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1 Proof of Proposition 1

From Proposition 1 of Mkhadri et al. (2017), we have
—0k <. (u) — pr(u) <9k VYu €R,
where the constant x = sup(r,1 — 7)/2 or sup(r?, (1 — 7)?)/2. This yields to the following inequalities
~ok+ R(B) < Rs(B) < 65 + R(B). (A-1)
Let 3 be the unique minimizer of R(3) in (1), then we have
inf R(8) < R(B())

v Rs5(B(5)) + ok

(b) .

< Rs(B) + ok

(e .

< R(B) + 6k + 0K
< irﬁlf R(B) + 20k.

Inequality (a) is due to the first inequality in (A-1), inequality (b) is due to B(d) is the minimizer of
Rs(8) and inequality (b) is due to the second inequality in (A-1). This ends the proof of Proposition 1.

2 Proof of Proposition 2

Proof. Following Mkhadri et al. (2017), we can show that the smooth quantile loss function ¥, (.) has a
Lipschitz continuous derivative ¥.(.), i.e.

max (7,1 —7)

when ¥, = WTU&) D (u) — L (v)| < lu—v| Vu,ve€R,

)
1
when ¥, = WT(Q(S) : |, (u) —WL(v)| < g|u —v| Vu,v€R.
Thus, we have
W, (u) — . (v)| < clu—v| Vu,v€R, (A-2)
where ¢ = w for !11(5) and ¢ = 1 for 525)

For 3, and ,8,2, let Vi = B, — 3, and deﬁne g(t) = L(B), +tVy, B_,). Thus, we have g(0) = L(3,,8_4),
9(1) = L(By, B_)-

By the mean value theorem, Ja € (0,1) such that

9(1) = g(0) + ¢'(a) = g(0) + ¢'(0) + (¢'(a) — ¢'(0)). (A-3)




Since we have

gt)y=n"" Z wiT,kaW;(yi - fBiT,kafk - szkBk + th‘T,ka:))

it follows that ¢’(0) = (8), — B1.) T Vi L(By, B_), and thus, one can write

| gl(a) - 9/(0)| = |n_1 ZwiTka[kp;(yi kﬁ B Ly (ﬂk +aVy)) — v, (Y — xsz/éfk - w;l;ch)]l
i=1
n~t Z |33;Vk||@;(yz kﬁ [ 7 (ng +aVy)) — v (i — 3’52_1@,@71@ - m;;Bk”

@ &
<07ty | Vilelaz ) Vil

i=1

n Y Vil
i=1
<en W X] XLV
Inequality (a) is due to equation (A-2).Using the last inequality and (A-3) leads to the following inequality
L(By,B_1) < L(By, B_y) + (B, — B1,) "ViL(By, B_y) +
e (B = Bi) " Xy Xk(By — B).
This ends the proof of Proposition 2. O

3 The convergence analysis of Algorithm 2: proof of Theorem 1

Some properties of the smooth quantile loss function, L(8) = n='1] ¥, (y — X 3), are used in the steps
of the Theorem’s proof; they are given first. The smooth quantile check function, ¥, can be either W( )

or LPT( 5 and 1,, € R™ denotes the vector of all ones.
Since we have
VL(B) = —n~' X "W (y - XB),
then, using (A-2), it follows that
IVL(B) = VL(B)| = n |1 X T (U1 (y — XB) —¥1(y — XB)|
<n X[y = XB8) - v (y - X3
< en” XX (8 - 8]
<en ' |X|P[8 - B
<9lB-B1 V8.8 €R”,
where 7 is the largest eigenvalue of en™'X ' X, and ¢ = w for WT({;) (u) and ¢ = } for WT(QJ) (u).

This implies that the gradient of L(-) is uniformly Lipschitz continuous with Lipschitz constant . When
restricted to each block, we have

ViL(B 712”’ =z Bz =—n ' XU (y-XB),k=1,... K.

Thus, we have

IViL(ug; B_g) — VieL(vi, B_p) || < n™ " el|Xpl?lup — vil]
§7k||uk—vk||, Vuk,VkERpk,VkE{l,...,K},

where 7 is the largest eigenvalue of cn™ !X Xj. This implies that the gradient of L(-) is block-wise
uniformly Lipschitz continuous with Lipschitz constant .

Moreover, for group k, let ug(-;3_,) be the quadratic majorization function of L(.,8_;), at By,
defined as follows

uk(Vis B_g) = L(B) + (VeL(B), vi = By) + o llvi = Bl

Note that we omit the dependency ug on B to ease exposition. The function uy(vy;B_} )satisfies the
following conditions
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1. up(By; B_y) = L(B);
2. up(vi; B_y) > L(vi, B_y), for vi # By;
3. Vur(Br; B_i) = ViL(By, B_4)-

We can verify that ug(-; B_}) is strongly convex:

up(ug; B_y,) > uk(Vi; B_y) + (Vur(Vi; B_y), ug — Vi) (A-4)
+%’“|\uk—ka2 Yug, vy € RPF VE.

Further, we have

[Vur(vi; B_1) — Vur(vi; B_) || = [ViL(B) — ViL(8') + (81, — B) |l
< |ViL(B) = VeL(B)| + |8y — Byl
<n X, (Wy - XB) - WLy — XB)| + w8k — Bl

(@)
< el X1 X8 = B + I8y, — Bil
<GlB-B, Vv, R,V B,8 € R (A-5)

where G, = \/Yk+\/7 + Y- Inequality (a) is due to equation (A-2)
The proof of Theorem 1 relies on the iteration complexity analysis which is given next. This analysis
is divided into three parts: the sufficient descent step, the cost-to-go estimate step, and the local error
bound step. Similar techniques can be found in Luo and Tseng (1992), Luo and Tseng (1993), Zhang
et al. (2013), Sun and Hong (2015) and Hong et al. (2017).
Iteration Complezity Analysis. For ease of exposition, let us rewrite (7) as the following unconstrained
optimization problem

K

min Q(B) := min L(B)+ Y h(By), (A-6)

Rp+1 Rp+1
pe pe k=1

where L(3) is the smooth quantile loss function which is smooth convex in 3 € RPT! while hy(3,) =
wiA||Bg || is nonsmooth convex in 3, for each k = 1,..., K. We have the following cyclic block-coordinate
update of 8;, by (11)

-1
B == Prox, -i,, (Be — 1 ViL(8))-
The following notation is convenient for this iteration complexity analysis. Let (3, ...,8x) be a K-block
partition of the optimization variable 8 (i.e., 3= (8] ,...,8)" € RPt! with 8, € RP* and 22(:1 Pr =
p+1). Also, denote the subvector of 3 with its kth component removed by B_,, = (ﬁlT, . ,ﬁ{,l, ﬁgﬂ, . ,,BIT()T
and recover B from B_, by 8 = (,8;, ,@Ik)—r. Moreover, in the cyclic coordinate descent algorithm, let

B" be the update of 8 after the rth cycle, r > 0. When updating 8;, in the (r + 1)th cycle using the
proximal operator (i.e. GPQR Algorithm 2), the following notations are also adopted

BEH = (8T, (BT (B80T (Bhan) e (B3I B =2 K,
B =[BT BB BT k=2, K,
ﬂfk = [(/Bl)Tw ) (/kal)—ra (IBkJrl)Ta sy (IBK)T]Tvk =2,...,K.

By definition we have B7™" := 8" and B?ﬁl =[BTt

Sufficient Descent.Consider the proximal gradient method applied to solving the following problem

i Bty = min L(B,,B"")+h :
sl Q(By, BT, ) = min L(By, BL) + hi(By)

By the convexity of hy(-), there exists ([ T' € dhy (B ") such that

he(Br) — hi (B ™) > (G By — BLT) L VB, (A-7)



where dhy, is is a sub-gradient of hy.
Using (A-4) and (A-7), one has

Q8% B, — QB B
=uk(ﬁZ;Bi+,£) + hie(B) — (uk(grﬂ Br+1) + I ZH))
<Vuk(/8T+1 BT—H) ﬂ}; - T+1> + hk(ﬂk) ( ZJrl) + 77’“”/32 _ 'r’+1H2

> (Vur(Bp T BU) + G B — BT + Bk — B

’Yk 1
BN

Inequality (a) is due to the optimality condition

(Vur (B B + ¢ B - 85) < (A-8)
Thus, it follows that
al gl
QBN - QB =) QB BT — B, BTN = 5187 - 87, (A-9)
k=1

where v = miny<x<x V-

Cost-to-go Estimate.Let X* = {8%|Q(8") = ming Q(B)} be the optimal solution set of problem (A-6).

Let B8 = (B;, e ,B;() € X* be a point in X* such that dy-(8") = mingex-||8 — 8"|| = ||,BT -6
We have
(Vur (87 BT, By = By) + [h(BRT) — hu(B))]
<(Vur(B; ™ BT + <T“, W= Br) (A-10)
<0,

where the first inequality is due to the inequality (A-7), and the last inequality, we use the optimality
conditions in (A-8).
On the other hand, we also have that

K K
QB -QB ) =LE) - LB+ > (B Z
k=1 k=1

K

K
<(VLB™), B =B > (B = > hi(By)
k=1

k=1

M-

K
<VkL(ﬁTH), ;Jrl + Z T+1 hk(B;)]
k=1

k=1

(ViL(B™") = Vur (B, B, 811 - By)

M=

b
Il

(="

K
+ Y (Vur(BiT BT, B = B + ) [h(BRTY) — hi(BY)] - (A-11)
k=1

=

=1

Combine (A-10) and (A-11), we get
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K 2
(@B - Q(B")° < (Z (ViL(B™) - Vur(B;H; BT, g ﬁk>>

(%) (i ‘V L( r+1) Vg ( 52“ Br+1 H ) ( ‘ 1 7 )
) ( [Vnemh) = Vuntaptts B ) |o -5
k=1

) (g V(BB - Va8 BTEL) H2> o7+ -
© (X ' | . )
2 (Lot min) 2 (Jo - )
k=1
(%) (2%(}2)‘ ﬂrﬂ _g 2 (’ ﬂ’r‘+1 e 2 2)
k=1

< G’ gt _gr

ﬂr+1 _g 2 (‘ 2 NPT *(,@T)) 7 (A-12)

where G = 2K (/7,/7+7) and 7 = max; <<k Y- Inequality (a) in (A-12) is due to the Cauchy-Schwarz
inequality, equality (b) is due to that Vi, L(8" ') = V. L(B, ™, B74!) = Vur (BT, B711). In inequalities

(c) and (d), we use the inequality (A-5) and ‘ gt — B;ﬁ” < [|8"t — B"|| for all k, respectively.

Local error bound.Let dy«(8) = ming-cx+ |3* — B|. Note that the function p(z) = n~11) ¥, (y — z) is
strongly convex in z € R™. We can see that L(3) = p(X3). It follows from Zhang et al. (2013) that for
any ¢ > ming Q(3), there exist k,e > 0 such that

da-(8) < k[|B — prox, (8 — VL(B))|l, (A-13)

for all B8 such that ||3 — prox, (8 — VL(8))|| < € and Q(B8) < &.
Now we are ready to prove Theorem 1.

Theorem 1 The GPQR algorithm (Algorithm 2) converges at least linearly to a solution in X*.
Proof. We first show that there exist some o > 0 such that
18" = prox,, (8" — VL(B")|| < o||8"" = 87|, ¥r > 1. (A-14)
For any » > 1 and any 1 < k < K, by the optimality of
= argminug (B BUYY) + hi(By),

k

we have

n=prox i, (B — v V(B BTL).

Let ¥ = maxi<k<k Yk, ¥ = Mili<p<rk Yk, Y& = max(l,vx) and 3, = max(l,vk_l). It follows from Lemma
4.3 of Kadkhodaie et al. (2014) that

18K, = prox,,, (B, — ViL(B"))Il < 4|8k — prox 1, (B — v ViL(8"))ll
< A (I8 — prox o1 B = 7 VEL(B")I| + 18;" = Bll]
< Yk [|P1"0X%—1hk( W=y V(8 BTEY)
—prox -1, (B; =, ' VaL(8")| + 18 = Brll]
<2918y = Brll + A I Vur (BT BT — Vi L(8)|
< 291851 = Bill + Ay HIVRL(BET) + (8L = BL) — Ve L(B8")||
<318y = Brll + | Vi L(BLT) = Vi L(8)|
<318 = Brll + A I VL(BLH) — VL(8")||
<318 = Brll + Al B = 87|
< B+ 338" = Bl.



It follows that

18" — prox, (8" — VL(B"))| < 3 +v1)FK|8™" — 87,
where 4 = max(1,%) and ¥ = max(1,v~!). Therefore, when we take o = (3 + 77)9K, we get the desired
result in (A-14). Note that the sufficient descent property (A-9) implies that ||3"* —3"|| — 0 as r — co.
It follows from (A-14) that ||3" — prox, (8" — VL(8"))|| — 0 as r — oo. Thus, by (A-13) we have
dx+(8") = 0 as r — oco. Consequently, using (A-12), we have Q(8") — Q* := ming Q(8), which shows
that the GPQR algorithm converges to the global minimum.
Now, let ¢; = 7/2, ¢z = VG, and A” = Q(B") — Q*. By the local error bound (A-13) and the cost-to-go
estimate (A-12), we obtain

Artl < 02\/‘ Igr+1 L 2 (‘ ,3r+1 -B"

§C2\/‘Iar+l_ﬁr 2

2
ﬁr-‘rl o ﬁr ’ < ﬁr—i-l . ,6
< (e2V1+K202)|8F - 87|12

2 (V15 o) [Q(F) - QUA™ )
= (c2V/1+ K202)c] (AT — ATHY),

Inequality (a) is due to (A-14), and inequality (b) is due to (A-9). This implies that

Crag. o)

<‘ gli_gr

2
#2157~ prow, (8" - VL)

3

2
4 worlp - g2

Al < B pr A-1
< (A-15)

where c3 = (c2V/1 + k202)c; . We can see from (A-15) that Q(B") approaches Q* with at least linear
rate of convergence. From (A-9) again, this further implies that the sequence {8"} converges at least
linearly. O

4 Proof of Proposition 3

For Group SCAD penalty
The KKT conditions of the objective function in equation (9) of the main manuscript, with Py, (||84]l2)
is given by (4), can be written as

~Zj + By + Py, (1B ll2) = 0,
where Zj, = =V L(B) + 8-

— If ||BLll2 < A then —Zj, + .8, + Awru = 0 where u is the sub-gradient and ||ulj2 <1

= —Zp +Awpu=0
= HZk”Q < )\wk.

— If B8, # 0, then one has

2t By N =0 (il <l Byl +
k
= | Zkll2 < Awk + Vk)-
Moreover, we have
Zy; . Zy B
—Zy + By, + Awg =0 (since = ),
g 1Z|l2 1Zkll2 1Bkl
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which implies

1 Z
=——-(|2Z — Awg).
IBk Vi ||Zk||2(|| k?”2 k)
—HA<JW“&<9AtMn—ZK+%ﬂW+“W|§ﬂ — % B, =0 . It follows that
W 2
Zy —|— ,
which implies that

Wi
Zillz = (v = 5—)Billa + 57— an B
1Zllz = (e = g=IBkllz + 5 1Zell2 ~ 1182

Thus, we have

A< |Brll2 < 6A
= (T — g2 + Mgy < (
= Mk + wi) < || Zi|l2 < 70

= By = ﬁuzzﬁ(ﬂzﬂb — My gly)-

2B ll2 + Ak g < (v — 72500 + Awg gy

— If | Byll2 = 0X, then —Zy + 743, = 0. This implies that
1
1Zkll2 > 06X and By = %ZI@-

To conclude, we have

S ), (2l S A+ )

Bk _ 711% I\ZkH (1Zxl2 — ) it Ak + wk) < |[|Z, [l2 < 102
-1 .
35 Lk it | Zgl[2 > 10X

For Group MCP penalty

Again, the KKT conditions of the objective function in equation (9) of the main manuscript, with
Py . (185 ll2) is given by (3), can be written as

~Zi + By + Py ) (1Brll2) =0
where Zy, = —ViL(8) + 75

— If [[Bgll2 < OA, then —Zy, + By, + Au — B, = 0, where u is the sub-gradient and [[ul] < 1.
— If B, =0, then one has

—Zy + Awipu =0,
which implies that
[Zkl2 < Awy.
— If B;, # 0, then
B Wk

—Zy + By, + A —— By =0,

1Bkll2 6
which implies that

W
1Zkl|2 = (v — 7)||Bk||2 + Awy.

Thus,

1Bl < OX
= (v = GIBll2 + Awr < (v — )0 + dwy,
= ||Zg|l2 < yiOX

=B = % \|zk\|2(||zk||2 Awg).



= If [[Bell2 > 0, then we have —Zj + v4/3;, = 0. This implies that
1
|Zgll2 > 0\ and B, = %Zk-

To sum up, we have

B, = Ye—wi /0 [ Zi]|2

R — Lk (|| Z |2y Awr), if || Zkl2 < kOA
iy, i Zill2 > 3062

5 Solution path comparison of GLLA and GSCAD/GMCP penalties

Illustration of the GPQR approach with GLLA approximation compared to the exact GMCP and GSCAD

penalties are given in Figure S.1. In this example, we used the smoothed check function WT(lé) (u) to approx-
imate the standard quantile check function, with § = 1. We generated n observations of p-dimensional
vector x;,i = 1,...,n, following a multivariate normal distribution, with p = 200 and n = 100. We
divided the p variables into K = 191 groups, and assigned non-zero coefficients to the first three groups
and set the 188 coeflicients of the remaining 188 groups to be zero:

B=(33,33,2222-1,-1,-1,-1,0,...,0) .
—_— Y
G1 G Gs G4—Gio1

The response y;,7 = 1,...,n, is generated from the following linear regression model

yi=z; B+e, €~ N(0,1).

6 Checking the theoretical KKT conditions

In this section, we establish the theoretical KKT conditions of GPQR solution. When our GPQR. algo-
rithm converges to the final solution, it must satisfy those conditions, which means that the algorithm
converges and finds the right answer.

For GPQR with GLasso penalty, the KKT conditions of the objective function in equation (7) of the
main manuscript with P, (||3]l2) is given by (2) can be written as

Vi L(B) + Awyd||Byll2 = 0,
If B, = 0, then we have
VkL(ﬁ) + dwiu = 0,

where u is the sub-gradient of ||3,]|2 and |uf2 <1
which implies
IVL(B) 2 < N (A-16)
If B, # 0, then we have
B _
185 ll2

Vi L(B) + Mwy 0. (A-17)

Combining (A-16) amd (A-17), we get
ViL(B) + Aok it =0, if By #0
IVEL(B)ll2 < Awg, if By=0.

Following the same reasoning as for GLasso and as in Proposition 3 , the exact KKT conditions of GMCP,
GSCAD and GLLA are given for each solution 3, {k =1, ..., K} respectively, as

ViL(B) + Aop-it; — G =0, if B #0 and [|Byll> < A
IVEL(B)[l2 < Awg, if Be=0 and [Byl2 <OA
IViL(B)|l2 =0, if 1Bgll2 > OA.
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ViL(B) + i 5t = O, if Br#0 and ||Byllz <A
IVEL(B)l2 < Awk, if By=0 and [|Byl2 <A
ViL(B) + s wn Tht — g = O, if A<|Bill2 < 0A
IViL(B)l2 =0, if 1Byl > OA.

Vi L(B) + Awp,. Hﬁ |\2 =0, if B #0

IVEL(B)l2 < Awy, if B =0.

7 Checking the numerical KKT conditions

The theoretical solution for the GPQR algoithm always passes the KKT condition check defined in the
previous section. However, a numerical solution could only approach this theoretical value within certain
precision therefore may fail the KKT check. In order to adapt the exact KKT conditions to the numerical
solution. Numerically, we declare 3, passes the KKT condition check for GLasso, GMCP, GSCAD and
GLLA, respectively if

{ IVEL(B) + Aon-irslla <€ if By #0

||vkL(/3)||2 < Awk + €, Zf IBk = 07
HvkL(IB) + Awg. ”,3 H k o <e if B #0 and ||ﬂk||2 < OA
IViL(B)ll2 < Adwg + €, if By=0 and [|By]2 <OA
[ViL(B)ll2 <€, if 11Bgllz > 0,
IVEL(B) + Awg. 8 |\2||2 X6 if Br#0 and [[Bil2 <A
IVEL(B)|l2 < Adwk + €, if Br=0 and [|Byll2 <A
”vkL(ﬁ) + gi \|§:|\2 - (gﬁ_kl) ||2 <6 if A< ||/6k||2 < OA
IViL(B)|2 <€, if [1Bgllz > 0,
[VEL(B) + Awj. ||5ﬁk“2 la<e if B #0
IViL(B)ll2 < Adwy, + €, if By=0.

for a small € > 0. In this paper we set ¢ = 10™%

8 ADNI data analysis

In this section we present additional results of the GPQR approach in the gene-based association study of
the ADNI cohort. In this analysis we fitted the GPQR model for two additional locations, 7 = 0.25,0.75.

Figure S.2 highlights results of the L2-norm of the coefficient paths of Q-GLasso, Q-GMCP and Q-
GSCAD respectively, with 7 = 0.25, or 0.75, as a function of the tuning parameter A. The results of
Figure S.2 obtained by fitting GPQR for all 442 analyzed subjects of the ADNI cohort.
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Tables
Q-GLasso Q-GMCP Q-GSCAD | Q-GLass Q-GMCP Q-GSCAD
Genes 7=0.25 7=0.75
APOC1 98.8 97.9 33.7 29.8 7.7 47.9
TOMM/0 85.8 29.0 0.0 0.0 0.0 0.0
APOE 94.2 69.2 38.4 14.4 4.8 5.0
Q-GLasso Q-GMCP Q-GSCAD | Q-GLass Q-GMCP Q-GSCAD
7=0.25 7=0.75
QPE- 0.033 0.032 0.033 0.073 0.075 0.073
Size 13.38 6.61 4.38 3.69 3.46 4.01

Table S.1 top: comparison of the number of times (in %) the genes APOE, TOMM40 and APOC1 are selected, based on
100 replications, for ADNI data. bottom: average of the quantile-based error prediction (QPE;)

and the number of selected groups/genes (Model Size) computed on the 100 runs’ test sets. The group
quantile methods are fitted with 7 = 0.25,0.75.
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Figure Captions

Fig. S.1. In the left, the coefficient paths of the penalized quantile regression with the group penalties
(GMCP and GSCAD), and in the right, their GLLA approximations.

Fig. S.2. L2-norm of the optimal solution coefficients correspond to three important genes are shown as
a function of the 7 conditional quantile parameter. The genes APOE, TOMM40 APOCI1 are plotted in
blue, green and red, respectively.

Fig. S.3. At the left and from top to bottom, L2-norm of the coefficient paths of Q-GLasso, Q-GMCP
and Q-GSCAD respectively, with 7 = 0.25, are shown as a function of a tuning parameter A. At the right
and from top to bottom, the coefficient paths of the same group methods with 7 = 0.75.
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Figures
GMmcP McpGLLA
< < -
™ - ™
o — o~

Coefficients
1
]
Coefficients
0 1
|

1
-1

~ o~
I 1
T T T T T T
0.05 0.10 0.15 0.05 0.10 0.15
S S
GSCAD ScadGLLA
< < -
™ — o -
o — o~
2 ]
= =
2 2
5} i S |
g « g =«
[ 73
o o
(6] ]
o - o
- -
| I
~ o~
I 1
T T T T T T
0.05 0.10 0.15 0.05 0.10 0.15
S S

Fig. S.1 In the left, the coeflicient paths of the penalized quantile regression with the group penalties (GMCP and GSCAD),
and in the right, their GLLA approximations.
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Fig. S.2 L2-norm of the optimal solution coefficients correspond to three important genes are shown as a function of the
7 conditional quantile parameter. The genes APOE, TOMM40 APOCI1 are plotted in blue, green and red, respectively.
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Fig. S.3 At the left and from top to bottom, L2-norm of the coefficient paths of Q-GLasso, Q-GMCP and Q-GSCAD
respectively, with 7 = 0.25, are shown as a function of a tuning parameter . At the right and from top to bottom, the
coefficient paths of the same group methods with 7 = 0.75.



