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Cox models with time-dependent coefficients and covariates are widely used in
survival analysis. In high-dimensional settings, sparse regularization techniques
are employed for variable selection, but existing methods for time-dependent
Cox models lack flexibility in enforcing specific sparsity patterns (ie, covari-
ate structures). We propose a flexible framework for variable selection in
time-dependent Cox models, accommodating complex selection rules. Our
method can adapt to arbitrary grouping structures, including interaction selec-
tion, temporal, spatial, tree, and directed acyclic graph structures. It achieves
accurate estimation with low false alarm rates. We develop the sox package,
implementing a network flow algorithm for efficiently solving models with
complex covariate structures. sox offers a user-friendly interface for specifying
grouping structures and delivers fast computation. Through examples, including
a case study on identifying predictors of time to all-cause death in atrial fibril-
lation patients, we demonstrate the practical application of our method with
specific selection rules.
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1 INTRODUCTION

The Cox model1 is a well-established statistical model widely used for survival data analysis. Incorporating
time-dependent covariates and coefficients in the Cox model offers more flexibility in representing associations between
covariates and the hazard of the event of interest. Examples of time-varying covariates include medication usage2 and
disease status.3 Integrating time-varying coefficients into the Cox model is particularly relevant in cases where the
relationship between covariates and the outcome of interest changes over time.

In many real-world applications of time-dependent Cox models, the number of covariates can be very large, potentially
exceeding the number of observations in the data. To address the challenges of model overfitting and perform variable
selection in such high-dimensional settings, sparse regularization techniques can be employed. These techniques help
remove redundant covariates from the model and improve estimation/prediction accuracy. For example, LASSO and
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SCAD regularization methods have been extensively studied for Cox models.4,5 In the context of time-dependent covari-
ates and coefficients, some variable selection methods in the Cox model have been proposed.6,7 However, these methods
only select variables individually and do not enforce specific sparsity patterns on the covariates.

Investigators often have prior knowledge about the structure of potential model covariates, which imposes certain
restrictions on how covariates should be included in the model. For example, strong heredity states that “if the interac-
tion term is selected, then the main terms should also be selected.”8 To incorporate such information, which we refer
to as “selection rules,” a penalty can be applied to a weighted sum of the norms of group variable coefficients. Different
specifications of grouping structures correspond to different selection rules. Complicated selection rules usually require
that the groups are overlapped. However, many existing variable selection methods, such as the group LASSO and the
sparse group LASSO, do not allow overlapped groups and thus cannot handle complex selection rules. In the context of
Cox models without time-varying covariates or coefficients, various methods have been proposed to incorporate specific
types of selection rules. For example, Wang et al9 introduced methods to incorporate strong heredity in interaction selec-
tion, while Simon et al10 and Wang et al11 developed sparse group LASSO techniques. Additionally, Dang et al12 extended
the latent overlapping group LASSO13 to the Cox model, which requires specifying latent variables.

While the method mentioned above may adhere to certain selection rules, it faces challenges in scaling to
high-dimensional settings with complex grouping structures due to its built-in algorithms. For example, the method is
not well-suited for scenarios where multi-layer groups (such as tree and graph structures) exhibit significant overlap and
the sparsity level is low.14 Additionally, none of the aforementioned methods can perform structural variable selection
for time-dependent Cox models. The absence of such a method and software may hinder investigators from fully lever-
aging their prior knowledge about the structure of potential covariates when analyzing (time-dependent) Cox models.
This could lead to compromised prediction accuracy and yield misleading and uninterpretable results regarding variable
selection.

We contribute to this field of research in several ways. First, we propose the first application of the structured
sparsity-inducing penalty15 to time-dependent Cox models. Our method can easily adapt to arbitrary grouping structures,
allowing for the incorporation of highly complex selection rules. This flexibility enables the inclusion of various structures
such as interaction selection, temporal, spatial, tree, and directed acyclic graph structures. Our estimator demonstrates
low false alarm rates and high estimation accuracy.

Second, to reduce the computational burden caused by selecting time-dependent covariates with complex grouping
structures required by our method, we develop a network flow algorithm that efficiently and effectively solves models
with complex covariate structures. To ensure optimal efficiency, we implement this algorithm as an R package called
sox, (stands for structured learning for time-dependent Cox),16 which is available on CRAN. Our software leverages
established SPAMS packages and provides users with a user-friendly interface to specify arbitrary grouping structures. It
has a C++ core and offers fast computational speed and reliable performance.

Finally, we provide examples that illustrate how to specify grouping structures to respect complex selection rules
in practical scenarios. In particular, in a case study, we apply our developed method to identify significant predictors
associated with the time to death by any cause among hospitalized patients with atrial fibrillation. In this analysis, we
incorporate eight selection rules and demonstrate the rationale behind specifying the corresponding grouping structure.

The rest of the article is organized as follows. In Section 2, we introduce the proposed method. Section 3 illustrates
the algorithm for sox, followed by implementation details in Section 4. We then present the results of simulation studies
to compare our method to unstructured variable selection in both low and high dimensional settings in Section 5, and
present the application of sox in the case study in Section 6. We conclude with a discussion in Section 7.

2 MODEL SPECIFICATION AND STRUCTURED PENALIZATION

Consider individual failure times Ti and censoring times Ci indexed by i = 1, … ,n. We can observe only the time to either
failure or censoring, whichever comes first, that is, Ui = min(Ti,Ci)with censoring indicator 𝛿i = I(Ti ≤ Ci). We also con-
sider a possibly time-varying, p-vector-valued covariate process Xi(t) = (Xi1(t), … ,Xip(t))⊤. We assume noninformative
censoring, that is, upon conditioning on Xi(t), Ci is independent of Ti. Therefore the observed data associated with n
individuals are n triplets {Ui, 𝛿i,Xi(t)} for i = 1, … ,n, which we assume to be independently drawn from a common dis-
tribution. Denote by h(t|⋅) the covariate-conditional hazard function; we assume that hi(t) = h0(t) ⋅ exp{Xi(t)⊤𝜷}, where
h0(⋅) is an unspecified baseline hazard function. We begin by considering the scenario in which the coefficient vector,
denoted as 𝜷 ∈ Rp, is time-invariant. Subsequently, we will explore the case of time-varying coefficients.
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To handle tied-events, we define an index 𝓁 = 1, … ,L for the ordered unique follow-up times in the dataset, and
an ordered list t1 < t2 < · · · < tL of unique time-to-event realizations. The number of tied events occurring at the 𝓁th
distinct survival time is denoted by d𝓁 . We can further define two index sets, D𝓁 and R𝓁 , representing the subjects whose
event occurred at time t𝓁 and were at risk at time tj, respectively. Using the Breslow approximation to accommodate tied
events,17 the negative log partial likelihood can be approximated as

f (𝜷) ≈ −
L∑

𝓁=1

({
∑

i∈D𝓁

Xi(t𝓁)⊤
}

𝜷 − d𝓁 log

[
∑

i∈R𝓁

exp{Xi(t𝓁)⊤𝜷}

])

. (1)

Up until now, we assume the coefficients 𝜷 are time-invariant, but there are several ways to accommodate the case where
𝜷 depends on time t. For example, for j = 1, … , p, let 𝛽j(t) be

∑M
m=1I(Tm ⩽ t < Tm+1)𝛽jm (with specified time intervals

[Tm,Tm+1),m = 1, … ,M) or aj + bj log(t), as functions of t. More flexibly, let 𝛽j(t) =
∑M

m=1𝜃jm𝜙m(t), where 𝜙m(⋅) is a set of
B-spline basis functions for approximating the function 𝛽j(t). The problem of estimating 𝛽j(t) is then transformed to the
problem of estimating aj, bj, 𝜷 j = (𝛽j1, … , 𝛽jm)⊤, or 𝜽j = (𝜃j1, … , 𝜃jM)⊤. For the sake of simplicity, we adopt the notation of
time-invariant coefficients, as given in Equation (1), as the primary framework in this article. But we note that Cox models
with time-dependent coefficients can be viewed as a specific instance in the broader context. For a detailed explanation,
please refer to Example 3.

To incorporate a selection rule into selecting time-dependent covariates, one approach is to enforce the collec-
tive selection of groups of covariates. However, some previous approaches have imposed restrictions on the grouping
structure,10,18 such as the prohibition of overlap between groups. In contrast, this work adopts a flexible approach by
imposing no constraints on the grouping structure, allowing for the consideration of a wider range of selection rules.15

Let V(t) = {X1(t),X2(t), … ,Xp(t)} denote the set containing all the covariates (for the brevity, we will use V through-
out the article). Suppose there are K pre-defined groups of these covariates, and let us define the grouping structure as
G = gk, k = 1 … ,K, where gk represents a group—a non-empty subset of V—and the union of all gk’s is equal to V. It
is worth noting that the groups can overlap, meaning that gj ∩ gk may not be empty for j ≠ k. To denote a vector of the
same length as 𝜷, with non-zero entries corresponding to the covariates in g and zero entries elsewhere, we use 𝜷 |g.

To select variables according to the pre-defined groups to achieve structural selection in time-dependent Cox models,
we solve the following problem

min
𝜷

f (𝜷) + 𝜆Ω(𝜷), Ω(𝜷) =
∑

g∈G

𝜔g
‖
‖
‖
𝜷 |g

‖
‖
‖d
. (2)

Here, f (𝜷) is a convex differentiable function as defined in Equation (1). The weight 𝜔g is a positive user-defined value
associated with the group g, and Ω(𝜷) represents the weighted sum of sparsity-inducing 𝓁d norms (d = 2 or ∞) applied
to groups of coefficients 𝜷 |g, where g ∈ G. The choice of norm can be either the 𝓁∞ norm (which corresponds to the
maximum absolute value of 𝜷 |g) or the 𝓁2 norm. Both norms serve the purpose of encouraging the collective selection of
a group of variables. The choice of d = 2 or d = ∞ has been studied, and they produce similar results regarding prediction
accuracy and selection consistency.19-21 Since the choice of norm is not the main focus of this article, we primarily focus
on the 𝓁∞ norm.

By employing this type of penalization, each group of variables can be excluded from the model as a group, thereby
promoting sparsity. The specifications of the grouping structure G, determining the membership of variables in each
group g, leads to different sets of variables that can be selected (ie, the complement of the union of the groups). This
allows for incorporating various a priori knowledge or structures exhibited in the real data. Importantly, we allow for the
inclusion of highly overlapped groups, enabling the inclusion of a wide range of structures.

To operationalize the structures in a mathematical and explicit manner, we initially translate them into selection
rules, which represent the dependencies among variables. Subsequently, we specify the grouping structure G to adhere to
these selection rules. This approach allows us to articulate and identify the structures to be incorporated effectively. While
we do not delve into the detailed explanation in this article, interested readers can find further information in existing
literature.22,23

Various types of selection rules can be followed by the structured sparsity-inducing penalty, such as strong heredity,
temporal and spatial structures, and rules that require tree or graph grouping structures. We next provide five detailed
examples of such selection rules and their related grouping structure specifications. More examples of selection rules can
be found in References 15 and 24.
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Example 1 (Coefficients interpretability). Consider a cohort study in which patients intermittently receive
a drug (treatment) at different dose levels. The objective is to investigate the association between dose level
and time-to-event. Let X1(t) and X2(t) represent indicators for the patient receiving treatment (either high or
low dose) at time t and receiving the high dose treatment, respectively. A crucial selection rule in this scenario
is “if X2(t) is selected, then X1(t)must also be selected.” This is because if X2(t) is selected without X1(t), then
the coefficients of X2(t) would be the contrast between taking high-dose treatment vs taking low-dose treat-
ment combined with not taking the treatment, which is not of interest. Incorporating such selection rules
guarantees the interpretability of the selected model’s coefficients. To satisfy this selection rule, the group-
ing structure G is specified as {{X2(t)}, {X1(t),X2(t)}}. It is worth noting that even this simple selection rule
necessitates an overlapping grouping structure.

Example 2 (Strong heredity). As mentioned earlier, caution is required when dealing with interaction
terms in variable selection. Consider a study involving covariates X1(t),X2(t) and their interaction X3(t) =
X1(t) × X2(t). The strong heredity8 states that “If the interaction term is selected, then all its main terms must
also be selected.” We specify the grouping structure as G = {{X3(t)}, {X1(t),X3(t)}, {X2(t),X3(t)}}. Incorporat-
ing such selection rules can enhance the interpretability of the model, improve statistical power, and simplify
experimental designs.25 In our simulation studies, we present additional examples of grouping structures for
more complex scenarios. For instance, in Section 5.1, we demonstrate the grouping structure for the case
involving interactions between two categorical variables and a continuous variable. In Section 5.2, we show-
case the strategy for setting the grouping structure when high-dimensional main terms and interactions are
included.

Example 3 (Incorporating temporal structure). In studies involving patients with dementia, it is common to
categorize them into four phases: mild, moderate, moderately severe, and severe cognitive decline.26 Consider
a cohort study focusing on patients diagnosed with mild cognitive decline and examining the association
between blood pressure X(t) at each phase and the time to severe cognitive decline. We define T1 as the time
of diagnosis for moderate cognitive decline and T2 as the time for moderately severe cognitive decline. To
capture the temporal aspect, we include the time-dependent covariates Z1(t) = I(t < T1)X(t), Z2(t) = I(T1 ⩽
t < T2)X(t) and Z3(t) = I(t ⩾ T2)X(t) in the Cox model. Suppose we have a priori knowledge that if the blood
pressure in a previous phase is associated with the outcome, the blood pressure in the later phase should also
be associated. This implies the following selection rules: “if Z1(t) is selected, then Z2(t) and Z3(t) should also
be selected” and “if Z2(t) is selected, then Z3(t) should be selected.” By incorporating such selection rules,
we can accommodate the temporal structure of the time-dependent covariate. The corresponding grouping
structure is G = {{Z1(t)}, {Z1(t),Z2(t)}, {Z1(t),Z2(t),Z3(t)}}. This example illustrates the use of step functions
to model time-dependent associations.

More flexibly, consider the Cox model with both time-dependent covariates and coefficients, h{t|X(t)} =
h0(t) ⋅ exp{X(t)⊤𝜷(t)},where 𝜷(t) = {𝛽1(t), … , 𝛽j(t)}⊤ with 𝛽j(t) =

∑M
m=1𝜃j,m𝜙m(t), for j = 1, … , p. Rewriting,

we have: h{t|Z(t)} = h0(t) ⋅ exp{Z(t)⊤𝜽}, where Zj,m(t) = Xj(t)𝜙m(t), for example,

Z(t) = (X1(t)𝜙1(t), … ,X1(t)𝜙M(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Z1,⋅(t)

, … ,Xp(t)𝜙1(t), … ,Xp(t)𝜙M(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Zp,⋅(t)

)⊤ = (Z1,⋅(t), … ,Zp,⋅(t))⊤,

which has p ×M elements. Thus, in the context of predictor identification, selecting Xj is equivalent to
selecting Zj,⋅(t). In the context of estimation, estimating 𝜷(t) equates to estimating the p ×M length vector
𝜽 = (𝜽1,⋅, … ,𝜽p,⋅), where 𝜽j,⋅ = {𝜃j,1, … , 𝜃j,M}. Suppose the selection rule to be respected is “all the basis func-
tions related to one variable should be selected collectively” or “Zj,⋅(t) = {Zj,1(t), … ,Zj,M(t)},∀j = 1, … , p
should be selected collectively.” By incorporating such selection rules, we can avoid the selection discrep-
ancy among basis functions while accommodating the time-dependent coefficient feature in Cox models. We
can define V = {Zj,m(t), j = 1, … , p,m = 1 … ,M} and G = {Zj⋅(t), j = 1 … , p}, and the selection rule can
be respected.

Example 4 (Incorporating spatial structure). Suppose that high-dimensional voxel signals over time in
patients’ brains are collected in functional magnetic resonance imaging (fMRI) data. The goal is to identify the
regions (of voxels) and individual voxels associated with the time to cocaine relapse27 or Alzheimer’s disease
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3168 WANG et al.

progression.28 Variable selection conducted to analyze such data should be informed by the three-dimensional
grid structure (such as localized clusters on the brain).29 Here we take a simplified example for illustra-
tion. Suppose there are three contiguous voxels; the intensities of the signals are denoted X1(t), X2(t), and
X3(t). Consider the case where two parcels (clusters) {X1(t),X2(t)} and {X1(t),X2(t),X3(t)} are hierarchically
constructed,30 in which only neighboring voxels can be merged together. Larger parcels can be regarded as
potential regions of interest. To incorporate such a structure, we first define X4(t) and X5(t) as the average
of the two parcels. Then we set selection rules as “if either X1(t) or X2(t) is selected, then select X4(t),” and
“if either X3(t) or X4(t) is selected, then select X5(t)” to encode the hierarchy and promote the parcel selec-
tion.31 The corresponding G is {{X1(t)}, {X2(t)}{X3(t)}, {X1(t),X2(t),X4(t)}, {X1(t),X2(t),X3(t),X4(t),X5(t)}}.
The above example represents the case where two parcels are nested. Incorporating more complex structures,
such as multiple overlapped parcels nesting in different larger parcels, is also possible.

Example 5 (Tree and directed acyclic graph grouping structures). In certain real-world scenarios, more com-
plex structures of covariates, such as trees21 and directed acyclic graphs,15 can be incorporated into variable
selection. These structures allow for more intricate relationships among variables to be taken into account.
For example, in our model, covariates can be represented as nodes in a tree, and users can specify that a vari-
able is selected only if all its ancestors in the tree are already selected. Moreover, the framework can be further
extended to include directed cyclic graphs, which have been found useful in hierarchical variable selection.
These enhancements provide additional flexibility in capturing complex relationships among variables.

In the next section, we present an efficient algorithm for solving the objective function (2) for time-dependent Cox
models, allowing for the incorporation of selection rules that can be followed by the structured sparsity-inducing penalty.

3 PROXIMAL GRADIENT WITH NETWORK FLOW ALGORITHM

In this section, we illustrate the use of a proximal gradient algorithm32 with network flow to solve (2) with a structural
penalty.

SinceΩ(𝜷) is not differentiable on its entire support, the optimization of the penalized likelihood requires the proximal
method. The proximal method33 has been successfully applied in various research areas, including signal processing34

and machine learning.35

To address the computational challenge posed by the non-smooth component in the objective function, the proximal
method updates estimates that remain close to the gradient update for the differentiable function f (𝜷), while also mini-
mizing the non-differentiable penalty term.36 This approach enjoys a linear convergence rate.37,38 More specifically, the
updated value of 𝜷 in each iteration of the proximal gradient algorithm, denoted as 𝜷+, is obtained by minimizing the
following approximated problem. Here, the loss function f is approximated by a quadratic function:

𝜷+ = argmin
𝜷

f ( ̃𝜷) + (𝜷 − ̃𝜷)∇f ( ̃𝜷) + 1
2q

||𝜷 − ̃𝜷||22 + 𝜆Ω(𝜷)

= argmin
𝜷

1
2q

||𝜷 − { ̃𝜷 − q∇f ( ̃𝜷)}||22 + 𝜆Ω(𝜷),

where ̃𝜷 is the value of 𝜷 from the previous iteration, and t is the step size of the update. By defining u = ̃𝜷 − q∇f ( ̃𝜷), the
above problem can be further written as

𝜷+ = proxq𝜆Ω{ ̃𝜷 − q∇f ( ̃𝜷)} ∶= argmin
𝜷

1
2
||𝜷 − u||22 + q𝜆

∑

g∈G

𝜔g
‖
‖
‖
𝜷 |g

‖
‖
‖∞
. (3)

In many cases, the proximal operator can be computed in a closed form, leading to efficient computations. However,
for more complex structures such as nested groups (eg, tree structures) or general directed acyclic graphs (eg, Example 1
and the first one in Example 3), the closed-form proximal operator may not exist. In the case of a tree structure, the prox-
imal operator can still be efficiently computed using its dual form in a blockwise coordinate ascent fashion.21 However,
dealing with general directed acyclic graphs presents a greater challenge. To address this issue, Marial et al24 converted
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WANG et al. 3169

the dual form of the proximal operator into a quadratic min-cost flow problem, enabling efficient computations in the
context of such graphs.

Define the dual variables 𝝃|g, which satisfies
∑
g∈G

𝝃|g = 𝜷.
According to Lemma 2 of Marial et al,24 the dual of problem (3) is

min
𝝃

1
2

‖
‖
‖
‖
‖
‖

u −
∑

g∈G

𝝃|g

‖
‖
‖
‖
‖
‖

2

2

, s.t. ∀g ∈ G,
‖
‖
‖
𝝃|g

‖
‖
‖1

⩽ 𝜆𝜔g and 𝝃|g,j = 0 if j ∉ g, (4)

where 𝜔g is the same as in (3). The proof can be found in Jenatton et al.21,39 The dual problem can be transformed into
a quadratic min-cost flow problem.40 This conversion allows us to efficiently solve the problem using a network flow
algorithm based on the mini-cut theorem.41 More details can be found in Web Appendix A. The algorithm converges in
a finite and polynomial number of operations, providing an effective solution to the dual problem.

The network flow algorithm, commonly used in graph models,42 has found widespread application in various machine
learning domains, such as in image processing.43 Because of the special form of the constrain in our problem, we are able
to present a more efficient version of the algorithm,24 referred to as Algorithm 1, for solving (4). The central computation in
the algorithm is the evaluation of

∑
g∈G

𝝃|g, accomplished by the computeFlow function. The details of the algorithm’s
steps are presented in Web Appendix B.

Algorithm 1. Solving (4)

Inputs: The estimate in the kth step 𝜷k ∈ Rp, step size q, V, G, 𝜔g, 𝜆.Set 𝝃 = 0.
Compute

∑
g∈G

𝝃|g ← computeFlow(V,G).
return 𝜷k − q𝛻f (𝜷k) −

∑
g∈G

𝝃|g
Function computeFlow(V,G)
Projection: 𝜸 ← argmin𝜸

∑
j∶Xj∈V

1
2t
(𝛽k

j − q𝛻f (𝛽k
j ) − 𝛾j)2 s.t.

∑
j∶Xj∈V

𝛾j ⩽ 𝜆

∑
g∈G

𝜔g

Updating: (
∑
g∈G

𝝃
j
|g)Xj∈V ← argmax(∑g∈G 𝝃

j
|g)Xj∈V

∑
Xj∈V

∑
g∈G

𝝃
j
|g s.t.

∑
Xj∈g

𝝃
j
|g ⩽ 𝜆𝜔g

Recursion:
if ∃Xj ∈ V s.t. ,

∑
g∈G

𝝃
j
|g ≠ 𝛾j then

Denote V∗ = {Xj ∈ V ∶
∑
g∈G

𝝃
j
|g = 𝛾j}, and g∗ = {g ∈ G ∶

∑
Xj∈g

𝝃
j
|g<𝜆𝜔g}

(
∑
g∈G

𝝃
j
|g)Xj∈V∗ ← computeFlow(V∗

,G∗)
(
∑
g∈G

𝝃
j
|g)Xj∈V⧵V∗ ← computeFlow(V ⧵V∗

,G ⧵G∗)
end
return (

∑
Xj∈g

𝝃
j
|g)Xj∈V

4 IMPLEMENTATION DETAILS

We provide an efficient and user-friendly R package sox, which is available on CRAN (https://cran.r-project.org/
package=sox). The statistical software is implemented in C++ with the incorporation of programs adapted from
well-established software packages including the survival ,44 glmnet45,46 and SPAMS24 to ensure optimal efficiency.
It provides users with a convenient interface to specify the grouping structure relevant to their specific data analysis task.
In addition, the sox features built-in solution path and cross-validation functions with their corresponding visualization
tools to facilitate model tuning and diagnostics.

4.1 Details of implementing the max flow algorithm

We utilize the max flow algorithm, as proposed by Goldberg and Tarjan,47 for the efficient execution of the updating step
within the computeFlow process (Table 1). To our knowledge, it remains unmatched in terms of speed and effectiveness
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3170 WANG et al.

T A B L E 1 Corresponding inputs of the max flow algorithm.

Type From To Flow f Capacity c

1 s1 gk ∈ G
∑

Xj∈V

∑
g∈G

𝝃
j
|g 𝜆𝜔g

2 gk Xj ∈ gk 𝝃
j
|g ∞

3 Xj ∈ V s2 (
∑
g∈G

𝝃
j
|g)Xj∈V ∞

for solving max-flow problems. This algorithm has been effectively integrated into our package sox, using the SPAMS
packages with a C++ core. In the following section, we provide a concise introduction to this algorithm.

The algorithm first initializes and relabels the distance, and then pushes excess from the vertex whose flow equals the
capacity on each edge and can reach the sink to vertices that have a shorter estimated distance to the sink s2, with the
goal of getting as much excess as possible to s2. When a vertex cannot reach the sink with a positive excess, the algorithm
pushes such excess in the opposite direction. In each update, the value of the flow function is changed. Eventually, all
vertices other than the source and sink have zero excess while each arc respects the capacity. At this point, the flow is a
maximum flow, and thus, the value of the flow function can be computed as the updated value in the updating step in
Algorithm 1. More details are given in Web Appendix C.

4.2 Backtracking line search

The proposed algorithm for solving the dual of the proximal operator includes the step size q, which enables the incorpo-
ration of backtracking line search. The algorithm, presented in Algorithm 2, allows us to solve (3) using proximal gradient
descent with backtracking line search.48 Backtracking line search is an optimization technique that helps determine the
appropriate step size. It begins with a predefined step size for updating along the search direction and iteratively shrinks
the step size (ie, “backtracks”) until the decrease in the loss function corresponds reasonably to the expected decrease
based on the local gradient of the loss function. This technique enhances the convergence speed of the algorithm.

Algorithm 2. Solving (3) using proximal gradient descent with backtracking line search

Inputs: Xi(t), Ti, 𝛿i, V, G, 𝜔g, 𝜆, convergence threshold r, shrinkage rate 𝛼 < 1, step size q. Set 𝜷0 = 0, k = 0.
repeat
𝜷+ ← proxq𝜆Ω

(
𝜷k − q𝛻f (𝜷k)

)
⊳ call Algorithm 1

if f (𝜷+) ⩽ f (𝜷k) + 𝛻f (𝜷k)⊺(𝜷+ − 𝜷k) + 1
2q
‖
‖
‖
𝜷+ − 𝜷k‖

‖
‖

2

2
then

k = k + 1; 𝜷k+1 ← 𝜷+

exit;
else

q ← 𝛼q
end

until ‖‖
‖
𝜷k − 𝜷k−1‖

‖
‖1
< r;

return ̂𝜷 ← 𝜷k+1

In our implementation, the step size shrinkage rate 𝛼 is a parameter in the backtracking line-search that controls the
rate at which the step size is reduced during each iteration of line-search until an appropriate step size is found. The proper
step size should satisfy the line-search criteria, ensuring that the update with this step size leads to a sufficient decrease in
the objective function. If 𝛼 is too large, the step size might not reduce sufficiently during each iteration of the line search,
which can cause the line search algorithm to take more iterations to find an appropriate step size. On the other hand, if
the shrinkage factor is too small, it may lead to an over-reduction of the step size, resulting in a small update and slow
convergence of the algorithm. In our implementation, we have chosen the commonly used default value of 𝛼 = 0.5 as the
shrinkage rate. This choice has proven to be effective for all computations in our simulations and real data analysis.
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WANG et al. 3171

4.3 Cross-validation

We employ cross-validation to select the appropriate value of 𝜆. The average cross-validated error (CV-E) is utilized for this
purpose. Consider performing L-fold cross-validation, where we denote ̂𝜷−l as the estimate obtained from the remaining
L-1 folds (training set). The error of the lth fold (test set) is defined as 2(P − Q)∕R, where P is the log partial likelihood
evaluated at ̂𝜷−l using the entire dataset, Q is the log partial likelihood evaluated at ̂𝜷−l using the training set, and R is the
number of events in the test set.

We opt for using the error defined above instead of the negative log partial likelihood evaluated at ̂𝜷−l using the test set
because it efficiently leverages the risk set, resulting in greater stability when the number of events in each test set is small.
The CV-E serves as a metric for parameter tuning. Additionally, to account for the outcome balance among randomly
formed test sets, we divide the deviance 2(P − Q) by R.

4.4 A note on the “One Standard Error Rule”

Different values of 𝜆 correspond to different models in the regularization framework. The selection of the appropriate 𝜆
value is achieved through cross-validation.

When the objective is to identify the model with the lowest prediction error, we choose the value of 𝜆 that yields
the lowest CV-E. This approach is known as the min rule.45 However, if the goal is to recover the sparsity pattern,
meaning to select the set of variables that closely resembles the true model’s variable set, an alternative rule called the
“one-standard-error-rule” (1se rule) is recommended.49 The 1se rule selects the most parsimonious model whose predic-
tion error is within one standard error of the minimum CV-E. By applying the 1se rule, we prioritize models that are more
sparse while still maintaining reasonable prediction accuracy.

If the time-dependent covariates are internal covariates,50 using the time-dependent Cox model for prediction may
not be appropriate. However, when the objective is predictor identification, we recommend applying the 1se rule.

5 SIMULATION

We conduct several simulation studies. We evaluate our method in both low- and high-dimensional settings and test
its performance in terms of the ability to strictly respect complex selection rules, selection consistency, estimation and
prediction accuracy. We also compare our methods with the LASSO, the sparse group LASSO, and the latent overlapping
group LASSO. In addition, we report the computation time, evaluate the cross-validation stability, and give insights into
the influence of effect of group size, the amount of overlap, and sparsity levels on the performance of our method. All
simulations employ 10-fold cross-validation to evaluate the performance. The simulations were conducted usingR version
4.0.5.51 The R code for simulation is available at https://github.com/Guanbo-W/sox_sim.

5.1 Categorical interaction selection under the time-dependent, low-dimensional
setting

In the simulation, we generate data with three main terms, two of which are categorical variables, and two interactions
between categorical variables. The three independent variables, A(t), B(t), and C(t), are generated with values that ran-
domly change over time in a piece-wise constant fashion. We consider 50 time points at which the values of any variable
can potentially change, with each variable being held constant for a random duration between 5 and 10 time points.
To simplify the notation, we use shorthand representations such as A to denote A(t) (similarly for B and C). The cate-
gorical variables A and C are three-level variables represented by two dummy variables, denoted as A1, A2, C1, and C2,
respectively. The variable B is continuous.

Hence, we consider the covariates and functions of covariates as follows X = {A1,A2,B,A1B,A2B,C1,C2,C1B,C2B}.
The below steps outline the procedure for generating A and C. Step 1, with replacement, sample 10 integers from {1, 2,
3} with equal probability to represent the three categories of the variables; Step 2, for each sampled value, repeats the
value Ri times, where Ri is sampled from {5, 6, … , 10} with equal probabilities. Then, concatenate these repeated values
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3172 WANG et al.

together, resulting in a single vector with a length between 50 and 100; Step 3, take the first 50 elements as the values
of the categorical variable. B is generated similarly, with the only difference being that in Step 1, we generate a series of
numbers from a standard normal distribution. The time-to-event outcome is generated using a permutation algorithm
implemented in the R function PermAlgo.52 The event times are dependent on the time-dependent potential predictors
X according to the Cox model, where 𝜷9×1 represents the vector of log hazard ratios of the predictors. The generated
data included approximately 50% random censoring, meaning that for about half of the observations, the event time is
unknown due to censoring. Among those not censored, the median event time occurred at approximately time 25. Two
scenarios were evaluated:

Scenario 1: Only A1 and A2 are predictive of the outcome; their coefficients are set as log(3). This represents a sparse
structure.

Scenario 2: There are five true predictors (A1, A2, B, A1B, A2B) that were predictive of the outcome; all of their coefficients
are set as log(3). This corresponds to a less sparse structure.

To enforce selection rules strong heredity (selection rule 1) and “the binary indicators representing a categor-
ical variable are selected collectively” (selection rule 2), we defined a grouping structure as {{A1,A2,A1B,A2B},
{B,A1B,A2B,C1B,C2B}, {A1B,A2B}, {C1,C2,C1B,C2B}, {C1B,C2B}}. This grouping structure ensures that the dummy
variables representing a categorical variable are selected collectively, and if an interaction term is selected, the correspond-
ing main terms are also selected. Detailed information on how to determine the grouping structure is provided in Web
Appendix D.

We compare our method with the𝓁1-penalized Cox models with time-dependent covariates (CoxL, Cox LASSO) using
the glmnet package in R. The glmnet package provides an implementation of the (time-dependent) Cox model using
𝓁1 regularization. We use this implementation as a baseline for comparison with our method.

The performance of the two methods was evaluated using several measures, as presented in Table 2. For each simulated
dataset, these measures were calculated individually and then averaged to obtain the overall performance statistics. The
weight 𝜔g for each group in the penalization term is set to one. We use a convergence criterion of 10−5, which is based
on the sum of the absolute differences between the estimates from the two steps. In the process of model selection, we
compare both the min and 1se rules for choosing the tuning parameter 𝜆. The results are given in Table 3.

Our soxmethod always followed both of the rules as designed. However, Cox LASSO with the min rule fails to respect
the categorical selection rule in 20%-40% of the cases, and it violates the strong heredity rule in 80% of the cases in certain
settings, even with increased sample sizes. It is important to note that in scenario 2, Cox LASSO had a higher probability of
breaking the rules. When applying the min rule, both methods achieved a perfect missing rate. Additionally, it is observed
that sox converged faster than Cox LASSO. However, when applying the 1se rule, the missing rate of sox converged
faster compared to Cox LASSO. This confirms that sox had a higher chance of successfully selecting the variables that
should be selected, even with a relatively small sample size.

For both methods, the false alarm rate was much worse when using the min rule, indicating that the methods select
a significant number of noise variables. Therefore, in a low-dimensional setting, if the objective is to recover the sparsity
pattern, it is advisable to avoid applying the min rule. However, it is worth noting that the false alarm rate of sox with

T A B L E 2 Measures of comparison in the the simulation studies.

# Measurements

(1) Missing rate (MR): the percentage of variables not selected among the true predictors.

(2) False alarm rate (FAR): the percentage of selected variables among the noise variables.

(3) Rule 1 Satisfaction (R1S): whether the selected model satisfied strong heredity.

(4) Rule 2 Satisfaction (R2S): whether the resulting selected model satisfied selection rule 2, that dummy indicators of the same
variable are always selected together.

(5) C index (RCI): the C index of the selected model.

(6) Mean-squared error (MSE): the mean of the squared differences between each coefficient in the data generating mechanism
and its estimate, that is, the 𝓁2-norm of the difference between the coefficient vector and its estimate.

(7) Cross-validated error (CV-E): the cross-validated error defined in Section 4.
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WANG et al. 3173

T A B L E 3 Simulation results of Section 5.1.

Scenario 1 (A≠0) 2 (A, B, AB≠0)

Method sox.1se sox.min CoxL.1se CoxL.min sox.1se sox.min CoxL.1se CoxL.min

N = 100

MR 0.82 0.02 0.85 0.26 0.08 0.00 0.41 0.16

FAR 0.02 0.65 0.03 0.40 0.04 0.53 0.06 0.49

R1S 1.00 1.00 0.88 0.70 1.00 1.00 0.84 0.72

R2S 1.00 1.00 0.75 0.38 1.00 1.00 0.39 0.35

RCI 0.53 0.67 0.54 0.64 0.91 0.92 0.91 0.92

MSE 0.24 0.06 0.27 0.14 0.27 0.10 0.41 0.30

CV-E 6.87 6.74 6.68 6.59 4.70 4.36 4.74 4.33

N = 500

MR 0.12 0.00 0.32 0.00 0.00 0.00 0.36 0.04

FAR 0.02 0.70 0.01 0.54 0.00 0.15 0.05 0.59

R1S 1.00 1.00 0.90 0.57 1.00 1.00 0.94 0.78

R2S 1.00 1.00 0.79 0.22 1.00 1.00 0.45 0.62

RCI 0.60 0.63 0.58 0.63 0.91 0.91 0.91 0.91

MSE 0.14 0.02 0.22 0.03 0.14 0.04 0.31 0.07

CV-E 6.79 6.70 6.81 6.68 4.38 4.26 4.40 4.26

N = 1000

MR 0.00 0.00 0.04 0.00 0.00 0.00 0.20 0.02

FAR 0.02 0.73 0.02 0.58 0.00 0.08 0.04 0.66

R1S 1.00 1.00 0.97 0.70 1.00 1.00 0.90 0.82

R2S 1.00 1.00 0.94 0.31 1.00 1.00 0.53 0.65

RCI 0.61 0.62 0.60 0.62 0.91 0.91 0.91 0.91

MSE 0.10 0.01 0.15 0.02 0.12 0.02 0.29 0.08

CV-E 6.76 6.68 6.76 6.67 4.33 4.25 4.36 4.24

N = 2000

MR 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00

FAR 0.00 0.06 0.00 0.54 0.00 0.00 0.04 0.57

R1S 1.00 1.00 1.00 0.60 1.00 1.00 0.93 0.76

R2S 1.00 1.00 0.99 0.20 1.00 1.00 0.79 0.57

RCI 0.61 0.61 0.61 0.61 0.91 0.91 0.91 0.91

MSE 0.06 0.00 0.10 0.01 0.12 0.05 0.23 0.01

CV-E 6.71 6.66 6.72 6.66 4.30 4.23 4.31 4.23

Abbreviations: 1se, applying the 1se rule; Cox LASSO, unstructured 𝓁1 penalty (glmnet with cox); CV-E, cross-validated error; FAR, false alarm rate; min,
applying the min rule; MR, missing rate; MSE, mean-squared error; R1S, Rule 1 Satisfaction; R2S, Rule 2 Satisfaction; RCI, the C index of the model with the
selected variables; sox, our method.
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3174 WANG et al.

the 1se rule converged to 0 relatively quickly with increasing sample sizes. The MSE of sox was significantly smaller and
converged faster compared to Cox LASSO under either rule, indicating that sox achieved better estimation performance.
The cross-validated errors and prediction accuracy of both methods are similar across all the settings.

Overall, the simulation results verify that sox can more effectively recover the sparsity pattern and provide better
estimation when incorporating the correct selection rules.

5.2 Interaction selection under time-dependent, high-dimensional setting

We follow the design outlined in She et al53 to perform interaction selection. In this model, our goal is to identify
significant two-way interactions from all the potential ones while adhering to the strong heredity selection rule. We
generate time-dependent predictors denoted as X = (Xmain

,X inter). Within Xmain = (X1, … ,Xp′ ), each main term is gen-
erated following a standard normal distribution, similar to the low-dimensional case (eg, B(t)). We introduce four
time-varying points, with each variable held constant for two or three time-points. Subsequently, we create X inter =
(X1X2, … ,X1Xp′ ,X2X3, … ,Xp′−1Xp′ ). The true coefficient vector is denoted as

𝜷 = (𝛽1, … , 𝛽p′ , 𝛽1,2, … , 𝛽1,p′ , 𝛽2,3, … , 𝛽p′−1,p′ )⊤,

which has a length of p′ +
(

p′

2

)

, matching the dimension of the combined predictors in X .
We generate time-to-event outcomes using the R package PermAlgo.52 For all simulations with different combina-

tions of n and p, we set the nine coefficients of the main terms 𝛽j,∀j = 1, … , 9 as 0.4 and the nine coefficients of interaction
terms 𝛽j,j′ = 0.3 for (j, j′) = (1, 2), (1, 3), (1, 7), (1, 8), (1, 9), (4, 5), (4, 6), (7, 8) and (7, 9). All other coefficients are set to zero.

To enforce the strong heredity selection rule, we define the grouping structure as follows:

g1 = {X1,X1X2, … ,X1Xp′ }, … ,gp′ = {Xp′ ,X1Xp′ , … ,Xp′−1Xp′ }, gp′+1 = {X1X2}, … ,gp′+
(

p′
2

) = {Xp′−1Xp′ }.

We consider six different combinations of (n, p) with n = (400, 800) and p = p′ +
(

p′

2

)

= (210, 465, 820), where p′ =
(20, 30, 40) represents the number of main terms. Since SGL and grpCox do not support the time-dependent model, we
only compare the performance of sox with the LASSO regularized Cox model (both using the min rule). The optimal
value of 𝜆 was selected from a sequence of candidate values through 10-fold cross-validation. We also applied adaptive
penalty weights to obtain debiased estimates (db). Specifically, the adaptive regularization weights were calculated as the
inverse of the original sox or the LASSO Cox estimates 𝜔g = 1∕max(| ̂𝜷g|, 10−16).

We assess selection consistency using the same metrics as in Section 5.1. The results of these evaluations are presented
in Table 4. In summary, sox outperforms Cox LASSO in several aspects. First, sox strictly adheres to the strong heredity
selection rule, which is not achieved by Cox LASSO. Second, sox exhibits lower missing rates than Cox LASSO when
n = 400 and comparable missing rates when n = 800. Debiased sox has the lowest false alarm rates in most cases. This
can be attributed to the enforcement of the selection rule, where the elimination of an interaction term from the model is
triggered not only by the term itself but also by the absence of either of its main terms. Furthermore, sox demonstrates
higher estimation accuracy, as evidenced by the lower mean-squared errors.

When incorporating the strong heredity selection rule, the algorithm forces the selection of the two main terms when
an interaction is selected, which would increase the false alarm rate if the selected interaction term is a noisy vari-
able. Therefore, the false alarm rate of sox can be slightly higher than the methods without incorporating the selection
rule. However, by employing our method, we can achieve a lower missing rate and more importantly, an interpretable
prediction model.

Similar conclusions can be made when the 1se rule is applied. The results are given in Web Appendix E.

5.3 Comparison with existing sparse group lasso methods

In this section, we compare sox with two existing packages, SGL54 and grpCox,55 both of which implement the sparse
group lasso for the time-fixed Cox model. Specifically, grpCox achieves within-group sparsity by utilizing a latent
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WANG et al. 3175

T A B L E 4 Simulation results of Section 5.2.

Method sox sox.db CoxL CoxL.db sox sox.db CoxL CoxL.db

p = 210 n = 400 n = 800

MR 0.04 0.06 0.05 0.07 0.02 0.04 0.01 0.01

FAR 0.27 0.11 0.21 0.18 0.14 0.03 0.20 0.19

R1S 1.00 1.00 0.87 0.89 1.00 1.00 0.88 0.89

RCI 0.88 0.86 0.89 0.88 0.85 0.83 0.85 0.85

MSE* 4.97 3.91 5.97 4.86 4.37 3.88 5.21 4.11

CV-E 1.74 1.70 1.76 1.60 1.68 1.67 1.69 1.61

p = 465 n = 400 n = 800

MR 0.06 0.08 0.11 0.12 0.01 0.04 0.01 0.01

FAR 0.17 0.10 0.11 0.10 0.12 0.04 0.12 0.11

R1S 1.00 1.00 0.91 0.92 1.00 1.00 0.90 0.91

RCI 0.91 0.87 0.91 0.91 0.86 0.84 0.87 0.87

MSE* 2.45 1.77 2.95 2.50 2.63 2.55 3.14 2.58

CV-E 1.76 1.66 1.79 1.52 2.04 1.66 2.46 1.94

p = 820 n = 400 n = 800

MR 0.05 0.07 0.14 0.15 0.02 0.04 0.03 0.03

FAR 0.14 0.08 0.07 0.06 0.10 0.05 0.08 0.08

R1S 1.00 1.00 0.94 0.94 1.00 1.00 0.93 0.93

RCI 0.93 0.90 0.92 0.92 0.88 0.86 0.89 0.89

MSE* 1.45 0.98 1.78 1.57 1.19 0.92 1.47 1.21

CV-E 1.79 1.67 1.84 1.48 1.70 1.67 1.73 1.53

Note: In the tuning process, “lambda.min” is used. Results are averaged over 20 independent replications.
Abbreviations: .db, with additional debiasing procedure; CoxL, unstructured 𝓁1 penalty (glmnet with “cox” family); CV-E, cross-validated error; FAR, false
alarm rate; JDR, joint detection rate; MR, missing rate; MSE, mean-squared error (*values are multiplied by 10−3); R1S, rule 1 satisfaction; RCI, the C index of
the model with the selected variables; sox, our method.

group LASSO approach.13,56 More introduction on the methods implemented in these two packages are given in Web
Appendix F.

Following Simon et al,10 we simulate a covariate matrix X with dimensions n = 100 and p = 200. The columns of X
are independently generated from a standard Gaussian distribution. The variables X1, … ,X200 are divided into 10 groups,
each containing 20 variables.

We consider three different cases of true coefficients

Case 1: 𝜷 = (𝜷⊤s , 0, … , 0)⊤,
Case 2: 𝜷 = (𝜷⊤s , 𝜷⊤s , 0, … , 0)⊤,
Case 3: 𝜷 = (𝜷⊤s , 𝜷⊤s , 𝜷⊤s , 0, … , 0)⊤,

where

𝜷s = (0.1, 0.2, 0.3, 0.4, 0.5, 0, … , 0
⏟⏟⏟

15

)⊤ ∈ R
20
.

We generate the time-to-event outcome using the R package coxed,57 which employs uses duration-based simulation
methods. The generated event times depends on fixed predictors according to the proportional hazards model h(t|X) =
h0(t) exp(𝜷⊤X).
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3176 WANG et al.

To fit the sparse group LASSO-regularized Cox model in sox, we specify the following grouping structures:

g1 = {X1}, · · · g20 = {X20}, g201 = {X1, … ,X20},
g21 = {X21}, · · · g40 = {X40}, g202 = {X21, … ,X40},

⋮ ⋮ ⋮

g181 = {X181}, · · · g200 = {X200}, g210 = {X181, … ,X200},

where each group g1, … ,g200 contains only a single covariate with the corresponding index, and each group
g201, … ,g210 contains 20 covariates. The groups adhere to a nested structure, for example, g1, … ,g200 are nested within
group g201 and g21, … ,g400 within g202, and so on. The grouping structure is built for grpCox and SGL. For SGL, the
mixing parameter (of the 𝓁1 and 𝓁2 component) in SGL is set to 0.5. For a fair comparison, we ensure that the amount of
regularization applied by sox is effectively the same as in SGL. Specifically, for groups g1, … ,g200, we set the regular-
ization weight to 0.5, and for groups g201, … ,g210, the regularization weight is set to

√
20 × 0.5, where 20 is the group

size. In contrast, grpCox does not support custom regularization weights, so we use the package defaults.
We perform 10-fold cross-validation to select the optimal regularization coefficient 𝜆 and evaluate the performance

of the three methods. To ensure a fair comparison, we ensure that all methods use the same 𝜆 sequence and the same
train-validation split. In the case of grpCox, we employ the default settings for model tuning.

We summarize the performance statistics in Table 5. In summary, sox and SGL perform similarly in fitting
SGL-regularized time-fixed Cox models. In fact, the two sets of estimates are very close, as shown in the sample solution
path in Web Appendix G. On the other hand, grpCox exhibits a considerably more conservative approach to variable
selection, as evidenced by MR and FAR. Additionally, the mean squared errors (MSE) ofgrpCox estimates are also higher.

Furthermore, we perform additional simulations that compare sox and SGL under some simulation settings where
SGL failed to adhere to the selection rule. The details are provided in Web Appendix H.

5.4 Additional simulations

Here, we present the additional simulations.

5.4.1 Timing

We test the computational speed ofsox. We adopt the simulation setting from Section 5.2. We report the computation time
for solving 10-fold cross-validation on the same 𝜆 sequence of length 30. We find that for a complex case where the sample
size is n = 800 and the number of variables is p = 820, a comprehensive analysis can be completed in approximately 10
minutes. In contrast, for a simpler scenario with a sample size of n = 400 and p = 210 variables, the analysis requires less
than 30 s to finish. More details are given in Web Appendix I.

5.4.2 Stability of cross-validation

To evaluate the stability of the CV ofsox, we conduct additional simulations using the simulation setting from Section 5.2.
We simulate a single set of data (n = 400, p = 210) and performed 10-fold CV twenty times. To demonstrate the stability

T A B L E 5 Simulation results of Section 5.3.

sox SGL grpCox sox SGL grpCox sox SGL grpCox

Case 1 Case 2 Case 3

MR 0.27 0.31 0.71 0.34 0.30 0.79 0.36 0.46 0.82

FAR 0.13 0.12 0.02 0.17 0.18 0.02 0.20 0.16 0.02

MSE* 2.04 2.02 2.21 4.38 4.19 4.77 7.28 7.25 7.49

Note: MSE: ||𝜷 − ̂𝜷||22∕p, values are multiplied by 10−3. In the tuning process, “lambda.min” is used. Results are averaged over 20 independent replications.
Abbreviations: grpCox, the latent overlapping group LASSO; SGL, the sparse group LASSO; sox, our method.
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WANG et al. 3177

of the CV of sox, we report the average CV error and MSE (resulting from the final model chosen by each repeated CV
procedure), and their corresponding standard errors. We compare these results to those generated by glmnet. The mean
CV error (with standard error) was 1.82 (0.03) for sox and 1.87 (0.03) for glmnet. The mean MSE × 10−3 (with standard
error) was 8 (0.4) for sox and 9 (0.4) for glmnet. The results show that the CV procedure in sox is stable.

5.4.3 Comparison of different group sizes, the amount of overlap, and the sparsity levels

We conduct an additional simulation to compare the effect of different group sizes, the amount of overlap, and the sparsity
levels on the performance of our method. We demonstrate that depending on the true data-generating mechanism, these
factors may influence the performance of sox. The details are given in Web Appendix J.

6 CASE STUDY: TIME-DEPENDED PREDICTOR IDENTIFICATION FOR
TIME TO DEATH BY ANY CAUSE AMONG PATIENTS HOSPITALIZED FOR
ATRIAL FIBRILLATION

6.1 Background

Atrial fibrillation (AF) is a medical condition characterized by an irregular heartbeat. Patients with AF are at a higher
risk of experiencing cardiovascular complications and mortality.58 Therefore, it is important to identify predictors that
contribute to these outcomes and develop a predictive model that can help understand the disease and support clinical
decision-making.

In treating AF, most patients are prescribed oral anticoagulants (OAC) for long-term management. OAC includes med-
ications such as warfarin and direct OAC (DOAC), the latter including Dabigatran, Apixaban, and Rivaroxaban, each of
which can be taken as high or low dose. However, the use of OAC in AF patients is often intermittent due to contraindi-
cations, adverse effects, and the need for surgeries.59 Furthermore, the use of other medications and changes in disease
conditions may vary over time among AF patients. Taking into account such time-varying information can be beneficial
in identifying predictors of clinical outcomes in AF patients.60

6.2 Data

In this study, we utilize the sox method to identify significant baseline and time-varying predictors associated with the
time to all-cause death among patients hospitalized for AF who initiated OAC between 2010 and 2017 in the province of
Quebec, Canada. The data used in this study were obtained from a larger dataset61 and represent 36 381 patients who were
followed up for a period of 365 days. To ensure the validity of the analysis, we applied specific inclusion and exclusion
criteria to the dataset, which are detailed in Web Appendix K. Among the included patients, a total of 4384 individuals
experienced the event of interest (ie, death by any cause) during the follow-up period, accounting for approximately
12.05% of the population.

In this study, we selected a total of 24 candidate predictors based on previous research findings62-65 and data availability.
Out of these predictors, 7 are baseline (time-invariant) covariates. The baseline covariates include age, sex, medical scores,
comorbidities (eight conditions), OAC use information, concomitant medication use (four drugs), and the interactions
between each concomitant medication and DOAC. Additionally, we define five time-dependent indicator covariates to
capture OAC use: DOAC, Apixaban, Dabigatran, OAC, and High-dose-DOAC.

The definitions and summary statistics for the covariates are provided in Web Appendices L and M, respectively. It
is worth noting that the time-dependent covariates, especially those related to OAC use, exhibited significant changes
over time. This highlights the importance of considering the time-varying nature of these covariates, as neglecting their
changes may introduce substantial bias in covariates selection and coefficient estimation.

6.3 Analysis

To assess the associations between the covariates and the time to the event of interest, we conduct both univariate
and multivariate time-dependent Cox models. The crude hazard ratios from the univariate models and the adjusted
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T A B L E 6 Selection rules for the case study.

# Selection rule

1 If Apixaban is selected, then select DOAC

2 If Dabigatran is selected, then select DOAC

3 If DOAC is selected, then select OAC

4 If High-dose-DOAC is selected, then select DOAC

5 … 8 If the interaction of DOAC and a concomitant medication is selected, then both DOAC and the concomitant medication are
selected

hazard ratios from the multivariate models, along with their corresponding 95% confidence intervals, are presented in Web
Appendix N.

For this data analysis, we establish selection rules (including strong heredity and the rules for coefficients interpretabil-
ity) to ensure the interpretability of the model. The specific selection rules are outlined in Table 6. It aim to capture the
following associations: (1) the use of OAC vs non-use; (2) the use of DOAC compared to warfarin; (3) the use of Apixaban
compared to Rivaroxaban; (4) the use of Dabigatran compared to Rivaroxaban; (5) the use of high-dose-DOAC compared
to low-dose-DOAC; (6) the simultaneous use of concomitant medication and DOAC.

The selection rules ensure that the aforementioned comparisons are estimable and correspond to the coefficients of
the selected variables if selected. Further explanation and rationale for these selection rules can be found in Web Appendix
O. To respect these selection rules simultaneously, we identified the appropriate graph-structured grouping structure,
which is provided in Web Appendix P, following the approach described in References 23,66.

6.4 Results

First, we applied both the sox method and Cox LASSO to select variables from the data. We then used the unpenalized
time-dependent Cox model to estimate the hazard ratios for the selected covariates. Additionally, we report the estimates
with 95% confidence intervals when all the covariates are included in the model. The results are given in Table 7. Our pro-
posed method, sox, identified 15 predictors that are associated with the outcome. Comparing Cox LASSO with sox, we
observe the following differences: (1) DOAC was not selected by Cox LASSO, which affects the interpretation of the coeffi-
cient of Apixaban; (2) the interaction of DOAC and Statin was selected without Statin in Cox LASSO, violating the strong
heredity assumption; (3) predictors such as high-dose-DOAC and Beta-Blockers were not selected by Cox LASSO. Addi-
tionally, our method achieves a slightly higher concordance index compared to the unstructured penalization, though
slightly lower than the full model. These results demonstrate the advantages of utilizing sox over Cox LASSO, high-
lighting the benefits of incorporating prior knowledge about the underlying structure of the data. To further illustrate
the results, we visualize the impact of time-dependent covariates on the survival probability. See more details in Web
Appendix Q.

7 DISCUSSION

In both low and high-dimension settings, incorporating a priori knowledge of covariate structures can achieve robust and
interpretable models. In survival models, especially when the covariates and coefficients are time-dependent, no clear
guidance and methods are available for the incorporation of such prior information. In this article, we introduced sox,
a novel structured sparsity-inducing penalty for the time-dependent Cox model. The method can accommodate a wide
range of a priori knowledge about the data structure in the form of restrictions on covariate inclusion. We empirically
showed that incorporating correct selection rules can improve model selection performance and accuracy of estimation.
The developed algorithm converges fast and is able to handle high-dimensional data, which can be implemented in the
developed R package. Through examples, simulations, and the case study, we also explored how to set appropriate selec-
tion rules and the corresponding grouping structures for the developed method in practice, which provided users with
guidance on the implementation of the methods in their own application.
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T A B L E 7 The estimated hazard ratios and 95% confidence intervals of each covariate from various methods.

Covariate sox.refit CoxL.refit Cox

C-Index 0.8034 0.7991 0.8077

Age (⩾ 75) 1.84 1.80 1.85 (1.70, 2.03)

Sex (female/male) - - 0.96 (0.90, 1.03)

Comorbidities/medical score

CHA2DS2VASc (⩾ 3) 0.84 - 0.90 (0.80, 1.02)

Diabetes - - 1.08 (1.01, 1.15)

COPD/asthma 1.51 1.49 1.49 (1.41, 1.59)

Hypertension - - 0.89 (0.81, 0.97)

Malignant cancer 1.56 1.58 1.55 (1.46, 1.65)

Stroke - - 0.95 (0.88, 1.02)

Chronic kidney disease 2.40 2.34 2.39 (2.23, 2.55)

Heart disease 2.55 2.36 2.56 (2.31, 2.83)

Major bleeding 1.71 1.69 1.72 (1.61, 1.83)

OAC use

DOAC 0.89 - 1.04 (0.76, 1.44)

Apixaban 0.94 0.94 0.86 (0.67, 1.12)

Dabigatran - - 0.80 (0.55, 1.17)

OAC 0.17 0.16 0.17 (0.15, 0.19)

High-dose-DOAC 0.91 - 0.87 (0.69, 1.11)

Concomitant medication use

Antiplatelets - - 1.10 (1.03, 1.19)

NSAIDs - - 1.58 (1.34, 1.86)

Statin 0.65 - 0.63 (0.59, 0.67)

Beta-Blockers 1.04 - 1.03 (0.97, 1.10)

Potential drug-drug interaction

DOAC: Antiplatelets - - 0.67 (0.50, 0.90)

DOAC: NSAIDs - - 0.76 (0.43, 1.37)

DOAC: Statin 1.05 0.66 1.15 (0.90, 1.48)

DOAC: Beta-Blockers 0.83 - 0.86 (0.68, 1.10)

Abbreviations: C-Index, concordance index; Cox, the standard time dependent-Cox model with all covariates included; CoxL.refit, unstructured 𝓁1 penalty;
sox.refit, our method.

We would also like to emphasize that our work primarily focuses on scenarios where practitioners have prior knowl-
edge of the definition of each variable and its relationship with others, aiming to produce an interpretable prediction
model. For instance, variables may be defined as interactions of other variables to ensure the interpretability of the result-
ing coefficients, necessitating the use of strong heredity (as demonstrated in various examples in Web Appendix A and
the case study).

In practical situations where the definition of a variable or its relationship with other variables is unclear, we recom-
mend not including the variable in a selection rule or performing sensitivity analysis. In such cases, it is prudent to use
more conservative methods like the LASSO. Incorporating uncertain or incorrect selection rules can potentially degrade
the performance of the resulting model.
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3180 WANG et al.

There are several avenues for future work. For instance, one could relax the assumption that the hazard is dependent
on the current value of the covariates, assume event times follow a parametric distribution by using accelerated failure
time models,67 generalize to different penalty types (for example, minimax concave penalty,68 or smoothly clipped abso-
lute deviation69), and investigate the impact of applying different weighting schemes. In addition, it would be beneficial
to integrate structured variable selection into causal inference, especially when the confounders or effect modifiers are
high-dimensional.70-79
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