: Estimated survival curves of three typical persons.

(9, 8), (10, 9), (11, 10), (12, 11), (8, 12), (8, 13), the rest are 0. For details, please see the

help file in the R package.

Web Appendix Q Visualization of the analysis

We artificially create three hypothetical patients’ disease progression. Suppose person 1,

age ⩾ 75, who only used the drug warfarin, had only malign cancer among all the disease

variables included in the data. Person 2 has the same profile as person 1 except they ceased

warfarin at time 100 during the follow-up, while other statuses stayed the same. Person 3

developed major bleeding at time 200, and all other statuses were the same as person 2.

Figure S4 shows the survival curves of the three people, estimated by the time-dependent

Cox model using the covariates that were selected by our method. As we can see, person 1

(in red) has the highest estimated survival probability. The survival probability of person

2 drops immediately after the cease of warfarin. Similarly, the survival probability drops

significantly at time 200 due to the major bleeding. Note that Figure S4 only intends to

show, as an example, how the survival probability can vary according to time-dependent

covariates, rather than predicting the survival probability of the hypothetical cases. All the

covariates involved in the study are internal covariates that relate to the outcome in the
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sense that the covariates can be measured only among the patients who are still at risk of

the event (alive).
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