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Abstract
The asymmetric least squares regression (or expectile regression) allows estimat-
ing unknown expectiles of the conditional distribution of a response variable as a 
function of a set of predictors and can handle heteroscedasticity issues. High dimen-
sional data, such as omics data, are error prone and usually display heterogene-
ity. Such heterogeneity is often of scientific interest. In this work, we propose the 
Group Penalized Expectile Regression (GPER) approach, under high dimensional 
settings. GPER considers implementation of sparse expectile regression with group 
Lasso penalty and the group non-convex penalties. However, GPER may fail to tell 
which groups variables are important for the conditional mean and which groups of 
variables are important for the conditional scale/variance. To that end, we further 
propose a COupled Group Penalized Expectile Regression (COGPER) regression 
which can be efficiently solved by an algorithm similar to that for solving GPER. 
We establish theoretical properties of the proposed approaches. In particular, GPER 
and COGPER using the SCAD penalty or MCP is shown to consistently identify the 
two important subsets for the mean and scale simultaneously. We demonstrate the 
empirical performance of GPER and COGPER by simulated and real data.
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1 Introduction

Sparse regression methods, which use penalization techniques for both estima-
tion and variable selection, have been introduced as a mainstream approach for 
analyzing high-dimensional data. Popular penalized estimators are the l1-type 
selectors such as the Lasso (Tibshirani  1996) and Dantzig estimators (Candes 
and Tao 2007), and the non-convex penalized estimators such as the Smoothly 
Clipped Absolute Deviation (SCAD) (Fan and Li 2001) and the Minimax Con-
cave Penalty (MCP) (Zhang 2010) estimators. L1-type selectors are useful due to 
their computational efficiency and the non-convex selectors are known to enjoy 
the oracle property. Several computationally efficient algorithms have also been 
proposed for computing the non-convex estimators. Zou and Li (2008) worked 
out the Local Linear Approximation (LLA) algorithm, which approximates the 
non-convex penalties using a series of reweighted l1 penalization.

In many situations, it is suitable to perform selection of a group/set of predic-
tors sharing a common function (e.g., genes participate in a common biological 
function or pathway; methylation levels in nearby positions along the genome pre-
sent high spatial correlation). Capturing group-variable effects can improve the 
outcome prediction. Another attractive motivation of the group-variable selection 
methods is the additive model with polynomial or non-parametric components, 
thereby each component/group may be expressed as a linear combination of basis 
functions of the original variables. In this context, the selection of important vari-
ables corresponds to the selection of groups of basis functions. Yuan and Lin 
(2006) have proposed group-Lasso as an extension of the Lasso for achieving 
group-wise variable selection. Although theoretical consistency can be achieved 
by the Lasso and group-Lasso estimators if one assumes some regularity assump-
tions on the design matrix [e.g. the restricted eigenvalue or compatibility condi-
tions (Bickel et al. 2009; Meier et al. 2008)], in general, both estimators introduce 
bias for the model parameter estimation in high dimensions. To reduce bias and 
achieve oracle properties, Wei and Zhu (2012) and Ogutu and Piepho (2014) have 
introduced extensions of non-convex penalties (SCAD, MCP) for group-variable 
selection.

Recent advances in data collection from multi-sources in many areas of 
research such as genomics, economics, and finance, generate an error accumu-
lation in data pre-processing, and the assumption of homoscedasticity does not 
hold. To remedy this problem, flexible methods, which incorporate heteroscedas-
ticity in modelling such data, are necessary to take into account the specificity of 
the collected datasets (Wang et al. 2012). In the standard regression, the condi-
tional mean function is explained by a linear combination of the predictors and its 
estimation results from minimizing a squared error loss function, which assigns 
equal weights to the residuals. On the opposite, when different weights are 
assigned to residuals, an exhaustive description of the outcome conditional distri-
bution can be explored. Newey and Powell  (1987) have introduced the Expectile 
Regression (ER) in which a squared error loss function puts different weights on 
the residuals, depending on their signs. Like the quantile regression (Koenker and 
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Bassett Jr  1978), ER is appropriate to detect heteroscedasticity since both meth-
ods use an asymmetric loss function to estimate the regression function linking 
the outcome to the predictors.

Inspired by the success of sparse quantile regression (Mkhadri et al. 2017), many 
advances have been made on variable selection in ER under high dimensional set-
tings. For instance, Zhao and Zhang (2018) studied penalized ER with the SCAD 
penalty. Gu and Zou (2016) developed a unified and efficient algorithm, which fits 
ER with the Lasso penalty and uses the LLA approximation to handle the non-con-
vex penalties SCAD and MCP. Gu and Zou (2016) have also established the estima-
tion consistency of the Lasso selector under the restricted eigenvalue condition and 
the generalized invertability factor (GIF) condition (Ye and Zhang 2010; Huang and 
Zhang 2012), and proved the convergence of LLA algorithm to the oracle estimator 
in two steps. Moreover, Gu and Zou (2016) have developed the oracles properties 
for their proposed estimators under the assumption that the model errors follow a 
sub-Gaussian distribution. Liao et  al. (2019) provided asymptotic distributions of 
penalized expectile regression with SCAD and adaptive Lasso penalties for both 
independent and identically distributed (i.i.d.) and non-i.i.d. random errors. Further-
more, penalized ER approaches have been introduced in the context of semi- and 
non-parametric methods where the penalty is used to impose smoothness for non-
parametric estimators (Jiang et al. 2017; Sobotka et al. 2013; Yang et al. 2018; Yang 
and Zou 2015).

When dealing with heteroscedastic high dimensional data, it is of interest to dis-
tinguish which variables are significant for the conditional mean and which ones 
are important for the conditional scale/variance of the outcome, particularly when 
some variables are important for both the mean and the scale. For instance, most of 
genomics data display heterogeneity due to either heteroscedastic variance or other 
forms of non-location-scale covariate effects. Body mass index (BMI) is a classi-
cal illustration in this context. Its distribution varies with age and obesity genetic 
risk factors (i.e., high-dimensional genetic variants) at different quantiles, and sev-
eral genetic variants have shown more strong association with BMI at the upper tail 
compared to the lower tail of the conditional distribution (Bottai et al. 2014; Mitch-
ell et  al. 2013). In low dimension, Efron  (1991) have proposed a method, which 
combines both symmetric and asymmetric least squares loss functions, to differen-
tiate the effects of the important variables for both the mean and the scale simul-
taneously. Such a resulting combined loss function has also been studied in high 
dimensional settings by Gu and Zou (2016) as an extension of the ER approach. The 
authors have established theoretical proprieties and efficient algorithms for the pro-
posed estimators, and termed the approach the COupled Sparse Asymmetric LEast 
Squares regression, COSALES for short.

In this paper, we address the challenge of selecting grouped variables (factors) in 
presence of heteroscedastic high dimensional data, in  situations where the groups 
of predictors influence either the conditional mean, the variance of the outcome, or 
both. To this end, we develop the methodology and theory for accurate prediction in 
group penalized ER and Coupled ER. We extend the computational algorithms and 
the consistency results of Gu and Zou (2016) from Lasso and non-convex penalties 
to group Lasso and group non-convex penalties. First, we propose a bloc coordinate 
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descent (BCD) algorithm for group Lasso and group non-convex penalties, which 
uses an efficient approach to minimize each sub-problem exactly. Moreover, we 
propose the group local linear approximation (GLLA) algorithm as an alternative 
approach for solving ER with the non-convex penalties SCAD and MCP. Yet, we 
demonstrate that if the GLLA algorithm starts with a reasonable initial estimator, we 
obtain the oracle estimator in a one-step iteration. Finally, we derive necessary con-
ditions for the consistency of our ER and Coupled ER estimators by adapting both 
the generalized invertability factor (GIF) and the compatibility condition (Bühlmann 
and Van De Geer 2011) to the group variable selection context.

The plan of the paper is as follows: in Sect. 2, we briefly review ER and we pre-
sent our approach termed the Group Penalized Expectile Regression (GPER). In 
Sect. 3, we present our Coupled GPER framework. Evaluation of the performance 
of our methods through exhaustive simulation studies is considered in Sect. 4. The 
use of the proposed methodology is illustrated by analysing real datasets, in Sect. 5. 
Discussion is given in Sect. 6. All the proofs are postponed to the Appendix.

2  Expectile regression and group penalizations

2.1  Overview of the unconditional expectile

The �-mean (or �-expectile) of a continuous random variable Y is defined as the 
solution of the following problem

where

is known as the asymmetric square loss function, which assigns weights � and 1 − � 
to positive and negative deviations, respectively.

By equating the first derivative of (1) to zero, one has

where ��(u) ∶= |� − 1(u≤0)| is the check function. The solution of (3) leads to a 
more meaningful definition of the �-mean, which is given as follows

When � = 0.5 , �0.5(u) = 0.5 and E� reduces to the mean of Y, (i.e. E0.5(Y) = �[Y] ). 
Thus, the �-expectile can be viewed as a generalization of the mean, and like the 
mean, E� is a weighted average with random weights. By varying � , the �-expec-
tile provides insight at different “locations” of the distribution of Y and thus it is an 
alternative measure of “locations” of the distribution.

Given a random sample, {(yi)}ni=1, the �-th empirical expectile

(1)E
�(Y) = argmin

E∈ℝ𝔼{��(Y − E)}, � ∈ (0, 1),

(2)��(u) ∶= |� − 1(u≤0)|u2

(3)�{��(Y − E
�)(Y − E

�)} = 0,

E
�(Y) = �

[
��(Y − E

�)

�
[
��(Y − E

�)
]Y

]
.
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is the solution that minimizes the empirical loss function

The extension of the expectile concept to regression has been investigated by Newey 
and Powell  (1987). Let {(y1, x1),⋯ , (yn, xn)} be an observed data, where yi is the 
observed response and xi = (xi1,… , xip)

⊤ is a p-dimensional observed vector of pre-
dictors for subject i = 1,… , n . Note X the design matrix with n rows and p columns. 
If an intercept is used in the model, we let the first column of X be a vector of 1 . The 
ER model uses the weighted least squares loss ��(u) given in (2) to assign different 
weights to negative and positive residuals, and assumes that conditional �-expectile 
given the predictors, denoted as E�(xi) , is a linear function of xi (i.e. E𝜏(xi) = x⊤

i
�𝜏 ). 

This leads to the following estimator of the regression coefficients

Again, when � = 0.5 , the ER model reduces to the ordinary least squares regression.
Several theoretical properties of the ER model have been established under 

some assumptions about the random error term of the regression model (Newey 
and Powell  1987)

where �� is the vector of n independent errors, which satisfies E�(�� |X) = 0 for some 
� ∈ (0, 1) . Therefore E�(y|X) = X�� , which is to say that the conditional �-mean of 
y is a linear combination of the columns of X . In the ER model, the estimated coef-
ficients �� vary as a function of � , which makes modeling of different “locations” of 
the conditional distribution possible, and as a consequence heteroscedasticity when 
it exists, can be investigated by this model. For ease of notation, the subscript in �� 
and �� is dropped hereafter.

In this work, we focus on the ER model (5) with a pre-defined group struc-
ture, i.e. we assume that there is a natural grouping of the regression pre-
dictors. We assume that the predictors x1, x2 … xp are put into K groups 
({1, 2, 3… p} = ∪K

k=1
Ik) , such that the size of each group is pk (the cardinality of 

index set Ik is pk ) and the groups are non-overlapping ( Ik ∩ Ik� = for k ≠ k′ ). This 
leads to the block representation of � = (�⊤

1
,… , �⊤

K
)⊤.

In general, the GPER model in high dimensions can be formulated as a mini-
mization problem

Ê� =

n�
i=1

��(yi − Ê�)∑n

i=1
��(yi − Ê�)

yi

1

n

n∑
i=1

��(yi − E).

(4)�̂𝜏 = argmin �𝜏

(
𝛹𝜏(�𝜏) ∶=

1

n

n∑
i=1

𝜌𝜏(yi − x⊤
i
�𝜏)

)
.

(5)y = X�� + �� ,
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with (�̂k)k=1,…,K the sub-vector of �̂ corresponding to the effects of the predictors 
belonging to group k for the �-expectile of the response. P�(⋅) is the penalty function 
with a regularization parameter � , and wk is used to adjust for the group sizes in the 
penalty. A reasonable choice is wk =

√
pk . This choice is crucial because it balances 

the contribution of different groups to the penalty term. Without these weights, 
groups with a larger number of variables might be unfairly advantaged and more 
likely to be selected, simply due to their size. This could lead to biased model selec-
tion, where larger groups are favored regardless of their true importance (Yuan and 
Lin 2006). If the intercept is included in (6), then w1 = 0 is taken, which means that 
the first group is not penalized.

In this work, we consider the group Lasso (GLasso), group MCP (GMCP) and 
group SCAD (GSCAD) penalties which are defined respectively by the penalty 
function, P�(t) , as follows

where � is a second tuning parameter of GMCP and GSCAD penalties, with 𝜃 > 1 
for GMCP and 𝜃 > 2 for GSCAD. In this work, we set � = 4 for GSCAD and � = 3 
for GMCP, which are suggested values for this tuning parameter. In fact, � serves as 
a secondary tuning parameter for both the GMCP and GSCAD penalties, with the 
constraint that 𝜃 > 1 for GMCP and 𝜃 > 2 for GSCAD. Optimal values for � have 
been examined in the literature, and fixed values like � = 4 for GSCAD and � = 3 
for GMCP are often recommended for a wide range of problems. However, perfor-
mance improvements using data-driven methods to select � are typically minimal. 
For more details about optimal values of � see Fan and Li (2001) and Ogutu and 
Piepho (2014)). Consequently, we adopt these recommended values for � in all our 
simulations and real data analyses.

The non-convex penalties (8) and (9) enjoy the oracle property (Fan and Li 2001; 
Fan and Peng 2004), which means that they achieve the asymptotic equivalence to 

(6)�̂ = argmin �

�
R𝜏(�) ∶= 𝛹𝜏(�) +

K�
k=1

wkP𝜆(‖�k‖2)
�
,

(7)�t,

(8)

⎧⎪⎨⎪⎩

(�t −
t2

2�
) if 0 ≤ t ≤ ��,

1

2
�2� if t ≥ ��,

(9)

⎧⎪⎪⎨⎪⎪⎩

�t if 0 ≤ t ≤ �,
��t − (t2 + �2)∕2

� − 1
if � ≤ t ≤ ��,

�2(�2 − 1)

2(� − 1)
if t ≥ ��,
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the ideal non-penalized estimator (oracle estimator) whose coefficients of irrelevant 
groups of variables equal to zero in advance. That is, the GSCAD and GMCP esti-
mators can perform as well as the oracle estimator if the penalization parameter is 
appropriately chosen. For the GPER regression, the oracle estimator is defined by

where A is the true support set.
The main difficulty of solving the optimization problem (6) is that the loss func-

tion ��(.) in (4) does not have the second derivative everywhere. To overcome this 
problem, we adopt the Majorization-Minimization principle (MM) and the block 
coordinate descent (BCD) algorithm to find the optimal solution by iteratively mini-
mizing a surrogate function that majorizes the objective function in (4), for each 
group (i.e. block-/group-wise minimization) (Yang et  al. 2018; Ouhourane et  al. 
2021). In fact, the penalty 

∑K

k=1
wkP�(‖�k‖2) in (6) is group-wise separable. This 

property is used to make group-wise update in each iteration over one group of vari-
ables k (k = 1,… ,K) . This technical resolution is detailed next.

2.2  GPER algorithm

This section gives details about the group-wise descent algorithm for the expectile 
regression with GLasso, GMCP and GSCAD penalties.

Let �̃ = (�̃1,… , �̃k−1, �̃k, �̃k+1,… , �̃K) be the current iteration and 
�̃−k = (�̃1,… , �̃k−1, �̃k+1,… , �̃K) be the current iterate with kth group excluded. 
Assume we are about to update the effects of the kth group �k = (𝛽1,… , 𝛽pk )

⊤ 
for some k ∈ {1,… ,K} . Also, consider both the objective function R�(�) in 
(6) and the ER loss function in (4) as functions of the kth group, �k , while keep-
ing all other groups fixed at �̃−k , i.e., R𝜏(�k, �̃−k) = R𝜏(�)�k� =�̃k� ,1≤k

�≤K,k�≠k and 
𝛹𝜏(�k, �̃−k) = 𝛹𝜏(�)�k� =�̃k� ,1≤k

�≤K,k�≠k.
The following proposition summarizes the quadratic majorization property for 

R𝜏(�k, �̃−k) , which leads to solve our problem efficiently for each group k.

Proposition 1 Let Xk be the sub-matrix of X corresponding to group k. The quad-
ratic majorization condition is satisfied by the function ��(.) . That is, for all � and 
�̃ we have

where �k is the largest eigenvalue of the matrix Hk = c
X⊤

k
Xk

n
 , with 

c = 2max(1 − �, �).

(10)�̂
oracle

= argmin �∈ℝp∶�Ac=0𝛹𝜏(�),

(11)
R𝜏(𝛽k, 𝛽−k) ≤Q(𝛽k, 𝛽−k) ∶= Ψ𝜏(𝛽k, 𝛽−k) + (𝛽k − 𝛽k)

T∇kΨ𝜏(𝛽k, 𝛽−k)

+
𝛾k
2
(𝛽k − 𝛽k)

T (𝛽k − 𝛽k) + wkP𝜆(
‖‖𝛽k‖‖2),
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The proof of Proposition (1) is detailed in Appendix 1.
Replacing the penalty term P�(‖�k‖2) by (7), (8) or (9) in (11) leads to a closed 

form solution of the update, �̃new

k
 , for the three penalties. The following proposition 

summarizes these results.

Proposition 2 Let Q(�k, �̃−k) be the surrogate function given by (11) and let 
P�(‖�k‖2) be one of the tree penalties given in (7), (8) and (9). The closed form 
solution to (11) of �̃new

k
 for GPER algorithm with GLasso, GMCP and GSCAD pen-

alties is given respectively by

where Zk = U𝜏
k
+ 𝛾k�̃k , U

𝜏
k
= −∇k𝛹𝜏(�̃k, �̃−k) and S(.) is the soft-thresholding oper-

ator given by

The proof of Proposition (2) is detailed in Appendix 2.
The following algorithm gives some details about the groupwise descent algo-

rithm for GPER with GLasso, GMCP and GSCAD penalties:

Algorithm 1  The GPER algorithm for GLasso/GMCP/GSCAD penalties

(12)�̃
new

k
= F(Zk) ⟵

1

𝛾k

S(‖Zk‖2, 𝜆wk)

‖Zk‖2 Zk,

(13)�̃
new

k
= F(Zk) ⟵

�
1

𝛾k−wk∕𝜃

S(‖Zk‖2,𝜆wk)

‖Zk‖2 Zk, if ‖Zk‖2 ≤ 𝛾k𝜃𝜆
1

𝛾k
Zk, if ‖Zk‖2 > 𝛾k𝜃𝜆,

(14)�̃
new

k
= F(Zk) ⟵

⎧
⎪⎪⎨⎪⎪⎩

1

𝛾k

S(‖Zk‖2,𝜆wk)

‖Zk‖2 Zk, if ‖Zk‖2 ≤ (wk + 𝛾k)𝜆

S(‖Zk‖2, 𝜆wk𝜃𝜃−1
)

(𝛾k−
wk

𝜃 − 1
)‖Zk‖2

Zk, if (wk + 𝛾k)𝜆 < ‖Zk‖2 ≤ 𝛾k𝜃𝜆

1

𝛾k
Zk, if ‖Zk‖2 > 𝛾k𝜃𝜆,

S(z, 𝜆) =

⎧⎪⎨⎪⎩

z − 𝜆 if z > 𝜆
0 if �z� ≤ 𝜆
z + 𝜆 if z < −𝜆.
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2.3  ER with group local linear approximation (GLLA) penalty

Proposition 2 allows us to provide an explicit solution for two important special non-
convex penalty functions (GMCP and GSCAD). In this section, we propose to extend 
the local linear approximation trick to solve ER for a more general form of non-convex 
penalties. We restrict our theory development in Sect. 2.6 for a class of non-convex 
penalties that satisfy certain conditions. This class includes GMCP and GSCAD.

The GLLA approximation is based on first order Taylor expansion of the non-con-
vex penalty functions around ‖�̃k‖2 . Thus, one can write

Substituting (15) in (6) leads to the following GPER problem with the Group LLA 
(GLLA) penalty

where w�
k
= wkP

�
𝜆
(‖�̃k‖2) for k = 1,… ,K . The weight w′

k
 depends on the non-con-

vex penalty function through the first derivative P�
𝜆
(‖�̃k‖2) . The problem (16) can be 

solved using a GPER-GLasso update similar to the algorithm described in Sect. 2.2.
The details of the GPER approach with GLLA penalty is described in the following 

algorithm.

Algorithm 2  The GPER algorithm with GLLA penalty

To solve the problem (17), we use Algorithm 1 with GLasso (GPER-GLasso) with 
wk = w̃i−1

k
 for k = 1,… ,K.

Note that the GLLA penalty is a convex approximation of non-convex penalties (e.g. 
GMCP, GSCAD). Thus, for each fixed value of � , GLLA allows a search of the solu-
tion in a locally convex region, and consequently it may lead to stable and smooth path 
solutions.

(15)P𝜆(‖�k‖2) ≈ P𝜆(‖�̃k‖2) + P�
𝜆(‖�̃k‖2)(‖�k‖2 − ‖�̃k‖2).

(16)�̂ = argmin �

�
𝛹𝜏(�) +

K�
k=1

w�
k
‖�k‖2

�
,
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2.4  Implementation

We discuss some techniques used in our implementation to further improve the 
computational speed of Algorithm  1 of the GPER approach. In sparse modeling, 
the solution is computed by using a descending sequence (�m)Mm=1 of � values. To 
generate such a sequence, we set M − 2 points uniformly (in the log-scale) between 
the starting and ending points, �max and �min , where �max is the smallest � to let all 
groups �k to be zero (2 ≤ k ≤ K) , except the intercept. To determine �max , firstly, we 
initially estimate the intercept �0 by considering the null model:

Subsequently, according to the KKT conditions of (18), we can obtain the following 
formula

We take �min = ��max and we set the default value of � to be 10−2 for data with n > p 
and � = 10−4 for data with n ≤ p . We also adopt the warm-start trick to implement 
the solution paths along � values ( i.e. assume that we have already computed the 
solution �̃(m)

k
 ( k = 1,… ,K ) at �m , then �̃(m)

k
 will be used as the initial value for 

computing the solution at �m+1 in Algorithm  1. We refer readers to Ouhourane 
et al. (2021) and Yang and Zou (2015) for more details about such computational 
techniques.

2.5  Theory for GPER‑GLasso

We assume a fixed design for the covariates. Before presenting our principal theo-
retical results (Theorems), some notations must be defined and some necessary 
results must be shown. Let A ≡ supp(�∗) = {k = 1,… ,K ∶ �∗

k
≠ 0} and 

B ≡ {j = 1,… , p ∶ �∗
j
≠ 0} be the active set of the true vector of parameters �∗ . For 

any sequence {ai}i∈A , denote a
A
= mini∈A ai and aA = maxi∈A ai . For any vector 

v = (v⊤
1
,… , v⊤

K
)⊤ ∈ ℝp and an arbitrary index set I ⊂ {1,… ,K} , we write 

vI = (v⊤
k
, k ∈ I)⊤ and define XI = (Xk, k ∈ I) to be the sub-matrix consisting of the 

columns of X with indices in I. Sub-Gaussian norm (Rudelson et al. 2013) of a ran-
dom variable Z is denoted by ‖Z‖SG = supr≥1r

−1∕2(E(�Z�r))1∕r . Let 
c = � ∨ (1 − �) = max(�, 1 − �) and c = � ∧ (1 − �) = min(�, 1 − �) . We use 
∇f (v) = �f (v)∕�v to represent the gradient of a differentiable function f ∶ ℝp

→ ℝ , 
and we denote ∇I f (v) = (�f (v)∕�vk, k ∈ I) . The �2,1-norm and �2,∞-norm of v are 
defined by ‖v‖2,1 = ∑K

k=1
‖vk‖2 and ‖v‖2,∞ = max1≤k≤K ‖vk‖2 . Denote s be the num-

ber of no null groups for the true coefficients �∗ , sA =
∑

k∈A pk the number of 

(18)�̂0 = argmin �0

1

n

n∑
i=1

��(yi − �0).

�max = max
k=2,…,K

‖∇k��(�̂0, 0)‖2
�k

.
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variables in the set A , pm = max1≤k≤K pk and pA = maxk∈A pk . Let �min(.) and 
�max(.) are two functions that return the smallest and largest eigenvalues of a sym-
metric matrix respectively, and define � = max1≤k≤K �k and � = min1≤k≤K �k , where 
𝜌k = 𝜆max(n

−1X⊤
k
Xk) . Finally, let 𝜌min = 𝜆min(n

−1X⊤
B
XB) and 𝜌max = 𝜆max(n

−1X⊤
B
XB) . 

We assume 𝜌min > 0 , thereby the important variables are not linearly dependent. 
Define [a]+ = max(0, a) for any a ∈ ℝ.

Let C3 = {� ∈ ℝp, ‖�Ac‖2,1 ≤ 3‖�A‖2,1} be a cone in ℝp . To study the estima-
tion accuracy of the GPER-Lasso, we impose the following conditions on the design 
matrix X and the random errors �.

• (C1) The columns of X are normalizable, that is, M0 = max1≤j≤p
‖Xj‖2√

n
∈ (0,∞);

• (C2) The random errors �i are i.i.d. sub-Gaussian random variables satisfying 
E
�(�i) = 0 , for i = 1,… , n;

• (C3) � = inf�∈C3

‖X�‖2
2

n‖�‖2,1 ∈ (0,∞);

• (C4) � = inf�∈C3

‖X�‖2
2

n‖�A‖2,1‖�‖2,∞ ∈ (0,∞).

The consistency of the group Lasso estimator has been extensively studied in the 
literature under some conditions (Meier et  al. 2008; Bühlmann and Van De  Geer 
2011). Condition (C3) is known as the restricted eignvalue condition and has been 
frequently assumed in the literature to study the group Lasso (Meier et  al. 2009). 
Condition (C4) is an extension of the generalized invertibility factor (GIF) condition 
for group variables (Ye and Zhang 2010). Both conditions (C3) and (C4) are cru-
cial assumptions to establish estimation consistency of the GPER-Lasso, for high-
dimensional data.

Theorem 3 Assume the true vector of coefficients �∗ in (5) is s-sparse (s is the num-
ber of no null groups) and assume the conditions (C1)-(C2). Let �̂

GLasso
 be any opti-

mal solution to GPER-Lasso problem. Then with probability at least 1 − p∗ , we have 
‖�̂GLasso

− �∗‖2,1 ≤ 3𝜆GLasso(4𝜅c)−1 if condition (C3) holds,

and ‖�̂GLasso
− �∗‖2,∞ ≤ 3𝜆GLasso(4c𝜚)−1 if condition (C4) holds, where

�0 = var(� �
�(�i)) , K0 = ‖� �

�(�i)‖SG and C > 0 is an absolute constant.

The proof of Theorem 3 is detailed in Appendix 4.

(19)p∗ = 2p exp

(
−

Cn(�GLasso)2

4K2
0
M2

0
pm

)
,
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2.6  Theory for non‑convex penalized GPER

To give a unified theoretical analysis of GMCP and GSCAD, we assume that the 
penalty P�(t) is a general folded concave penalty function defined on t ∈ (−∞,∞) 
satisfying (see Fan et al. 2014; Gu and Zou 2016): 

1. (P1) P�(t) = P�(−t);
2. (P2) P�(t) is non-decreasing, concave in t ∈ [0,∞) and P�(0) = 0;
3. (P3) P�(t) is differentiable in t ∈ (0,∞);
4. (P4) P�

�
(t) ≥ a1� for t ∈ (0, a2�] and P�

�
(0) ∶= P�

�
(0+) ≥ a1�;

5. (P5) P�
�
(t) = 0 for t ∈ [a�,∞) with some prespecified constant a > a2.

The parameters a1 and a2 are fixed constants characterising the penalty function. 
One can verify that a corresponds to � in Eqs. (8) and (9) for both penalties GMCP 
and GSCAD, respectively, and a1 = a2 = 1 for GSCAD, and a1 = 1 − �−1 , a2 = 1 for 
GMCP.

In the following theorem, we show that the solution given by GLLA Algorithm 2 
with any non-convex penalty satisfying the above conditions (1)-(5), enjoys the ora-
cle property. Assume we have a sufficient signal strength in the nonzero components 
of �∗ . That is, assume (A1) mink∈A‖�∗

k
‖2 > (a + 1)𝜆 . Our result is outlined next.

Theorem  4 Assume in model (5) the vector of the true coefficients �∗ is s-sparse 
and satisfies assumption (A1). Assume conditions (C1)-(C2) hold and take �̂GLasso 
as the initial value in Algorithm  2. Let a0 = 1 ∧ a2 . Take � ≥ 3�GLasso(4�ca0)

−1 
when (C3) holds, or � ≥ 3�GLasso(4c�a0)

−1 when (C4) holds, or take 
� ≥ 3�GLassoa−1

0

(
(4c�)−1 ∧ (4�c)−1

)
 when both (C3) and (C4) hold. The GPER-

GLLA estimator converges to �̂
oracle

 after two iterations with probability at least 
1 − p1 − p2 − p3 , where p1 = p∗ is given by (19),

and

where Q1 =
a1c�min

2cM0�
1∕2
maxp

1∕2

m

 , �0 = var(� �
�(�i)) , R = mink∈A‖�∗

k
‖2 − a𝜆 > 0 , K0 is 

defined in Theorem 3, � (x;n, s,K,M, �, �) is given by

and C > 0 is an absolute constant.

The proof of Theorem 4 is detailed in Appendix 4.

p2 = 2(p − sA) exp
(
−

Cn�2a2
1

4K2
0
M2

0
pm

)
+ � (Q1�, n, sA,K0,M0, �max, �0),

p3 = � (2c�minRp
−1

A
;n, sA,K0,M0, �max, �0),

� (x;n, s,K,M, �, �) = 2 exp

(
−

C�2[(n1∕2x − ��1∕2s1∕2)]+

K4�

)
∧ 2s exp

(
−

Cnx2

K2M2s

)
,
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2.7  Some solution paths of GPER methods

Our motivation for introducing the GPER approach is illustrated in Fig. 1 below.
We adapted the illustration example of Mkhadri and Ouhourane (2015) for illus-

tration. We generated one dataset of n = 50 observations and five initial predictors, 
say X̃k (k = 1,… ,K = 5) , from a multivariate standard normal distribution with the 
correlation among the predictors was set to be equal to 0.5. We computed a cubic 
B-spline basis (W1

k
,W2

k
,W3

k
) from each predictor X̃k, k = 1,… , 5 . Then we set 

X
j

k
= W

j

k
 , for j = 1, 2, 3 and k = 1,… , 5 , which leads to 15 predictors Xj

k
 that are 

clustered in K = 5 groups, i.e. Gk = {X1
k
,X2

k
,X3

k
} , for k = 1,… , 5.

The response y is generated as:

y = X� +𝛷(X̃1)�, � ∼ N(0, 1),

Fig. 1  The first two panels (from left to right) are for example 1, and the last two panels are for example 
2. The results show the coefficients’ profiles as a function of the tuning parameter � corresponding to LS-
GLasso (GPER-GLasso with � = 0.5 ) and GPER-GLasso with � = 0.85 . The dashed vertical lines report 
selected optimal � using 5-fold CV. The group coefficients of G1 , G2 and G3 are plotted in blue, green and 
red colors, respectively. The black color corresponds to the noisy groups of predictors G4 and G5
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where �(⋅) is the cumulative distribution function of the univariate standard normal 
distribution. Using �(⋅) in the term of the variance in the simulations is considered 
by many authors to generate a model with heteroscedasticity (Wang et al. 2012; Gu 
and Zou 2016).

We considered two illustration examples. In the first example, we considered that 
G2 and G3 have an effect on the mean of the outcome and G1 has an effect only on the 
scale. Thus, � is defined as

The second example is similar to the first one, except that G1 has an effect on both 
the mean and scale (i.e. overlapping effect). That is, � is given by

Figure 1 shows the results of the coefficient profiles as a function of � values for 
GPER-GLasso, at different locations. In the first two panels (from the left to right), 
we show major advantages of using group penalized expectile regression approaches 
when � is different than 0.5 ( � ≠ 0.5 ) for detecting heteroscedasticity when the groups 
of variables have an effect only on the scale. Indeed, GPER-GLasso selected the Group 
G1 (blue color) for � = 0.95 , but it does not for � = 0.5 , whcih means that G1 is detected 
as a heteroscedastic group. However, in the second scenario (two last panels of Fig. 1), 
the effect of G1 overlaps for the mean and scale. In this case, GPER-GLasso selected 
G1 for both values of � = 0.5 and 0.95, and thus, one cannot answer the question if G1 
is a heteroscedastic group or not. This is the main motivation to introduce the COupled 
(Group) Expectile Regression for analyzing the heteroscedasticity in high-dimensional 
settings.

3  Coupled group penalized expectile regression: COGPER

3.1  Methodology: COGPER general algorithm

We consider the following linear scale model for analyzing heteroscedasticity

where �i are i.i.d. random errors, and we assume that �(�i) = 0 . The unknown 
parameters to be estimated are the p-dimensional vectors � and � , correspond-
ing to the effect of the covariates on the mean and the scale of the response vari-
able, respectively. We suppose that x⊤

i
� > 0 for all i. This model has been studied 

by many authors in standard regression (Efron  1991; Koenker and Zhao 1994). 
It has been proposed by Gu and Zou (2016) in high dimension to select impor-
tant variables that have an effect on both the mean and the scale functions. Let 

� = ( 0, 0, 0
⏟⏟⏟
blueG1

, 2, 2, 2
⏟⏟⏟
greenG2

, −1,−1,−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

redG3

, 0, 0, 0
⏟⏟⏟
blackG4

, 0, 0, 0
⏟⏟⏟
blackG5

).

� = ( 1, 1, 1
⏟⏟⏟
blueG1

, 2, 2, 2
⏟⏟⏟
greenG2

, −1,−1,−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

redG3

, 0, 0, 0
⏟⏟⏟
blackG4

, 0, 0, 0
⏟⏟⏟
blackG5

).

yi = x⊤
i
� + x⊤

i
�𝜖i,
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e� = E
�(�1) be the �-mean of the random error for � ∈ (0, 1) , then the �-mean of 

yi given xi is E𝜏(yi|xi) = x⊤
i
(� + �e𝜏) . Let A1 ≡ supp(�∗) = {k ∶ �∗

k
≠ 0} and 

A2 ≡ supp(�∗) = {k ∶ �∗
k
≠ 0} be the active sets of �∗ and of �∗ , respectively. Then, 

when we take � = �e� , we will deal with � instead of � , and if e� ≠ 0 we have 
supp(�∗) ≡ supp(�∗).

We rely again on Gu and Zou (2016) and develop the COupled Group Expectile 
Regression (COGPER) method, which estimates and selects the relevant groups of var-
iables that have effect on the mean and scale simultaneously. The COGPER model is 
defined as follows

where

with �0.5(�) is given by (4) and

The penalties P�1
(.) and P�2

(.) could be one of the penalties GLasso, GMCP or 
GSCAD defined in (7), (8) and (9), respectively. The scalars wk and uk are known 
weights for each group, and can be defined in a similar way as in the GPER approach 
to control for the group size, for instance. In this work, we set wk = uk =

√
pk.

Notice that the non-convex penalties, GMCP and GSCAD, enjoy the oracle prop-
erty. For the COGPER approach, the oracle estimators of � and � = �e� are given by

where A1 and A2 are the true support set of � and � respectively.
To solve the problem (20), we proceed in a similar way as in Sect. 2. That is, we 

focus on updating one group at a time ( �k or �k ). We majorize each loss function in 
the right-hand side of (21) by a quadratic surrogate function. Then, for each group k 
( k = 1,… ,K ), we obtain two upper bound approximations for updating �k and �k , 
respectively, as follows

and

(20)

(�̂, �̂) = argmin (�,�)∈ℝ2pS�(�,�) +

K�
k=1

wkP�1
(‖�k‖2) +

K�
k=1

ukP�2
(‖�k‖2),

(21)S�(�,�) = �0.5(�) + ��(�,�),

𝛹𝜏(�,�) =
1

n

n∑
i=1

𝜌𝜏(yi − x⊤
i
� − x⊤

i
�).

(22)(�̂
oracle

, �̂
oracle

) = argmin (�,�)∈ℝ2p∶�Ac
1
=0,�Ac

2
=0S𝜏(�,�).

(23)

Q1(�k��̃−k, �̃) ∶=S𝜏(�̃, �̃) − 2(�k − �̃k)
⊤U0.5

k
+

2𝛾k(�k − �̃k)
⊤(�k − �̃k) − (�k − �̃k)

⊤U𝜏
k
+

2c𝛾k(�k − �̃k)
⊤(�k − �̃k) + P𝜆1

(‖�k‖2),
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where �k is the largest eigenvalue of the matrix Hk = X⊤
k
Xk , c = 2max(�, 1 − �) , 

U0.5
k

= −∇k𝛹0.5(�̃k, �̃−k) and U𝜏
k
= −∇�k

𝛹𝜏(�̃k;�̃−k, �̃) = −∇�k
𝛹𝜏(�̃k;�̃, �̃−k).

Proposition 5 Let Q1(�k|�̃−k, �̃) and Q2(�k|�̃, �̃−k) be the surrogate loss functions 
given by (23) and (24). Let P�1

(‖�k‖2) and P�2
(‖�k‖2) be one of the three penalties 

given in (7), (8) and (9). The closed form solutions to (23) and (24) of (�̃(new)

k
, �̃

(new)

k
) 

for COGPER-GLasso, COGPER-GMCP and COGPER-GSCAD are, respectively, 
given by

(24)
Q2(�k��̃, �̃−k) ∶=S𝜏(�̃, �̃) − (�k − �̃k)

⊤U𝜏
k

+ 2c𝛾k(�k − �̃k)
⊤(�k − �̃k) + P𝜆2

(‖�k‖2),

�̃
(new)

k
= F(Zk) ⟵

1

2(1 + c)𝛾k

S(‖Zk‖2, 𝜆1wk)

‖Zk‖2 Zk

�̃
(new)

k
= G(Wk) ⟵

1

2c𝛾k

S(‖Wk‖2, 𝜆2uk)
‖Wk‖2 Wk

�̃
(new)

k
= F(Zk) ⟵

⎧
⎪⎪⎨⎪⎪⎩

1

2(1+c)𝛾k−1∕𝜃

S(‖Zk‖2,𝜆1wk)

‖Zk‖2 Zk,

if ‖Zk‖2 ≤ 2(1 + c)𝛾k𝜃𝜆1wk
1

2(1+c)𝛾k
Zk,

if ‖Zk‖2 > 2(1 + c)𝛾k𝜃𝜆1wk

�̃
(new)

k
= G(Wk) ⟵

�
S(‖Wk‖2,𝜆2wk)

2c𝛾k−1∕𝜃

1

‖Wk‖2Wk, if ‖Wk‖2 ≤ 2c𝛾k𝜃𝜆2uk
1

2c𝛾k
Wk if ‖Wk‖2 > 2c𝛾k𝜃𝜆2uk,

�̃
(new)

k
= F(Zk) ⟵

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(‖Zk‖2,𝜆1wk)

2(1+c)𝛾k‖Zk‖2Zk,

if ‖Zk‖2 ≤ (1 + 2(1 + c)𝛾k)𝜆1wk

S(‖Zk‖2, 𝜆1wk𝜃𝜃−1
)

‖Zk‖2(2(1+c)𝛾k− 1

𝜃−1
)
Zk,

if (1 + 2(1 + c)𝛾k)𝜆1wk < ‖Zk‖2 ≤ 2(1 + c)𝛾k𝜃𝜆1wk
1

2(1+c)𝛾k
Zk

if ‖Zk‖2 > 2(1 + c)𝛾k𝜃𝜆1wk,
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where Zk = U0.5
k

+ U�
k
+ 2(1 + c)�k�̃k and Wk = U�

k
+ 2c�k�̃k.

The proof of Proposition (5) is detailed in Appendix 3.
The following algorithm summarizes the steps of the COGPER framework with 

GLasso, GMCP and GSCAD penalties.

Algorithm 3  The COGPER algorithm for GLasso/GMCP/GSCAD penalties

3.2  Coupled expectile regression with GLLA penalty

Extension of the GLLA trick to solve coupled ER for a more general form of non-
convex penalties can be done in a same way as described in Sect. 2.3. Our theoreti-
cal contribution in Sect. 3.5 is focuced on a class of non-convex penalties. This class 
includes GMCP and GSCAD.

Using the first order Taylor expansion of the non-convex penalty functions around 
‖�̃k‖2 and ‖�̃k‖2 as defined in (15) leads to the following COGPER problem with the 
Group LLA (GLLA) penalty

�̃
(new)

k
= G(Wk) ⟵

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2c𝛾k

S(‖Wk‖2,𝜆2uk)
‖Wk‖2 Wk,

if ‖Wk‖2 ≤ (1 + 2c𝛾k)𝜆2uk
1

2c𝛾k−
1

𝜃 − 1

S(‖Wk‖2, 𝜆2uk𝜃𝜃−1
)

‖Wk‖2 Wk,

if (1 + 2c𝛾k)𝜆2uk < ‖Wk‖2 ≤ 2c𝛾k𝜃𝜆2uk
1

2c𝛾k
Wk if ‖Wk‖2 > 2c𝛾k𝜃𝜆2uk,

(25)(�̂, �̂) = argmin (�,�)∈ℝ2p

�
S�(�,�) +

K�
k=1

w�
k
‖�k‖2 +

K�
k=1

u�
k
‖�k‖2

�
,
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where (w�
k
, u�

k
) = (wkP

�
𝜆1
(‖�̃k‖2), ukP�

𝜆2
(‖�̃k‖2)) for k = 1,… ,K . The weights w′

k
 and 

u′
k
 depend on the non-convex penalty function through the first derivative P�

�
(.) . The 

problem (25) can be solved using a COGPER-GLasso update similar to Algorithm 3. 
The details of the COGPER approaches with GLLA penalty is given in the next 
algorithm.

Algorithm 4  The COGPER algorithm with GLLA penalty

To solve the problem (26), we use Algorithm 3 with GLasso (COGPER-GLasso) 
with (wk, uk) = (w̃i−1

k
, w̃i−1

k
) for k = 1,… ,K.

3.3  Implementation

To obtain the solution path of COGPER with the tuning parameters (�1, �2) , one can 
choose a (relatively small) grid of values for �1 and then compute a grid of values 
of �2 covering the entire range, and vice versa. But, the resulting coefficients’ path 
solution might not be smooth with several successive jumps. To remedy this prob-
lem, we follow Gu and Zou (2016) in their implementation and set a common tuning 
parameter in solving the problem (21) for the two penalties, as follows

where � is an additional weight parameter for the mean loss function, which com-
pensates for the use of the common tuning parameter for both the mean and scale 
coefficients. In our implementation we set the default value of � = 1 as in the SALES 
R package (Gu and Zou 2016), but other values of � can also be investigated.

(27)

(�̂, �̂) = argmin �,�

(
��0.5(�) + ��(�,�)

)
+

K∑
k=1

wkP�(�k) +

K∑
k=1

ukP�(�k),
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The implementation of problem (27) has the advantage of allowing smooth path 
solutions for both � and � . To calculate �max , we first obtain estimates of the inter-
cepts (𝛽0, �̂�0) through the null model wit all the groups’ coefficients are set to be 
zero

According to KKT conditions, we have

Let �min = ��max , where � = 0.001 if n ≤ p ; otherwise, � = 0.05 . We take 
M − 2 = 98 points uniformly in log-scale between �min and �max . This sequence is 
denoted by [�m]M

m=1
 . We use the warm-start and the strong rule tricks to speed up our 

code; see Sect. 2.4 and Ouhourane et al. (2021) for more details.

3.4  Theory for COGPER‑GLasso

For the COGPER-GLasso approach, let A1 ≡ supp(�) and A2 ≡ supp(�) be the 
active group of �∗ and of �∗ respectively. Let A0 = (A1,A

�
2
) , where 

A
�
2
= {k + K ∶ �∗

k
≠ 0} . For N ≥ 1 , define �N = {� ∈ ℝ2p ∶ ‖�Ac

0
‖2,1 ≤ N‖�A0

‖2,1} , 
�GLasso = �GLasso

1
∧ �GLasso

2
= min(�GLasso

1
, �GLasso

2
) and 

�
GLasso

= �GLasso
1

∨ �GLasso
2

= max(�GLasso
1

, �GLasso
2

) and Ñ = 𝜆
GLasso

∕𝜆GLasso . For 
k = 1, 2 , denote 𝜌k,max = 𝜆max(n

−1X⊤
Ak
XAk

) , 𝜌k,min = 𝜆min(n
−1X⊤

Ak
XAk

) , 
�min = �k,min ∧ �k,max , �max = �k,min ∨ �k,max , and we assume 𝜙min > 0 . Let I2 be a 
2 × 2 identity matrix and ⊗ denotes the Kronecker product. To establish an error 
bound for the COGPER-GLasso estimator, the following conditions on the design 
matrix, X , and the random errors, � , are imposed:

• (C1’) The columns of X are normalizable, that is, 

M0 = max1≤j≤p
‖Xj‖2√

n
∈ (0,∞);

• (C2’) M1 = ‖X�∗‖∞ ∈ (0,∞);
• (C3’) The random errors �i are i.i.d. mean-zero sub-Gaussian random vari-

ables;

• (C4’) 𝜅 = 𝜅(3Ñ) ∈ (0,∞) where 𝜅 = inf�∈𝜉N

�⊤[I2 ⊗ (n−1X⊤X)]�

n‖�‖2
2,1

;

• (C5’) 𝜚 = 𝜚(3Ñ) ∈ (0,∞) where 𝜚 = inf�∈𝜉N

�⊤[I2 ⊗ (n−1X⊤X)]�

n‖�A0
‖2,1‖�‖2,∞ .

(𝛽0, �̂�0) = argmin 𝛽0,𝜙0

(
S𝜈𝜏 (𝛽0,𝜙0) ∶= 𝜈𝛹0.5(𝛽0, 0) + 𝛹𝜏(𝛽0, 0,𝜙0, 0)

)
.

𝜆max = max

�
max
k=2,..,K

‖(∇�k
S𝜈𝜏 (𝛽0, �̂�0))‖2∕wk, max

k=2,..,K
‖(∇�k

S𝜈𝜏(𝛽0, �̂�0))‖2∕uk
�
.
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As Theorem 3, both conditions (C�4)−(C�5) are crucial assumptions to establish the 
estimation consistency of the COGPER-GLasso estimator.

Theorem 6 Suppose the true parameter vectors �∗ and �∗ are respectively s1-sparse 
and s2-sparse and assume conditions (C1’)–(C3’) hold. Let �̂ and �̂ be optimal solu-
tions of COGPER-GLasso. Then, with probability at least 1 − �∗

if the condition (C4’) holds, and

if the condition (C5’) holds, where

c0 = 2−1[(1 + c) − (1 + 16c2)1∕2] , K1 = ‖�i‖SG , K2 = ‖S��(�i − e� )‖SG , and C > 0 is 
an absolute constant.

The proof of Theorem 6 is detailed in Appendix 4.

3.5  Theory for non‑convex penalized COGPER

In this section we investigate the theoretical properties of the COGPER approach 
with the non-convex penalties. More precisely, in the next theorem, we show that 
the solution given by Algorithm 4 converges to the oracle estimator in two steps. To 
do this, assume the following additional assumption  (A2) mink∈A1

‖�∗
k
‖ > (a + 1)𝜆1 

and mink∈A2
‖�∗

k
‖ > (a + 1)�e𝜏 �−1𝜆2.

Theorem 7 Suppose that �∗ and �∗ are respectively s1-sparse and s2-sparse. Take 
�̂
GLasso

 and �̂
GLasso

 as the initial values and assume conditions (C1’)–(C3’) hold. 
Take � ≥ (3∕2)(a0c0�)

−1�
GLasso

 when (C4’) holds, or take � ≥ (3∕2)(a0c0�)
−1�

GLasso
 

when (C5’) holds, or take � ≥ (3∕2)�
GLasso

(a0c0)
−1
(
�−1 ∧ �−1

)
 when (C4’) and 

(C5’) hold. The COGPER-GLLA algorithm converges to the oracle estimators 
(�̂

oracle
, �̂

oracle
) in two iterations with probability at least 1 − �1 − �2 − �3 , where 

�1 = �∗ is given in Theorem 6, and

‖‖‖‖‖

(
�̂

�̂

)
−

(
�∗

�∗

)‖‖‖‖‖2,1
≤

(3∕2)𝜆
GLasso

c0𝜅

‖‖‖‖‖

(
�̂

�̂

)
−

(
�∗

�∗

)‖‖‖‖‖2,∞
≤

(3∕2)𝜆
GLasso

c0𝜚

�∗ = 2p exp

(
−

Cn(�GLasso
1

)2

4(K1 + K2)
2M2

0
M2

1
pm

)
+ 2p exp

(
−

Cn(�GLasso
2

)2

4K2
2
M2

0
M2

1
pm

)
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where Q2 =
a1

(1+2c)M0�
1∕2
max

 , R = (1 + a)�1 ∨ �2 , �1 = var(�i + � �
�(�i − E�)) , 

�2 = var(� �
�(�i − E�)) , C, c0 , K1 , and K2 are given in Theorem 6, and the function 

� (.) is defined in Theorem 4.

The proof of Theorem 7 is detailed in Appendix 4.

3.6  Some solution paths of COGPER method

The motivation for the introduction of COGPER approach is illustrated in Fig. 2. 
This figure was provided using the same dataset that is generated under the second 
model (second example) of the simulation study of Sect. 2.7. Recall that under this 
model, G1 was generated with effect on both the mean and scale of the response 
variable.

Figure 2 shows that COGPER-GLasso has a tendency to select the groups of vari-
ables that have effect on the conditional �-mean for � ∈ (0.5, 0.85) . Furthermore, the 
heteroscedastic effect of group G1 in the scale function is often selected as non-null 
effect when fitting COGPER for 0.85th conditional mean (blue-color group in the 
right panel), but it is not the case for � = 0.5 . This shows that the COGPER not only 
can be used to detect the heteroscedastic group G1 , but can also estimates the amount 
of the heteroscedastic effect �̂1 and separates it from the mean function effect �̂1.

4  Numerical experiments

4.1  Simulation setting

We carried out a simulation study to illustrate the utility of the proposed approaches. 
We adapted the scenarios 1 and 2 of Gu and Zou (2016) to the additive model 
context, in which the response is modeled as a sum of functions of the covariates. 
That is, two scenarios were considered in the simulations. In both scenarios, we 

�2 = 2(p − sA1
) exp

(
−

Cn�2a2
1

4M2
0
M2

1
(K1 + K2)

2p
2

A
c
1

)

+ 2(p − sA2
) exp

(
−

Cn�2a2
1

4M2
0
M2

1
K2
2
p
2

A
c
2

)

+ � (Q2�∕2;n, sA1
,K1 + K2,M0,M1,M

2
1
�1,max, �1)

+ � (Q2�∕2;n, sA2
,K2,M0M1,M

2
1
�2,max, �2),

�3 =�
(
c0�min

R

2pk
;n, sA1

,K1 + K2,M0,M1,M
2
1
�1,max, �1

)

+ �
(
c0�min

R

2pk
;n, sA2

,K2,M0M1,M
2
1
�2,max, �2

)
,
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considered fitting an additive model of continuous factors represented by B-splines 
basis functions. This means that the effect of the factors is represented through non-
linear functions. Our simulation results are based on a one independent dataset. This 
data is used to fit models and to select the tuning parameter using the 5-fold cross-
validation (5-fold CV). We selected the regularization parameter by minimizing the 
CV error defined as

and

1

nvalidation

∑
i∈validation

𝜌𝜏(yi − x⊤
i
�̂)

1

nvalidation

∑
i∈validation

𝜌0.5(yi − x⊤
i
�̂) + 𝜌𝜏(yi − x⊤

i
�̂ − x⊤

i
�̂)

Fig. 2  From left to right, the coefficient profiles corresponding to (�̂, �̂) obtained using COGPER-
GLasso for � ∈ (0.5, 0.85) , respectively, are plotted as a function of the tuning parameter � . The data are 
generated from the illustration example 2 of Sect. 2.7. The dashed line indicates the optimal value of � 
using 5-fold CV. The group coefficients G1 , G2 and G3 are plotted in blue, green and red colors, respec-
tively. The black color corresponds to the noisy groups G4 and G5
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for GPER and COGPER, respectively.
The first scenario was considered in Wang et  al. (2012) for the sparse quantile 

regression and in Gu and Zou (2016) for expectile regression. The predictors were 
generated in three steps. First, from the multivariate normal distribution N(0,�) 
with � = (0.5|i−j|)K×K , we draw n-dimensional samples from (Z1,… , ZK) , where 
K = 50 and n = 300 . Second, for each variable Zk, k = 1,… ,K , we derived a cubic 
B-spline basis (W1

k
,W2

k
,W3

k
) . In the third step, we set Xl

1
= �(Wl

1
) and Xl

k
= Wl

k
 for 

k = 2, 3,… ,K and l = 1, 2, 3 , where �(.) is the standard normal CDF. Thus, the design 
matrix is 300 × (50 ∗ 3) and is defined as X = [Xl

k
]l,k , k = 1,… , 50 , and l = 1, 2, 3 . 

The response variable is then simulated from the following linear heteroscedastic 
model:

where � ∼ N(0, 1) . Our aim is to select the active variables Zi through their represen-
tation by the cubic B-spline sets/groups.

We compared GPER and GPQR [Group Penalized Quantile Regression 
Ouhourane et al. (2021)] at two locations � ∈ {0.5, 0.85} for the penalties GLasso, 
GMCP and GSCAD. We computed four statistics, over 100 datasets replication:

• |Â| : the average number of nonzero group variables �̂k ≠ 0 for k = 1,… , p.
• pa : proportion of the event A ⊂ Â , where A is the true active set of �∗ . When 

� = 0.5 , A = {G6,G12,G15,G20} and when � = 0.85 , A = {G1,G6,G12,G15,G20}

.
• p1 : proportion of the event that {1} ⊂ Â.
• FP: False Positive, the number of groups of variables with zero coefficients 

incorrectly included in the estimated model.
• AE: the absolute estimate error, defined by 

∑p

j=0
�𝛽j − 𝛽j�.

From Table 1, one can see that GPER approach with the three penalties selects 
the true active groups, with the pa statistic equals to 100% . On the other hand, the 
Size |Â| and FP statistics reveal that GPER with GMCP and GSCAD has tendency 
to provide more accurate sparse models compared to GLasso. The statistic p1 shows 
how many times the heteroscedastic group variable, represented by Z1 , is selected 
in each model fit. For � = 0.5 , it is expected that Z1 will be not selected since it has 
no effect on the center of y ( p1 is less than 22% ). However, for � = 0.85 , the propor-
tion of selecting Z1 is greater than 84% , for GPER with all penalties. The GPER 
approach detects the effect of heteroscedastic variable Z1 , but, it can not estimate its 
effect value. When comparing expectiles to quantiles, expectile regression performs 
better in the tails of the distribution (results for � = 0.85 ); however, both methods 
behave similarly at the center of the distribution (results for � = 0.5 ). For the AE 
statistic, there is no significant difference among all methods and penalties. In order 
to do that, we take � = 0.85 for easy separation of the conditional mean and scale 

Y = Z6
⏟⏟⏟

G6

+ Z12
⏟⏟⏟

G12

+ Z15
⏟⏟⏟

G15

+ Z20
⏟⏟⏟

G20

+ �(Z1)
⏟⏟⏟

G
�
1

�,
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functions. Based on 100 independent runs, the following statistics are computed 
to evaluate the estimation performance and the sparsity recovery of the COGPER 
estimators:

• |Â1| , |Â2| : the average number of nonzero group variables for �̂ and for �̂ , 
respectively, i.e., Â1 = {k, �̂k ≠ 0} and Â2 = {k, �̂k ≠ 0};

• pa1 , pa2 : proportion of the event A1 ⊂ Â1 , A2 ⊂ Â2 , where A1 and A2 are the 
active group sets of �∗ and �∗ , respectively. In this first scenario, we have 
A1 = {G6,G12,G15,G20} and A2 = {G

�

1
}.

In Table 2, the statistic pa1 is always equals to 100% for COGPER with all penal-
ties; i.e., all groups of variables that have effect on the mean are selected. On the 
other hand, the statistic pa2 shows how many times the heterogeneous group G1 , esti-
mated as �̂1 , is selected. Thus, one can notice that pa2 is always greater than 90% . 
This shows that the COGPER approach can be used to detect the effect of the het-
eroscedastic groups, and can also estimate the amount of the heteroscedastic effect 
and separate it from the effect on the mean function.

Table 1  Simulation results of |Â| , pa , p1 , FP and AE for Scenario 1 based on 100 replications

The five statistics are calculated for GPER approach with all suggested group penalties

� Method Penalty |Â| pa (%) p1 (%) FP AE

0.50 Expectile GLasso 11.02 100 22 7.02 60.47
GMCP 6.38 100 18 2.38 60.64
GSCAD 4.86 100 8 0.86 60.91
GLLA-GMCP 6.24 100 15 2.24 60.65
GLLA-GSCAD 4.89 100 11 0.89 60.01

Quantile GLasso 17.98 100 52 13.98 61.12
GMCP 3.88 96 0 0.15 61.75
GSCAD 4.22 97 2 0.22 64.36
GLLA-GMCP 3.96 97 0 0.09 63.92
GLLA-GSCAD 4.25 100 1 0.25 62.11

0.85 Expectile GLasso 15.34 100 94 11.34 59.14
GMCP 6.26 100 86 2.26 60.17
GSCAD 6.36 100 84 2.36 60.89
GLLA-GMCP 6.31 100 87 2.31 61.02
GLLA-GSCAD 5.01 100 89 1.01 60.57

Quantile GLasso 20.43 100 75.21 16.43 61.76
GMCP 12.24 98 52 8.24 59.77
GSCAD 12.62 100 76.65 8.62 62.08
GLLA-GMCP 12.55 100 49 12.45 60.87
GLLA-GSCAD 13.01 100 71.17 9.01 61.31
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In the first scenario, the active sets of the true groups of variables do not overlap, 
so the GPER can detect active groups of variables in the scale. In the second sce-
nario, we assumed that the active set of groups for the mean overlaps with the active 
set for the scale. More precisely, the procedure for generating the predictors and the 
groups in this scenario was similar to the first scenario, however we generated the 
response variable from the following linear heteroscedastic model

where � ∼ N(0, 1) . This means that the active set of groups for the mean, 
A1 = {G2,G5,G10,G15} , overlaps with the active set of groups for the scale, 
A2 = {G

�

1
,G

�

5
} . The group G1 has effect only on the scale, but G5 has effect on both 

the mean and the scale (i.e. an overlapping group effect). In this scenario we set 
K = 400 and n = 300 . Thus, the design matrix X has 1200 columns and 300 rows. 
All results are based on 100 data replications. Table 3 shows the results of COGPER 
for this scenario, based on the four statistics |Â1| , |Â2| , pa1 , and pa2 , defined earlier.

From Table  3, one can derive similar conclusions for COGPER as in Table  2. 
The statistic pa1 is always equals to 100% for COGPER with all penalties. The sta-
tistic pa2 shows how many times the estimated effect of the heterogeneous groups 
on the scale (i.e. G�

1
 and G�

5
 ) have non-zero values. This statistic is greater than 87% 

Y = Z2
⏟⏟⏟

G2

+ Z5
⏟⏟⏟

G5

+ Z10
⏟⏟⏟

G10

+ Z15
⏟⏟⏟

G15

+( �(Z1)
⏟⏟⏟

G
�
1

+ �(Z5)
⏟⏟⏟

G
�
5

)�,

Table 2  Simulation results 
of |Â1| , |Â2| , pa1 and pa2 for 
Scenario 1, based on 100 
replications

The four statistics are calculated for the COGPER approach with all 
suggested group penalties

� Penalty |Â1| |Â2| pa1 (%) pa2 (%)

0.85 GLasso 19.22 14.66 100 98
GMCP 4.34 3.21 100 90
GSCAD 4.04 2.96 100 94
GLLA-GMCP 4.39 3.13 100 92
GLLA-GSCAD 4.41 2.89 100 95

Table 3  Simulation results 
of |Â1| , |Â2| , pa1 and pa2 for 
Scenario 2, based on 100 
replications

The four statistics are calculated for the COGPER approach with all 
suggested group penalties

� Penalty |Â1| |Â2| pa1 (%) pa2 (%)

0.85 GLasso 8.50 8.10 100 95
GMCP 4.44 2.21% 100 87
GSCAD 6.13 5.32 100 93
GLLA-GMCP 4.52 3.07% 100 94
GLLA-GSCAD 5.96 2.99 100 95
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for COGPER with all penalties. This confirms good performance of the COGPER 
approach in disentangling the heterogeneous overlapping group.

4.2  Checking KKT condition

Since we are updating each group at a time and cycling between groups until con-
vergence, in this section, we numerically demonstrate that the proposed algorithms 
satisfy the KKT conditions, which means that the algorithms converge and find the 
right solution.

The KKT conditions are given in Appendix 5, for each method and each penalty. 
Here, we design the simulation model by using a modified simulation model in Yuan 
and Lin (2006). We simulate first the initial matrix of predictors Xk, (k = 1,… ,K) 
from multivariate normal distribution with correlation � = 0.5 among the columns 
in the design matrix. Then, we considered {Xk,X

2
k
,X3

k
} as a group when fitting the 

two models GPER and COGPER, so the final predictor matrix has the number of 
variables p = 3K . The response variable was generated as follows

where � is chosen so that the signal-to-noise ratio (SNR) is 3 (i.e. 
SNR = ‖X�‖2∕

√
n� ) and �k = (−1)k exp (−(2k − 1)∕20) . We considered two val-

ues for K = 1000, 3000 , and we set n = 100.
Table  4 shows that all group-penalized expectile methods have zero violation 

count for the first scenario ( K = 1000 ) and has also small violation counts for the 
second scenario ( K = 3000 ). Thus, one can argue that all the proposed approaches 
are accurate algorithms that pass KKT checks without sever violation.

Of note, in all the simulation scenarios, we have focused on evaluation of the 
proposed method on the center (i.e., � = 0.5 ) and high expectiles (i.e., � = 0.85 ) of 
the conditional distribution of Y. This is because the error term, in all scenarios, 
is assumed to follow a normal distribution, which is symmetric. This means that 
the theoretical expectile is the same for the lower and upper locations that are sym-
metric to � = 0.5 (e.g., � = 0.15 and � = 0.85 ). We have conducted similar analysis 
for lower expectiles ( � = 0.15 ). As expected, the results (not reported here) of both 
GPER and COGPER were similar to the results presented in Tables 1, 2, 3, and 4.

4.3  Comparison of running times

We compared the computational time of GPER and COGPER approaches versus 
the group penalized quantile regression (GPQR) method using the same example 
employed in the checking KKT conditions section, with n = 100 and K = 1000 
( p = 3000 ). Table 5 shows the results of the three methods over a single data gen-
eration to estimate the optimal model, over a grid of 100 values of � , based on the 
5-fold cross-validation procedure. GPER has a faster running time than GPQR in 
the tails of the outcome distribution, and shows a similar running time to group 

Y =

K∑
k=1

(
2

3
Xk − X2

k
+

1

3
X3
k

)
�k + �, � ∼ N(0, �2),
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penalized quantile in the center of the distribution. However, the running time of 
COGPER is significantly greater compared to GPER because COGPER estimates a 
vector (�,�) that is twice the size of the estimate vector of GPER.

Table 4  Reported numbers are the average number of groups among K groups of variables that violated 
the KKT conditions check using GPER-GLasso, GPER-GMCP, GPER-GSCAD, COGPER-GLasso, 
COGPER-GMCP and COGPER-GSCAD

 Results are averaged over the � sequence of 100 values and averaged over 50 independent runs

�  GLasso   GMCP   GSCAD  GLLA−GMCP GLLA−GSCAD

GPER
n = 100, K = 1000

0.50 0.01 0.01 0.01 0.00 0.01
0.85 0.00 0.00 0.01 0.00 0.00
n = 100, K = 3000

0.50 0.03 0.05 0.04 0.04 0.03
0.85 0.09 0.07 0.05 0.10 0.10
COGPER
n = 100, K = 1000

0.50 0.78 0.63 0.64 0.71 0.72
0.85 2.29 2.12 2.15 2.98 2.05
n = 100, K = 3000

0.50 1.12 1.10 1.10 1.12 1.12
0.85 3.02 2.94 3.25 3.27 2.90

Table 5  Comparison of the running time of GPER, GPQR and COGPER

Results are based on a single data generation, with n = 100 and K = 1000 ( p = 3 × 1000 ), to estimate 
the optimal model over a grid of 100 values of � , using the 5-fold cross-validation procedure

�  GLasso   GMCP   GSCAD  GLLA−GMCP GLLA−GSCAD

GPER
n = 100, K = 1000

0.50 4.91 16.37 10.22 6.02 6.18
0.85 4.87 12.42 8.07 4.97 4.85
GPQR
n = 100, K = 1000

0.50 5.89 11.42 11.48 19.75 14.19
0.85 6.93 14.00 14.31 20.25 16.38
COGPER
n = 100, K = 1000

0.50 78.81 129.0 86.61 73.61 75.46
0.85 104.5 119.5 92.71 71.03 72.13
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5  Real data

5.1  The birth weight data

This dataset was collected by the Medical Center in Springfield, Massachusetts. It 
was used as an illustration example for demonstrating various aspects of regres-
sion modeling (Hosmer Jr et al. 2013; Venables and Ripley 2013). It was also used 
to illustrate both the group penalized least squares and quantile regression models 
(Yuan and Lin 2006; Hashem et  al. 2016). The dataset records the birth weights 
of 189 babies in kilograms and eight predictors concerning their mothers. Among 
the eight predictors, two are continuous (mother’s age in years and mother’s weight 
in pounds at the last menstrual period), and six are categorical: mother’s race with 
three levels (white, black or other), smoking status during pregnancy (yes = 1 or no 
= 0), number of previous premature labours with three levels (0, 1 or 2 or more), 
history of hypertension (yes = 1 or no = 0), presence of uterine irritability (yes = 1 
or no = 0), number of physician visits during the first trimester with four levels (0, 1, 
2 or 3 or more).

A preliminary analysis conducted in Venables and Ripley (2013) suggests 
that non-linear effects of both mother’s age and weight may exist. Thus, in our 
analysis the two continuous variables were represented through two third-order 
polynomials, i.e. the two continuous variables were considered as groups of three 
predictors. The categorical variables were considered as groups using dummy 
variables. So, each categorical predictor of l levels is represented by l − 1 dummy 
variables. In summary, we have a total p = 16 predictors (i.e. 6 continuous and 
10 dummy variables) that are grouped in K = 8 groups. A preliminary analysis of 
this data can be found in the grpreg R package.

The goal of this study is to identify the risk factors associated with the baby 
birth weight response variable. In particular, we aim to explore the effect of the 
mother smoking during pregnancy, which is known to have a heterogeneous 
effect on the baby birth weight (Tang et al. 2021). An ANOVA analysis can be 
investigated to evaluate differences in the birth weight of the babies between the 
two groups: smoking versus non-smoking mothers. An F-value of 7.038 leads to 
a p-value of 0.00867; we can conclude that the mother’s smoking status is sig-
nificantly associated with the baby birth weight. However, ANOVA is a mean-
based test. Thus, we adjusted both GPER and COGPER for three values of 
� = 0.15, 0.50, 0.85 , with aim to capture the heterogeneous effect of the mother 
smoking in different expectiles/locations of the conditional distribution of the 
response variable.

We conducted two analyses for this data. Firstly, we fitted the GPER and COG-
PER with the group Lasso penalty for all 189 babies with 5-fold CV to obtain the 
optimal models for the three locations ( � = 0.15, 0.50, 0.85 ). Figure  3 shows the 
coefficient path solutions of GPER and COGPER for this analysis. The solution of 
the optimal models is indicated by vertical lines, which indicate the optimal val-
ues of � for each model fit. From this figure, one can notice that both GPER and 
COGPER tend to select three important groups of variables: mother’s race (green), 
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smoking status (blue) and uterine irritability (red) for all � = 0.15, 0.50, 0.85 . The 
coefficient values corresponding to smoking-status effects are estimates of the total 
effect on both mean and scale functions when using GPER. This cannot tell us if 
this predictor has an overlapping effect (i.e. if this predictor is also relevant or not 
to the scale function). Interestingly, Fig.  3 (bottom right panel) shows that COG-
PER selects the scale coefficient, �̂� , corresponding to smoking-status as a non zero 
effect, for � = 0.85 (blue path solution). This indicates that smoking-status might 
be a heterogeneous overlapping predictor. COGPER provides also estimates of the 
scale effect and thus it distinguishes it from the mean function effect.

In the second analysis, we randomly divided the data into a training sample of 
two-thirds observations and the remainder making up a test data. For the three val-
ues of � , both GPER and COGPER were fitted to the training data to obtain the 
parameter estimates of the optimal models, where the optimal � values were selected 
by 5-fold CV. The performance of the methods in this analysis is based on the fol-
lowing statistics, which are calculated on the test data:

Fig. 3  At the left and from top to bottom, the coefficient paths of GPER with � = 0.15 , 0.50 and 0.85 
respectively, are shown as a function of the tuning parameter. At the middle and right columns, the coef-
ficients paths � and � of COGPER respectively with � ∈ {0.15, 0.55, 0.85}
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• the estimates of the effects of the three variables that have been selected as 
relevant in the first analysis: Smoking status during pregnancy (blue), moth-
er’s race (green) and presence of uterine irritability (red). These estimates are 
calculated based on the optimal model of the training data analysis.

• the model-size statistic (MS), which is defined as the number of selected 
groups for GPER. For COGPER, two MS statistics are needed: MS1 to count 
the relevant groups for the mean function (i.e. �̂k ≠ 0 ), and MS2 for counting 
the relevant groups for the scale function (i.e. �̂k ≠ 0 ). The MS statistic esti-
mation is also based on the results of the optimal model of the training data 
analysis.

• the expectile-based prediction error (EPE), which is calculated on the test 
data, and is defined as 

 for GPER, and 

 for COGPER.
The whole procedure was repeated 100 times, and we reported the empirical distri-
bution (boxplots) of the aforementioned statistics in Figs. 4 and 5.

Figure 4 highlights the results of the second analysis of GPER and COGPER for 
the estimates of the effects of the three variables that have been selected as rele-
vant in the first analysis. That is, based on 100 replications, this figure reports the 
empirical distribution of the point estimates �̂k ’s of the three important variables for 
the optimal model, which is obtained using 5-fold CV in the analysis of the train-
ing datasets. The empirical distribution of the estimates of the predictors’ effects 
through the 100 replications demonstrates the consistency of both approaches to 
select the three variables as relevant predictors, in particular for � ∈ {0.5, 0.85} . 
Interestingly, Fig.  4 (bottom middle panel) shows also that the distribution of the 
estimates of the smoking-status effect on the variance is non-null when fitting COG-
PER for the location � = 0.85.

Figure  5 shows the results of the second analysis of GPER and COGPER for 
the MS and EPE statistics. The top, middle, and right panels in the left of Fig. 5, 
which report the empirical distribution of the MS statistic for both GPER (MS) and 
COGPER ( MS1 and MS2 ), confirms also the results of Fig. 4. In fact, for both meth-
ods the average, over 100 replication, of the MS statistic equals to 3 (i.e. the aver-
age over 100 run, of the number of active groups at each run, for which �̂k ≠ 0 , is 
approximately equals to 3). This corresponds to the three variables that have been 
declared as relevant in the first analysis. The MS2 distribution of COGPER confirms 
also the presence of an overlapping group, which corresponds to the heterogeneous 
effect of the mother smoking-status predictor. Finally, in terms of prediction, the 
EPE statistic results of Fig. 5 (right two panels) show that the better fit for both mod-
els seems to be at location � = 0.85 . This might again emphasize the usefulness of 

EPEgper =
1

ntest

∑
i∈test

𝜌𝜏(yi − x⊤
i
�̂)

EPEcogper =
1

ntest

∑
i∈test

(yi − x⊤
i
�̂)2 + 𝜌𝜏(yi − x⊤

i
�̂ − x⊤

i
�̂)
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both methods for allowing flexible exploration of the response–predictors relation-
ship. All these results are also in agreements with several studies that have revealed 
a strong and heterogeneous relationship between mother smoking-status and baby 
birth weight (Spady et al. 1986; Wilcox 1993; Chiolero et al. 2005).

5.2  Gene‑based analysis of DNA methylation data near BLK gene

This section considers illustration of the proposed approach via a DNA methyla-
tion data analysis. DNA methylation is an important epigenetic modification that 
can modulates gene expression (either activate or repress gene expression) (Yousefi 
et al. 2022). The methylation level at a genomic position is measured as a proportion 
between 0 and 1, and it refers to the extent to which this specific position is methyl-
ated. Methylation occurs, in general, at CpG sites, defined as specific genomic loca-
tions where a cytosine nucleotide is followed immediately by a guanine nucleotide 
in the DNA sequence. DNA methylation is known to exhibit differentiation across 
cell types (McGregor et al. 2016). Thus, in this section we analyse DNA methylation 

Fig. 4  From left to right column, the box-plot of the coefficient values for mother’s race, smoking status 
and uterine irritability respectively. The GPER and COGPER are fitted with � ∈ {0.15, 0.50, 0.85}
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data to validate the performance of our method on detecting genomic regions 
(groups of predictors) that are differentially methylated between three cell types.

The data considered in this analysis consists of methylation levels of 5,986 CpG 
sites (i.e. predictors) within a genomic region with around 2 Millions base (Mb) 
pairs of Chromosome 8 (2Mb region start-end positions: 10321522–12391296), 
measured on 40 samples using bisulfite sequencing (Lakhal-Chaieb et  al. 2017). 
Each sample corresponds to one of three cell types: B cells (8 samples), T cells 
(19 samples), or Monocytes (13 samples). The 40 samples are obtained from whole 
blood collected on a cohort of healthy individuals from Sweden. The methylation 
levels vary between B-cell types and T-/Monocyte-cell types around the studied 
genomic region. In fact, B-cells are known to be hypomethylated near the BLK gene, 
compared to the other two cell types (Hertz et al. 1999). Thus, the cell type is con-
sidered as the response variable, where y = 1 corresponds to B-cell samples and 
y = 0 corresponds to T- and Monocyte-cell type samples.

We proceeded as follows in order to form groups of predictors (CpGs sites): (1) 
we extracted all genes belongings to the 2Mb region and their start-end genomic 
positions using biomart R package. We obtained K = 36 genes fall within this 
region in total. (2) We used prior information about the genomic position of each 
CpG site and assigned each CpG to a corresponding gene/group based on its base 
pair coordinate. Specifically, we considered that a CpG belongs to a gene/group if its 
genomic position is between the start and end positions of that gene. In total, 4,427 
of all the 5,986 CpG sites spread over the K = 36 genes. The size of the studied 

Fig. 5  Comparison of the number of selected groups (model size) and the expectile-based prediction 
error (EPE), based on 100 replications, for the birth weight dataset. The GPER and COGPER with 
GLasso penalty are fitted for three locations � ∈ {0.15, 0.50, 0.85}
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groups ranges between 1 and 756, with 398 CpG sites falling between the start-end 
coordinates of the BLK gene.

This analysis aims to validate the performance of our methods on detecting the 
group of CpG sites belonging to the BLK gene as a Differentially Methylated Region 
(DMR) for the 0–1 response variable, and to test the power of GPER in classifica-
tion. The classification function is 1(fitted value > 0.5) , where 1(A) is the indicator 
function which equals 1 if A is true and 0 if A is false.

Notice that the analysis results of this dataset using GPER with the non-convex 
penalties, GMCP and GSCAD, were very similar. Thus, we reported only the results 
of GPER with GMCP penalty.

In Fig.  6, the x-axis and the y-axis correspond respectively to the genomic 
position of the CpGs and the coefficient values of the optimal solutions chosen 
by 5-fold CV. We can observe that the region around 11.3 Mb with size 150kb 
is significantly detected/selected by the group expectile methods with � = 0.85 
but not with GPER with � ∈ (0.15, 0.5) . This region is known as a DMR between 
DNA methylation profiles of B-cells and T/Mono cells (Turgeon et  al. 2016). 
This observation is consistent with our analysis of this data using group quantile 
regression (Ouhourane et al. 2021) and a study conducted by Lakhal-Chaieb et al. 
(2017).

A second analysis of this DNA methylation data aims to show the advantages 
of the proposed group penalized expectile regression approaches for classifica-
tion. This analysis emphasises GPER and COGPER utility when predicting the 
sample cell type (i.e. observation’s class) from a tail location of the distribu-
tion (i.e. � = 0.85 ), in comparison with group penalized least-squares regression 

Fig. 6  At the top and from left to right, the optimal values (5-fold CV) for the regression coefficients of 
GLasso with � = 0.15, 0.50, 0.85 respectively, are shown as a function of a real genomic position. At the 
bottom, the coefficients’ values of the GMcp with the same values of � are displayed
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( � = 0.5 ) and two well-known group supervised classification methods: Group 
Support Vector Machine (GSVM) and group logistic regression (GLogit). The 
latter are both implemented in the gglasso R package (Yang and Zou 2015). 
We randomly divided the data into a training sample of 30 observations with 
the remainder making up a test data. The model is fitted to the training data and 
the misclassification error rate (MER) is calculated on the test data. The MER 
is defined as the ratio of the number of misclassified observations to the total 
number of observations in the test data. The tuning parameters are selected by 
5-fold CV on the training data, and we adjust our models at two different loca-
tions � ∈ {0.5, 0.85} in this analysis. The whole procedure is executed 100 times. 
The results of this analysis are presented in Fig. 7.

In Fig. 7, the DMR region is 100% selected by the GPER approach with both 
GLasso and GMCP penalties, for the location � = 0.85 . However, it is selected 
with a rate less than 80% with the group least squares (GPER with � = 0.5 ), 
GSVM and GLogit methods. In terms of the MSE performance (last panel of 
Fig. 7), the fit of GPER with GLasso at the tail of the response variable ( � = 0.85 ) 
gives the best the best classification error. This, again, confirms the utility of 
GPER for the classification regression framework. The results of GPER with 
� = 0.15 (not reported here) were similar to those of GPER with � = 0.5.

Of note, the analysis of this DNA methylation data using COGPER does not 
reveal any overlapping predictor (i.e. �̂k = 0 , for all k). The conclusions of COG-
PER in terms of selecting the BLK gene as a DMR were relatively similar to those 
GPER; but COGPER seemed to be less consistent compared to GPER in this DNA 
methylation analysis (results not reported here). We decided to not report COGPER 
to provide a clear summary analysis of this data and to avoid results redundancy.

6  Discussion

In this paper, we have proposed the group penalized expectile regression approaches 
(GPER and COGPER) for selection of grouped variables. Both approaches, (CO)
GPER, handle most known group penalties in the literature, namely, group Lasso, 
group MCP, group SCAD, and group LLA penalties. (CO)GPER are implemented 
in computationally-efficient groupwise-majorizatoin-descent algorithms. We have 
showed theoretically that, under some regularity conditions, our proposed methods 
enjoy the consistency property for the group Lasso penalty, and we have proved the 
convergence of (CO)-GPER-GLLA algorithms to the oracle estimator in two steps 
for the non-convex penalties. The results from our simulation studies have shown 
that the proposed methods provide appropriate sparse group-variable selection and 
accurate estimation.

GPER and COGPER approaches (and their corresponding penalties) have their 
specific characteristics. When analyzing real datasets, we recommend that users first 
apply GPER with GLasso at different locations to detect heteroscedastic predictors, 
which affect the variance of the outcome and might potentially affect also its mean. 
To further refine the analysis, COGPER with non-convex penalties can be used to 
identify predictors that impact only the variance, if any exist. Additionally, if the 
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primary aim of the analysis is prediction accuracy, then one can use (CO)GPQR 
with the Glasso penalty. If selection consistency and sparsity are the main goals, 
then GPQR with the GSCAD or GMCP penalties would be preferred.

Fig. 7  Comparison of the proportion of selected genes for the DNA methylation data. At the top from 
left to right, the proportion of GPER-GLasso for � ∈ {0.50, 0.85} and GPER-GMCP with � = 0.50 are 
shown as a function of the genomic position. The middle from left to right shows the proportion of 
GPER-GMCP with � = 0.50 , GSVM and GLogit. The bottom row shows the misclassification error for 
all these methods cited above. The x and y axes correspond respectively to the genomic position, tj , of the 
j-th CpG site and the proportion of non-zero (𝛽j)1≤j≤4427)
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It is well known that the asymmetric squared loss function in (CO)GPER might 
be sensitive to outliers either in the response and/or in the covariates. Recently, Zhao 
et  al. (2022) have developed a robust expectile regression approach for ultrahigh 
dimensional heavy-tailed heterogeneous data. The proposed loss function in Zhao 
et al. (2022) differs from the asymmetric squared loss function of (CO)GPER only 
in the tail, where it is peace-wise linear in the extremes to down-weight the outli-
ers. Zhao et al. (2022) have also provided attractive theoretical results for their pro-
posed estimator. The extension of our framework to robust expectile regression in 
the presence of group structure among the covariates could be an interesting avenue 
to explore.

Asymmetric regression models have been increasingly investigated in the last 
decade. The extremile regression (Daouia et  al. 2019, 2021) is a new attractive 
asymmetric least squares analog of quantile and expectile regression, which is found 
to be a useful descriptor of the tail of the response distribution, especially for long-
tailed distributions. Although the extremile loss function is defined through a power 
transformation of the cumulative distribution function of the response variable, the 
extremile regression estimator has a closed form and can be calculated using an iter-
ative reweighted least squares algorithm. This makes it computationally very attrac-
tive. Investigating penalized extremile regression in high-dimensional settings might 
be an interesting avenue of research in penalized asymmetric regression.

Appendix 1: Proof of Proposition 1

Proof Notice first that the expectile loss function ��(.) has a Lipschitz continuous 
derivative � �

�(.) . That is, one can verify that

where c = 2max(�, 1 − �).
For �k and �̃k , let Vk = �k − �̃k and define h(t) = 𝛹𝜏(�̃k + tVk, �̃−k).
Then, we have h(0) = 𝛹𝜏(�̃k, �̃−k) and h(1) = 𝛹𝜏(�k, �̃−k).
By the mean value theorem, there exits a ∈ (0, 1) such that

Noticed that

which leads to

and

(28)|� �
�(u) − � �

�(v)| ≤ c|u − v| ∀u, v ∈ ℝ,

(29)h(1) = h(0) + h�(a) = h(0) + h�(0) + (h�(a) − h�(0)).

h�(t) = n−1
n∑
i=1

x⊤
i,k
Vk𝛹

�
𝜏(yi − x⊤

i,−k
�̃−k − x⊤

i,k
(�̃k + tVk)),

h�(0) = (�k − �̃k)
⊤∇k𝛹𝜏(�̃k, �̃−k),
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Inequality (a) is due to the Eq. (28). Plugging the last inequality into (29), we have

Thus, we have

where �k is the largest eigenvalue of the matrix 2max(1 − 𝜏, 𝜏)
x⊤
k
xk

n
.

This ends the proof of Proposition 1.   ◻

Appendix 2: Proof of Proposition 2

For GSCAD penalty:
The KKT conditions of the objective function in Eq. (11) of the main manuscript 

can be written as

where Zk = −∇k𝛹𝜏(�̃k, �̃−k) + 𝛾k�̃k.

| h�(a) − h�(0)| = |n−1
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• If ‖�k‖2 ≤ � , then −Zk + �k�k + �wku = 0 , where u is the sub-gradient and 
‖u‖2 ≤ 1.

• If �k = 0 , then we have 

 which implies 

• If �k ≠ 0 , then we have 

 Applying the l2 norm to the least equality, we have 

 which implies 

 Moreover, we have 

 Then, we obtain 

• If � ≤ ‖�k‖2 ≤ �� , then 

 It follows that 

 which implies that 

 and 
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 Thus, combining the condition � ≤ ‖�k‖2 ≤ �� and Eq. (30), we get 

 and 

• If ‖�k‖2 ≥ �� , then we have 

 which implies 

 and 

This ends the proof of Proposition 2 for GSCAD penalty.   ◻

For GMCP penalty
Again, the KKT conditions of the objective function in Eq. (11) of the main man-

uscript can be written as

where Zk = −∇k𝛹𝜏(�̃k, �̃−k) + 𝛾k�̃k.

• If ‖�k‖2 ≤ �� , then we have 

 where u is the sub-gradient and ‖u‖2 ≤ 1.

• If �k = 0 , then we obtain 

 Thus, we have 

  • If �k ≠ 0 , then we get 
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 Applying the l2 norm to the last equality, we obtain 

 Combining the condition ‖�k‖2 ≤ �� and the last two equations, we have 

 and 

• If ‖�k‖2 ≥ �� , then we have −Zk + �k�k = 0. This implies that 

This ends the proof of Proposition 2 for GMCP penalty.   ◻

Appendix 3: Proof of Proposition 5

The KKT conditions of the objective functions in (23) and (24) of the main man-
uscript can be written as:

and

where Zk = U0.5
k

+ U�
k
+ 2(1 + c)�k�̃k and Wk = U�

k
+ 2c�k�̃k.

For GLasso penalty
We have

and
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• If �k = 0 and �k = 0 , then we get 

 which implies that 

• If �k ≠ 0 and �k ≠ 0 , then 

 and 

 Moreover, we have 

 and 

 which implies 

 and 

For GSCAD penalty
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 which implies that 

• If �k ≠ 0 and �k ≠ 0 , then we obtain 

 and 

 Applying the l2 norm to the last two equations, we get 
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 and 

 where u and v are the sub-gradient of P�1
(.) at �k and P�2

(.) at �k repectively. So, 
we have ‖u‖2 ≤ 1 , ‖v‖2 ≤ 1.
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 For �k , combining the condition �2 ≤ ‖�k‖2 ≤ ��2 and Eq. (32), we obtain 

−Zk + 2(1 + c)�k�k +
��1wk

� − 1
u −

wk

� − 1
�k = 0

−Wk + 2c�k�k +
��2uk
� − 1

v −
uk

� − 1
�k = 0,

−Zk +
��1wk

� − 1
u = 0 and −Wk +

��2uk
� − 1

v = 0,

‖Zk‖2 ≤
��1wk

� − 1
u and ‖Wk‖2 ≤

��2uk
� − 1

v = 0.

−Zk + 2(1 + c)�k�k +
��1wk

� − 1

�k

‖�k‖2 −
wk

� − 1
�k = 0

−Wk + 2c�k�k +
��2uk
� − 1

�k

‖�k‖2 −
uk

� − 1
�k = 0,

(31)‖Zk‖2 = (2(1 + c)�k −
wk

� − 1
)‖�k‖2 +

wk�1�
� − 1

(

since
Zk

‖Zk‖2
=

�k

‖�k‖2

)

(32)‖Wk‖2 = (2c�k −
uk

� − 1
)‖�k‖2 +

uk�2�
� − 1

(

since
Wk

‖Wk‖2
=

�k

‖�k‖2

)

.

�1wk(�k2(1 + c) + 1) ≤ ‖Zk‖2 ≤ 2(1 + c)�k��wk.

�k =
1

2(1 + c)�k −
wk

�−1

Zk

‖Zk‖2 (‖Zk‖2 − �1wk

�
� − 1

).
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 If ‖Wk‖2 ≥
uk�2�

� − 1
 , then we have 

• If ‖�k‖2 ≥ ��1 and ‖�k‖2 ≥ ��2 , then we have 

 This implies that 

 and 

For GMCP penalty

• If ‖�k‖2 ≤ ��1 and ‖�k‖2 ≤ ��2 , then we get 

 and 

 where u and v are the sub-gradient of P�1
(.) at �k and P�2

(.) at �k repectively. So, 
we have ‖u‖2 ≤ 1 , ‖v‖2 ≤ 1.

• If �k = 0 and �k = 0 , then we have 

 which implies that 

• If �k ≠ 0 and �k ≠ 0 , then 

 and 

�2uk(2c�k + 1) ≤ ‖Wk‖2 ≤ 2c�k��2uk.

�k =
1

2c�k −
uk

�−1

Wk

‖Wk‖2 (‖Wk‖2 − �2uk
�

� − 1
).

−Zk + 2(1 + c)�k�k = 0 and Wk + 2c�k�k = 0.

‖Zk‖2 ≥ 2(1 + c)�k��1wk and �k =
1

2(1 + c)�k
Zk

‖Wk‖2 ≥ 2c�k��2uk and �k =
1

2c�k
Wk.

−Zk + 2(1 + c)�k�k + �1wku −
wk

�
�k = 0

−Wk + 2c�k�k + �2ukv −
uk

�
�k = 0,

−Zk + �1wku = 0 and −Wk + �2ukv = 0,

‖Zk‖2 ≤ �1wku and ‖Wk‖2 ≤ �2ukv = 0.

−Zk + 2(1 + c)�k�k + �1wk

�k

‖�k‖2 −
wk

�
�k = 0
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 which implies that 

 and 

   For �k , combining the condition ‖�k‖2 ≤ ��1 and Eq. (33), we obtain 

 If ‖Zk‖2 ≥ wk�1 , then we have 

 For �k , combining the condition ‖�k‖2 ≤ ��2 and Eq. (34), we obtain 

 If ‖Wk‖2 ≥ uk�2 , then we have 

• If ‖�k‖2 ≥ ��1 and ‖�k‖2 ≥ ��2 , then we have 

 which implies 

 and 

−Wk + 2c�k�k + �2uk
�k

‖�k‖2 −
uk

�
�k = 0,

(33)‖Zk‖2 = (2(1 + c)�k −
wk

�
)‖�k‖2 + wk�1

(

since
Zk

‖Zk‖2
=

�k

‖�k‖2

)

(34)‖Wk‖2 = (2c�k −
uk
�
)‖�k‖2 + uk�2

(

since
Wk

‖Wk‖2
=

�k

‖�k‖2

)

.

‖Zk‖2 ≤ 2(1 + c)�k��wk.

�k =
1

2(1 + c)�k −
wk

�

Zk

‖Zk‖2 (‖Zk‖2 − �1wk).

‖Wk‖2 ≤ 2c�k��2uk.

�k =
1

2c�k −
uk

�

Wk

‖Wk‖2 (‖Wk‖2 − �2uk).

−Zk + 2(1 + c)�k�k = 0 and −Wk + 2c�k�k = 0,

‖Zk‖2 ≥ 2(1 + c)�k��1wk and �k =
1

2(1 + c)�k
Zk

‖Wk‖2 ≥ 2c�k��2uk and �k =
1

2c�k
Wk.
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Appendix 4: Proof of Theorems 3, 4, 6, and 7

Let us state two Lemmas; the first lemma is on the properties of the expectile loss 
function ��(.) and coupled loss function S�(.) . The second lemma deals with sub-
Gaussian random variables.

Lemma 1 (1) For any �, � ∈ ℝp , 2c‖X�‖2
2
∕n ≤ ⟨∇��(� + �) − ∇��(�), �⟩ . (2) Let 

� = (𝜖i, 1 ≤ i ≤ n)⊤ and � = (𝜂i, 1 ≤ i ≤ n)⊤ , where �i = S��(�i − e� ).

For �, � ∈ ℝ2p , we have

where I2 is a 2 × 2 is the identity matrix, and c0 = 2−1[(1 + c) − (1 + 16c2)1∕2] > 0.

Proof of Lemma 1 The parts (1) and (2) of Lemma 1 follow from the part (1) of 
Lemma 4 and the part (1) of Lemma 6 in Gu and Zou (2016), respectively.

Lemma 2 Suppose that Z1,… , Zn ∈ ℝ are i.i.d sub-Gaussian random variables. Let 
Z = (Z1,… , Zn)

⊤ , K = ‖Z‖SG, Z+ = max(Z, 0) and Z− = min(−Z, 0).

(1) If �(Z) = 0 , then there exists an absolute constant C such that for any 
a = (a1,… , an)

⊤ ∈ ℝn and any t ≥ 0 , we have

(2) For any a1, a2 ∈ ℝ , the random variable a1Z
+ + a2Z

− is sub-Gaussian

(3) Let A be a fixed m × n matrix. If �(Z) = 0 and var(Z) = 1 , then there exists an 
absolute constant C > 0 such that for any t ≥ 0

where ‖A‖F and ‖A‖2 represent the Frobenius and l2 norms of matrix A , respectively.

Proof of Lemma 2 The part (1) follows from Proposition 5.10 of Vershynin  (2010), 
and the parts (2) and (3) follow from the parts (4) and (2) of Lemma 3 of Gu and 
Zou (2016).

Proof of Theorem  3 Let �̂ = �̂ − �∗ and z∗
∞
= ‖∇��(�

∗)‖2,∞ , then �̂ satisfies the 
KKT conditions

where

n−1c0‖(I2 ⊗ X)�‖2
2
∕n ≤ ⟨∇S𝜏(� + �) − ∇S𝜏(�), �⟩,

P(�a⊤Z� ≥ t) ≤ 2 exp
�
−

Ct2

K2‖a‖2
2

�
.

P
��‖AZ‖2 − ‖A‖F� ≥ t

�
≤ 2exp

�
−

Ct2

K2‖A‖2
2

�
,

∇k��(�k, �−k) + uk = 0, for k = 1,… ,K,
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It follows that

Lemma 1 and Holder’s inequality lead to

Equality (a) is due to Eq. (35) and �̂k = �̂k for k ∈ A
c.

From the last inequality, we get

Under the event �N = {z∗
∞
≤ �GLasso∕2} , we have

which implies that �̂ ∈ C3 satisfies the condition (C3).
It follows that

Thus, one has

uk =

⎧
⎪⎨⎪⎩

�GLasso
�k

‖�k‖2 for �k ≠ 0,

uk, ‖uk‖2 ∈ [−�GLasso, �GLasso], for �k = 0.

(35)⟨�̂k,uk⟩ = 𝜆GLasso‖�̂k‖2, ∀k = 1,… ,K.

0 ≤ 2c‖X�̂‖2
2
∕n ≤ ⟨∇𝛹𝜏(�̂) − ∇𝛹𝜏(�

∗), �̂⟩

=

K�
k=1

⟨∇𝛹𝜏(�̂k) − ∇𝛹𝜏(�
∗
k
), �̂k⟩

=
�
k∈A

⟨∇𝛹𝜏(�̂k) − ∇𝛹𝜏(�
∗
k
), �̂k⟩ +

�
k∈Ac

⟨∇𝛹𝜏(�̂k) − ∇𝛹𝜏(�
∗
k
), �̂k⟩

(a)
=

�
k∈A

⟨−uk − ∇𝛹𝜏(�
∗
k
), �̂k⟩ +

�
k∈Ac

⟨−uk, �̂k⟩ +
�
k∈Ac

⟨−∇𝛹𝜏(�
∗
k
), �̂k⟩

≤
�
k∈A

‖ − uk − ∇𝛹𝜏(�
∗
k
)‖2‖�̂k‖2 −

�
k∈Ac

𝜆GLasso‖�̂k‖2
+

�
k∈Ac

‖ − ∇𝛹𝜏(�
∗
k
)‖2‖�̂k‖2

≤
�
k∈A

‖ − uk‖2‖�̂k‖2 +
�
k∈A

‖ − ∇𝛹𝜏(�
∗
k
)‖2‖�̂k‖2 − 𝜆GLasso

�
k∈Ac

‖�̂k‖2
+

�
k∈Ac

‖ − ∇𝛹𝜏(�
∗
k
)‖2‖�̂k‖2.

(36)0 ≤ 2c‖X�̂‖2
2
∕n ≤ (z∗

∞
+ 𝜆GLasso)‖�̂A‖2,1 + (z∗

∞
− 𝜆GLasso)‖�̂Ac‖2,1.

‖�̂Ac‖2,1 ≤
z∞ + 𝜆GLasso

−z∞ + 𝜆GLasso
‖�̂A‖2,1 ≤ 3‖�̂A‖2,1,

2c𝜅‖�̂‖2
2,1

≤ 2c‖X�̂‖2
2
∕n ≤

3

2
𝜆GLasso‖�̂A‖2,1 ≤ 3

2
𝜆GLasso‖�̂‖2,1.

‖�̂‖2,1 ≤ 3𝜆GLasso(4𝜅c)−1.
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Similarly, by condition (C4) and Eq. (36), we deduce

then

Thus, we have

Developing the last term of (37), we have

Note that Zi = 2��+
i
− 2(1 − �)�−

i
 , where �+ = max(�, 0) , �− = max(−�, 0) . It fol-

lows by part (2) of Lemma 2 and E�(�i) = 0 that Zi are i.i.d sub-Gaussian random 
variables. Now by part (1) of Lemma 2 we have

From (37) and (38) we deduce

2nc𝜚‖�̂‖2,1‖�̂‖2,∞ ≤ 2c‖X�̂‖2
2
∕n ≤

3

2
𝜆GLasso‖�̂A‖2,1 ≤ 3

2
𝜆GLasso‖�̂‖2,1;

‖�̂‖2,∞ ≤ 3𝜆GLasso(4c𝜚)−1.

(37)

P

��‖�̂‖2,1 ≤ 3𝜆GLasso(4𝜅c)−1
�
∩
�‖�̂‖2,∞ ≤ 3𝜆GLasso(4c𝜚)−1

��

≥ P(z∗
∞
≤ 𝜆GLasso∕2)

≥ 1 − P

�
‖∇𝛹𝜏(�

∗)‖2,∞ ≥ 𝜆GLasso∕2

�
.

P
(

‖∇��(�∗)‖2,∞ ≥ �GLasso∕2
)

≤
K
∑

k=1
P
(

‖∇��(�∗
k )‖2 ≥ �GLasso∕2

)

≤
K
∑

k=1
P
(

‖

x⊤k
n
Z‖2 ≥ �GLasso∕2

)

≤
K
∑

k=1
P
(

‖

x⊤k
√

n
Z‖∞ ≥

√

n�GLasso

2
√

pk

)

≤
K
∑

k=1
pkmax1≤j≤pkP

(

|

x⊤k
√

n
Z| ≥

√

n�GLasso

2
√

pk

)

.

(38)
P

�
‖∇��(�k)‖2,∞ ≥ �GLasso∕2

�
≤

K�
k=1

2pk exp (−
Cn(�GLasso)2

4K2
0
M0pk

)

≤ 2p exp (−
Cn(�GLasso)2

4K2
0
M2

0
pm

).
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This ends the proof of Theorem 3.   ◻

Proof of Theorem 4 Let �̂(0)
= �̂

GLasso , under the condition ‖�̂(0)
− �∗‖2,∞ ≤ a0𝜆 and 

by assumptions (A1) and a0 = 1 ∧ a2 , we have
For k ∈ A

c

For k ∈ A

By the last inequality and under property (P5), we have P𝜆(‖�̂ (0)

k
)‖2 = 0 for all 

k ∈ A . Then, �̂(1) is solution to the following problem

By properties (P3) and (P4) and inequation (39), the inequality P�
�
(‖� (0)

k
‖2) ≥ a1� 

holds for k ∈ A
c . Under the event {‖∇k𝛹𝜏(�̂

oracle
)‖2 < a1𝜆,∀k ∈ A

c} , we demon-
strate that �̂oracle is the unique global solution to (40). Indeed, from the convexity of 
�� we obtain

Equality (a) is due to ∇k𝛹𝜏(�̂
oracle

) = 0 for all k ∈ A (KKT conditions of problem 
(10)). Using the inequality (41) leads to the following inequality

P

�
(‖�̂‖2,1 ≤ 3𝜆GLasso(4𝜅c)−1) ∩ (‖�̂‖2,∞ ≤ 3𝜆GLasso(4c𝜚)−1)

�

≥ 1 − 2p exp

�
−

Cn(𝜆GLasso)2

4K2
0
M0

0
pm

�
.

(39)
‖�̂ (0)

k
‖2 ≤ ‖�̂ (0)

− �∗‖2,∞ for k ∈ A
c (�∗

k
= 0)

≤ a0𝜆

≤ a2𝜆.

‖�̂ (0)

k
‖2 ≥ mink∈A‖�∗

k
‖2 − ‖�̂ (0)

− �∗‖2,∞
> (1 + a)𝜆 − a0𝜆

> a𝜆.

(40)�̂
(1)

= argmin �

�
��(�) +

�
k∈Ac

P�
�(‖� (0)

k
‖2)‖�k‖2

�
.

(41)
𝛹𝜏(�) ≥ 𝛹𝜏(�̂

oracle
) +

K�
k=1

⟨∇k𝛹𝜏(�̂
oracle

), �k − �̂
oracle

k
⟩;

(a)
= 𝛹𝜏(�̂

oracle
) +

�
k∈Ac

⟨∇k𝛹𝜏(�̂
oracle

), �k − �̂
oracle

k
⟩.
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Inequalities (a) and (b) are due to the fact that 
⟨∇k𝛹𝜏(�̂

oracle
), �̂k⟩ ≥ −‖∇k𝛹𝜏(�̂

oracle
)‖2‖�k‖2 and the condition (P4). Combining 

the last inequality with the uniqueness of the solution of problem (10), we conclude 
that �̂oracle is the unique solution to (40). Hence �̂(1)

= �̂
oracle . We start the second 

iteration of GLLA algorithm with the initial value �̂oracle solution of the problem 
(40) at the first iteration.

Let �̂ be the solution to the convex optimization problem in the second itera-
tion of the GLLA algorithm. Under the event {mink∈A‖�̂oracle

k
‖2 > a𝜆} , we have 

P�
𝜆
(‖�̂oracle

k
‖2) = 0, ∀k ∈ A (condition (P5)). So, we obtain

Using �̂
oracle

k
= 0, ∀k ∈ A

c and condition (P4), we have 
P�
𝜆
(‖�̂oracle

k
‖2) = P�

𝜆
(0) ≥ a1𝜆 . Hence, the problem (42) is very similar to 

(40). We deduce that �̂oracle is the unique solution to (42) under the event 
{‖∇A𝛹𝜏(�̂

oracle
)‖2,∞ < a1𝜆} . Then, under the assumption of Theorem 4, the proba-

bility that Algorithm 2 initialized by �̂GLasso given by Theorem 3 converges to �̂oracle 
after two iterations is at least 1 − p1 − p2 − p3 , where

Let �̂ = �̂
GLasso

− �∗ . By the assumption � ≥ 3�GLassoa−1
0

(
(4c�)−1 ∧ (4�c)−1

)
 and 

Theorem 3, we immediately get

�
𝛹𝜏(�)+

�
k∈Ac

P�
𝜆(‖� (0)

k
‖2)‖�k‖2

�
−

�
𝛹𝜏(�̂

oracle
) +

�
k∈Ac

⟨∇k𝛹𝜏(�̂
oracle

), �̂
oracle

k
⟩
�

(a)

≥
�
k∈Ac

�
P�
𝜆(‖� (0)

k
‖2 − ‖∇k𝛹𝜏(�̂

oracle
)‖2

�
‖�k‖2

(b)

≥
�
k∈Ac

�
a1𝜆 − ‖∇k𝛹𝜏(�̂

oracle
)‖2

�
‖�k‖2

≥ 0.

(42)�� = argmin �

�
𝛹𝜏(�) +

�
k∈Ac

P�
𝜆(�̂

oracle

k
)‖�k‖2

�
.

p1 = P(‖�̂GLasso
− �∗‖2,∞ > a0𝜆),

p2 = P({‖∇A
c𝛹𝜏(�̂

oracle
)‖2,∞ ≥ a1𝜆}),

p3 = P({mink∈A‖�̂oracle

k
‖2 ≤ a𝜆}).

p1 ≤ P(‖�̂‖2,∞ > 3𝜆GLasso
�
(4c𝜚)−1 ∧ (4𝜅c)−1

�
)

≤ P

�
‖�̂‖2,1 > 3𝜆GLasso(4𝜅c)−1

�
∨ P

�
‖�̂‖2,∞ > 3𝜆GLasso(4c0𝜚)

−1

�

≤ p∗.
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To establishes the bound for p2 , we have

By the same reasoning as in (38), we deduce

Developing the second term of (43), we have

Let d = (di, i = 1… , n)⊤ with di = 𝛹 �
𝜏(yi − x⊤

i
�̂
oracle

) − 𝛹 �
𝜏(yi − x⊤

i
�∗) . Using the 

Cauchy-Schwarz inequality and Lemma 2 of Gu and Zou (2016), we have

(43)

p2 = P({‖∇A
c𝛹𝜏(�̂

oracle
)‖2,∞ ≥ a1𝜆})

≤ P({‖∇A
c𝛹𝜏(�

∗)‖2,∞ ≥ a1𝜆∕2})

+ P({‖∇A
c𝛹𝜏(�

∗) − ∇A
c𝛹𝜏(�̂

oracle
)‖2,∞ ≥ a1𝜆∕2}).

(44)P({‖∇A
c��(�

∗)‖2,∞ ≥ a1�∕2}) ≤ 2(p − sA) exp
�
−

Cn�2a2
1

4K2
0
M2

0
pm

�
.

(45)

P

�
{‖∇A

c𝛹𝜏(�
∗) − ∇A

c𝛹𝜏(�̂
oracle

)‖2,∞ ≥ a1𝜆∕2}

�

≤ P

�
{max
k∈Ac

p
1∕2

k
‖∇k𝛹𝜏(�

∗) − ∇k𝛹𝜏(�̂
oracle

)‖∞ ≥ a1𝜆∕2}

�

≤ P

�
‖∇A

c𝛹𝜏(�
∗) − ∇A

c𝛹𝜏(�̂
oracle

)‖∞ ≥
a1𝜆

2p
1∕2

m

�
.

(46)

‖∇A
c𝛹𝜏(�

∗) − ∇A
c𝛹𝜏(�̂

oracle
)‖∞

= n−1 max
k∈Ac

�
n�
i

dkxik�

≤ n−1 max
k∈Ac

‖d‖2‖Xk‖2
≤ (2cM0)[(�̂

oracle

A
− �∗

A
)⊤(n−1X⊤

A
XA)(�̂

oracle

A
− �∗

A
)]1∕2

≤ 2cM0𝜌
1∕2
max

‖�̂oracle
− �∗‖2.
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Combining (45) and (46), it follows from Lemma 3 and Lemma 4 of Gu and Zou 
(2016) that

The inequalities (a) and (b) are due to the Lemmas 4(2) and 3(3) of Gu and Zou 
(2016) respectively.

Combining (43), (44) and (47), we immediately get the upper bound for p2

To derive the upper bound for p3 , let R = mink∈A‖�∗
k
‖2 − a𝜆 > 0 . Then, we have

where the inequality (a) is due to Lemma 3(3) of Gu and Zou (2016).
This ends the proof of Theorem 4.   ◻

(47)

P

�
{‖∇A

c𝛹𝜏(�
∗) − ∇A

c𝛹𝜏(�̂
oracle

)‖2,∞ ≥ a1𝜆∕2}

�

≤ P

�
‖�̂oracle

− �∗‖2 ≥
a1𝜆

4cM0𝜌
1∕2
maxp

1∕2

m

�

(a)

≤ P

�
‖n−1X⊤

A
𝜉‖2 ≥

a1c𝜌min

2cM0𝜌
1∕2
maxp

1∕2

m

𝜆

�

= P

�
‖n−1X⊤

A
𝜉‖2 ≥ Q1𝜆

�

(b)

≤ 𝛤 (Q1𝜆, n, sA,K0,M0, 𝜌max, 𝜈0).

(48)p2 = 2(p − sA) exp
(
−

Cn�2a2
1

4K2
0
M2

0
pm

)
+ � (Q1�, n, sA,K0,M0, �max, �0).

(49)

P(Ec
3
) ≤ P({mink∈A‖�̂oracle

k
‖2 ≤ a𝜆})

≤ P(max
k∈A

‖�̂oracle

k
− �∗

k
‖2 > R)

≤ P(max
k∈A

p
1∕2

k
‖�̂oracle

k
− �∗

k
‖∞ > R)

≤ P(‖�̂oracle

A
− �∗

A
‖∞ >

R

pA
)

≤ P

�
‖n−1X⊤

A
𝜉‖2 ≥ 2c𝜌minRp

−1

A

�

(a)

≤ 𝛤 (2c𝜌minRp
−1

A
, n, sA,K0,M0, 𝜌max, 𝜈0),
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Proof of Theorem  6 Let �1 = �̂ − �∗ , �2 = �̂ − �∗ , �̂ = (�̂
⊤
, �̂

⊤
)⊤ , �̂ = (�̂

⊤

2
, �̂

⊤

2
)⊤ , 

z∗
1∞

= ‖�S� (�∗)∕��k‖2,∞ and z∗
2∞

= ‖�S� (�∗)∕��k‖2,∞ . By Lemma 1 and similar 
arguments in the proof of Theorem 3, we get

Under the event �1 = {z∗
1∞

≤ �GLasso
1

∕2} and �2 = {z∗
2∞

≤ �GLasso
2

∕2} , it follows from 
the later inequality that

which implies that

Thus, we have

Then, we have �̂ ∈ �3Ñ . Now under conditions (C3)� − (C4)� we have from (50)

then, one has

(50)

0 ≤ n−1c0‖(I2 ⊗ X)�̂‖22∕n
≤ ⟨∇S� (�̂) − ∇S� (�

∗), �̂⟩

=
K
∑

k=1
⟨∇S� (�̂k) − ∇S� (�

∗
k ), �̂k⟩

=
∑

k∈1

⟨∇S� (�̂k) − ∇S� (�
∗
k ), �̂k⟩ +

∑

k∈c
1

⟨∇S� (�̂k) − ∇S� (�
∗
k ), �̂k⟩

+
∑

k∈2

⟨∇S� (�̂k) − ∇S� (�
∗
k ), �̂k⟩ +

∑

k∈c
2

⟨∇S� (�̂k) − ∇S� (�
∗
k ), �̂k⟩

≤ (z∗1∞ + �GLasso1 )‖(�̂1)1
‖2,1 + (z∗1∞ − �GLasso1 )‖(�̂1)c

1
‖2,1

+ (z∗2∞ + �GLasso2 )‖(�̂2)2
‖2,1 + (z∗2∞ − �GLasso2 )‖(�̂2)c

2
‖2,1.

(−z∗
1∞

+ 𝜆GLasso
1

)‖(�̂1)Ac
1
‖2,1 + (−z∗

2∞
+ 𝜆GLasso

2
)‖(�̂2)Ac

2
‖2,1

≤ (z∗
1∞

+ 𝜆GLasso
1

)‖(�̂1)A1
‖2,1

+ (z∗
2∞

+ 𝜆GLasso
2

)‖(�̂2)A2
‖2,1,

2−1𝜆GLasso
1

‖(�̂1)Ac
1
‖2,1 + 2−1𝜆GLasso

2
‖(�̂2)Ac

2
‖2,1 ≤ (3∕2)𝜆GLasso

1
‖(�̂1)A1

‖2,1
+ (3∕2)𝜆GLasso

2
‖(�̂2)A2

‖2,1.

2−1𝜆GLasso‖�̂Ac
0
‖2,1 ≤ 2−1𝜆GLasso

1
‖(�̂1)Ac

1
‖2,1 + 2−1𝜆GLasso

2
‖(�̂2)Ac

2
‖2,1

≤ (3∕2)𝜆GLasso
1

‖(�̂1)A1
‖2,1 + (3∕2)𝜆GLasso

2
‖(�̂2)A2

‖2,1
≤ (3∕2)𝜆

GLasso‖�̂A0
‖2,1.

c0𝜅‖�̂‖22,1 ≤ n−1c0‖(I2 ⊗ X)�̂‖2
2
≤ (3∕2)𝜆

GLasso‖�̂A0
‖2,1

≤ (3∕2)𝜆
GLasso‖�̂‖2,1;

‖�̂‖2,1 ≤ (3∕2)𝜆
GLasso

(c0𝜅)
−1.
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Similarly, by condition (C5)�

thus,

It follows that under event �1 and �2 , we have ‖�̂‖2,∞ ≤ (3∕2)(c0𝜚)
−1𝜆

GLasso
 

and ‖�̂‖2,1 ≤ (3∕2)(c0𝜅)
−1𝜆

GLasso
 . By Lemma 6 of Gu and Zou (2016), �i and 

� = S��(�i − e�) are both mean zero sub-Gaussian random variables with K1 = ‖�i‖SG 
and K2 = ‖�i‖SG . It follows that �i + �i is also sub-Gaussian and we have 
‖�i + �i‖SG ≤ K1 + K2 . Since M1 = ‖X�∗‖∞ , we get

c0𝜚‖�̂A0
‖2,1‖�̂‖2,∞ ≤ n−1c0‖(I2 ⊗ X)�̂‖2

2
≤ (3∕2)𝜆

GLasso‖�̂A0
‖2,1;

‖�̂‖2,∞ ≤ (3∕2)𝜆
GLasso

(c0𝜚)
−1.

P
(

[

‖�̂‖2,1 ≤ (3∕2)(c0�)−1�
GLasso]

∩
[

‖�̂‖2,∞ ≤ (3∕2)(c0�)−1�
GLasso]

)

≥ P(�1 ∩ �2)
≥ 1 − P(�c1) − P(�c2)

= 1 − P
(

‖n−1X⊤W(� + �)‖2,∞ ≥ �GLasso1 ∕2
)

− P
(

‖n−1X⊤W�‖2,∞ ≥ �GLasso2 ∕2
)

≥ 1 −
K
∑

k=1
P
(

‖n−1x⊤k W(� + �)‖2 ≥ �GLasso1 ∕2
)

−
K
∑

k=1
P
(

‖n−1x⊤k W�‖ ≥ �GLasso2 ∕2
)

≥ 1 −
K
∑

k=1
P
(

‖n−1x⊤k W(� + �)‖∞ ≥ �GLasso1 ∕(2
√

pk)
)

−
K
∑

k=1
P
(

‖n−1x⊤k W�‖∞ ≥ �GLasso2 ∕(2
√

pk)
)

≥ 1 −
K
∑

k=1
2pk exp

(

−
Cn(�GLasso1 )2

4(K1 + K2)2M2
0M

2
1pk

)

−

K
∑

k=1
2pk exp

(

−
Cn(�GLasso2 )2

4K2
2M

2
0M

2
1pk

)

≥ 1 − 2p exp
(

−
Cn(�GLasso1 )2

4(K1 + K2)2M2
0M

2
1pm

)

− 2p exp
(

−
Cn(�GLasso2 )2

4K2
2M

2
0M

2
1pm

)

.
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This ends the proof of Theorem 6.   ◻

Proof of Theorem 7 From Lemma 7 of Gu and Zou (2016), the restriction of S�(�,�) 
to the set S = {�,� ∈ ℝ2p ∶ �A

c
1
= 0,�A

c
2
= 0} is strongly convex. Hence, the ora-

cle estimators ( ̂�oracle , �̂oracle ) are the unique solutions of problem (22).
Under the event

and assumption (A2), we have

which implies that P�
𝜆
(‖�̂GLasso

k
‖2) = 0 for k ∈ A1.

We have also

implying that

A similar argument is used to show that P�
𝜆
(‖�̂GLasso

k
‖2) = 0 for k ∈ A2 and 

P�
𝜆
(‖�̂GLasso

k
‖2) ≥ a1𝜆2 for k ∈ A

c
2
.

Now, let �̂1 and �̂1 be the update after the first iteration of the GLLA algorithm, 
then under E1 , ( ̂�

1 �̂1 ) is minimizers of

By definition of the oracle estimators, 𝜕S𝜏(�̂
oracle

, �̂
oracle

)∕𝜕�k = 0 for k ∈ A1 and 
𝜕S𝜏(�̂

oracle
, �̂

oracle
)∕𝜕�k = 0 for k ∈ A2 . Also �̂oracle

k
= 0 for k ∈ A

c
1
 and �̂oracle

k
= 0 

for k ∈ A
c
2
.

It follows from convexity of S�(�,�) that

E1 = {‖�̂GLasso
− �∗‖2,∞ ≤ a0𝜆1; ‖�̂GLasso

− �∗‖2,∞ ≤ a0𝜆2}

min
k∈A1

‖�̂GLasso

k
‖2 ≥ min

k∈A1

‖�∗
k
‖2 − ‖�GLasso − �∗‖2,∞ > a𝜆1,

‖�̂GLasso

A
c
1

‖2,∞ ≤ ‖�GLasso − �∗‖2,∞ ≤ a2𝜆1,

P�
𝜆(‖�̂

GLasso

k
‖2) ≥ a1𝜆1 for k ∈ A

c
1
.

(51)

L𝜏(�,�) ∶= S𝜏(�,�) +
�
k∈Ac

1

P�
𝜆(‖�̂

GLasso

k
‖2)‖�k‖2 +

�
k∈Ac

2

P�
𝜆(‖�̂

GLasso

k
‖2)‖�k‖2.

(52)

S𝜏(�,�) ≥ S𝜏(�̂
oracle

, �̂
oracle

) +

K�
k=1

⟨∇kS𝜏(�̂
oracle

, �̂
oracle

), �k − �̂
oracle

k
⟩;

= S𝜏(�̂
oracle

, �̂
oracle

) +
�
k∈Ac

1

⟨∇kS𝜏(�̂
oracle

, �̂
oracle

), �k − �̂
oracle

k
⟩

+
�
k∈Ac

2

⟨∇kS𝜏(�̂
oracle

, �̂
oracle

),�k − �̂
oracle

k
⟩
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Combining (51) and (52), we have

Inequality (a) is due to

and

Inequality (b) is true under the conditions 
E2 = {‖∇kS𝜏 (�̂

oracle
, �̂

oracle
)‖2 < a1𝜆1,∀k ∈ A

c

1
; ‖∇kS𝜏 (�̂

oracle
, �̂

oracle
)‖2 < a1𝜆2,∀k ∈ A

c

2
}.

Combining the last inequality with the uniqueness of the solution of problem 
(22), we conclude that (�̂oracle

, �̂
oracle

) is the unique solution to (25).
Hence (�̂(1)

, �̂
(1)
) = (�̂

oracle
, �̂

oracle
) . We start the second iteration of GLLA algo-

rithm with the initial value (�̂oracle
, �̂

oracle
) solution of the problem (25) at the first 

iteration. Let (�̂, �̂) be the solution to the convex optimization problem in the second 
iteration of the GLLA algorithm. Under the condition

we obtain

We have also

Then, by property (P5), we have

L𝜏(�,�) − L𝜏(�̂
oracle

, �̂
oracle

)

(a)

≥
�
k∈Ac

1

�
P�
𝜆1
(‖� (0)

k
‖2 − ‖∇kS𝜏(�̂

oracle
, �̂

oracle
)‖2

�
‖�k‖2

+
�
k∈Ac

2

�
P�
𝜆(‖�(0)

k
‖2 − ‖∇kS𝜏(�̂

oracle
, �̂

oracle
)‖2

�
‖�k‖2

≥
�
k∈Ac

1

�
a1𝜆1 − ‖∇kS𝜏(�̂

oracle
, �̂

oracle
)‖2

�
‖�k‖2

+
�
k∈Ac

2

�
a1𝜆2 − ‖∇kS𝜏(�̂

oracle
, �̂

oracle
)‖2

�
‖�k‖2

(b)

≥ 0.

.

⟨∇kS𝜏(�̂
oracle

, �̂
oracle

), �̂
oracle

k
⟩ ≥ −‖∇kS𝜏(�̂

oracle
, �̂

oracle
)‖2‖�k‖2

⟨∇kS𝜏(�̂
oracle

, �̂
oracle

), �̂
oracle

k
⟩ ≥ −‖∇kS𝜏(�̂

oracle
, �̂

oracle
)‖2‖�k‖2.

E2 = {min
k∈A1

‖�̂oracle

k
‖2 > a𝜆1, min

k∈A2

‖�̂oracle

k
‖2 > a𝜆2},

P�
𝜆1
(‖�̂oracle

k
‖2) = 0, ∀k ∈ A1 and P

�
𝜆2
(‖�̂oracle

k
‖2) = 0, ∀k ∈ A2.

(�̂
oracle

k
, �̂

oracle

k�
) = 0, ∀(k, k�) ∈ A

c
1
×A

c
2
.
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Hence, optimization problem in the second iteration becomes

The problem (53) is very similar to (51), thus, we deduce that (�̂oracle
, �̂

oracle
) is the 

unique solution to (53) under the event

Then, under the assumption of Theorem 7, the probability that Algorithm 4 initial-
ized by (�̂

GLasso
, �̂

GLasso
) given by Theorem 6 converges to (�̂oracle

, �̂
oracle

) after two 
iterations is at least 1 − P(Ec

1
) − P(Ec

2
) − P(Ec

3
).

By the assumption of Theorem 7, we immediately get

To establish the bound for P(Ec
2
) , we have

Using (38), we deduce that

P�
𝜆1
(�̂

oracle

k
) = P�

𝜆1
(0) ≥ a1𝜆1 and P

�
𝜆2
(�̂

oracle

k
) = P�

𝜆2
(0) ≥ a1𝜆2.

(53)

�� = argmin �,�

�
S𝜏(�,�) +

�
k∈Ac

1

P�
𝜆1
(�̂

oracle

k
)‖�k‖2 +

�
k∈Ac

2

P�
𝜆2
(�̂

oracle

k
)‖�k‖2

�
.

E3 = {‖∇A1
S𝜏(�̂

oracle
, �̂

oracle
)‖2,∞ < a1𝜆1; ‖∇A2

S𝜏(�̂
oracle

, �̂
oracle

)‖2,∞ < a1𝜆2}.

(54)

P(c
1 ) ≤ P(‖�̂‖2,∞ > a0�)

≤ P
(

‖�̂‖2,∞ > (3∕2)�
GLasso

(

(c0�)−1 ∧ (c0�)−1
))

≤ P
(

‖�̂‖2,1 > (3∕2)�
GLasso

(c0�)−1
)

∨ P
(

‖�̂‖2,∞ > (3∕2)�
GLasso

(c0�)−1
)

≤ �1.

(55)

P(Ec
2
) ≤ P({‖∇A

c
1
S𝜏(�̂

oracle
, �̂

oracle
)‖2,∞ ≥ a1𝜆1}∪

{‖∇A
c
2
S𝜏(�̂

oracle
, �̂

oracle
)‖2,∞ ≥ a1𝜆2})

≤ P({‖∇(A1∪A2)
cS𝜏(�̂

oracle
, �̂

oracle
)‖2,∞ ≥ a1𝜆})

≤ P({‖∇(A1∪A2)
cS𝜏(�

∗,�∗)‖2,∞ ≥ a1𝜆∕2})

+ P({‖∇(A1∪A2)
cS𝜏(�̂

oracle
, �̂

oracle
)

− ∇(A1∪A2)
cS𝜏(�

∗,�∗)‖2,∞ ≥ a1𝜆∕2}).
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where sA1
=
∑

k∈A1
pk and sA2

=
∑

k∈A2
pk.

Let d = (di, i = 1… , n)⊤ with 
di = 𝜌�𝜏(yi − x⊤

i
�̂
oracle

− x⊤
i
�̂
oracle

) − 𝜌�𝜏(yi − x⊤
i
�∗ − x⊤

i
�∗) . It follows that

We have then

By Lemma 3 and Lemma 6 of Gu and Zou (2016), we get

(56)

P({‖∇(1∪2)cS�(�
∗,�∗)‖2,∞ ≥ a1�∕2})

≤ P({‖n−1X⊤
c

1
W(� + �)‖2,∞ ≥ a1�∕2})

+ P({‖n−1X⊤
c

2
W�‖2,∞ ≥ a1�∕2})

≤ P({‖n−1X⊤
c

1
W(� + �)‖∞ ≥ a1�∕(2pc

1
)})

+ P({‖n−1X⊤
c

2
W�‖∞ ≥ a1�∕(2pc

2
)})

≤ 2(p − s1
) exp

(

−
Cn�2a21

4M2
0M

2
1(K1 + K2)2p

2
c

1

)

+ 2(p − s2
) exp

(

−
Cn�2a21

4M2
0M

2
1K

2
2p

2
c

2

)

,

(57)

P

�
{‖∇(A1∪A2)

c𝛹𝜏(�
∗) − ∇(A1∪A2)

c𝛹𝜏(�̂
oracle

)‖2,∞ ≥ a1𝜆∕2}

�

≤ P

�
{ max
k∈(A1∪A2)

c
pk‖∇k𝛹𝜏(�

∗) − ∇k𝛹𝜏(�̂
oracle

)‖∞ ≥ a1𝜆∕2}

�

≤ P

�
‖∇(A1∪A2)

c𝛹𝜏(�
∗) − ∇(A1∪A2)

c𝛹𝜏(�̂
oracle

)‖∞ ≥
a1𝜆

2p(A1∪A2)
c

�
.

(58)

‖∇(A1∪A2)
c𝛹𝜏(�

∗) − ∇(A1∪A2)
c𝛹𝜏(�̂

oracle
)‖∞

≤ M0(‖X(�̂oracle
− �∗)‖2 + ‖b‖2)∕

√
n

≤ M0

�
(1 + 2c)‖XA1

(�̂
oracle

A1
− �∗

A1
)‖2

+ (2c)‖XA2
(�̂

oracle

A2
− �∗

A2
)‖2

�
∕
√
n

≤ (1 + 2c)M0𝜙
1∕2
max

‖�̂oracle
− �∗‖2.



1309Group penalized expectile regression  

Combining (57), (58), and (59), it follows from Lemma 3 and Lemma 4 of Gu and 
Zou (2016) that

To derive the upper bound for P(Ec
3
) , we use assumption (A2) to get

and

It follows that

(59)

P
(

{‖∇(1∪2)c��(�∗) − ∇(1∪2)c��(�̂
oracle

)‖2,∞ ≥ a1�∕2}
)

≤ P
(

‖�̂oracle
− �∗

‖2 ≥
a1�

(1 + 2c)M0�
1∕2
max

)

≤ P
(

‖

‖

‖

‖

1
n

(

X⊤
1
W(� + �)

X⊤
2
W�

)

‖

‖

‖

‖2
≥ Q2�

)

≤ P
(

‖

‖

‖

‖

1
n
X⊤

1
W(� + �)

‖

‖

‖

‖2
≥ Q2�∕2

)

+ P
(

‖

‖

‖

‖

1
n
X⊤

2
W�

‖

‖

‖

‖2
≥ Q2�∕2

)

≤ � (Q2�∕2, n, s1
,K1 + K2,M0,M1,M2

1�1,max, �1)

+ � (Q2�∕2, n, s2
,K2,M0M1,M2

1�2,max, �2).

(60)

�2 = 2(p − s1
) exp

(

−
Cn�2a21

4M2
0M

2
1(K1 + K2)2p

2
c

1

)

+ 2(p − s2
) exp

(

−
Cn�2a21

4M2
0M

2
1K

2
2p

2
c

2

)

+ � (Q2�∕2, n, s1
,K1

+ K2,M0,M1,M2
1�1,max, �1)

+ � (Q2�∕2, n, s2
,K2,M0M1,M2

1�2,max, �2).

min
k∈A1

‖�̂oracle‖ ≥ min
k∈A1

‖�∗‖ − ‖�̂oracle
− �∗‖2,∞

min
k∈A2

‖�̂oracle‖ ≥ min
k∈A2

‖�∗‖ − ‖�̂oracle
− �∗‖2,∞.
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This ends the proof of Theorem 7.   ◻

Appendix 5: Checking KKT condition

We have been proved that the GPER and COGPER algorithms hold in the descent 
property. In the following section, we show that those algorithms converge to a sta-
tionary point by checking KKT conditions. Theorically, the solutions in (6) and (20) 
are established based on KKT conditions, then, they must always verify exactly 
KKT conditions. But, the numerical solution may fail the KKT conditions. more 
details are given (Yang and Zou 2015; Ouhourane et al. 2021). We define numerical 
KKT conditions for the GPER approach with the penalties GLasso, GMCP, GSCAD 
and GLLA, respectively, as follow

(61)
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�
‖∇k𝛹𝜏(�) + 𝜆𝜔k.

�k
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To obtain the KKT conditions for COGPER approach, we replace ��(.) , �k and ( wk

,w′
k
 ) in the above KKT conditions by S�(.) , �k or �k and ( uk,u′k ), respectively.

Funding This work is supported by the Natural Sciences and Engineering Research Council of Can-
ada through individual discovery research grant to Karim Oualkacha and by the Fonds de recherche du 
Québec-Santé through individual Grant # 31110 to Karim Oualkacha. 

Declaration 

Conflict of interest We declare that there are no conflict of interest regarding the publication of this paper. 
Additionally, the data utilized in this study is publicly available.

References

Bickel PJ, Ritov Y, Tsybakov AB et al (2009) Simultaneous analysis of Lasso and Dantzig selector. Ann 
Stat 37(4):1705–1732

Bottai M, Frongillo EA, Sui X, O’Neill JR, McKeown RE, Burns TL, Liese AD, Blair SN, Pate RR 
(2014) Use of quantile regression to investigate the longitudinal association between physical activ-
ity and body mass index. Obesity 22(5):149–156

Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applica-
tions. Springer, Berlin

Candes E, Tao T (2007) The Dantzig selector: statistical estimation when p is much larger than n. Ann 
Stat 35(6):2313–2351

Chiolero A, Bovet P, Paccaud F (2005) Association between maternal smoking and low birth weight in 
switzerland: the eden study. Swiss Med Wkly 135(35–36):525–530

Daouia A, Gijbels I, Stupfler G (2019) Extremiles: A new perspective on asymmetric least squares. J Am 
Stat Assoc 114(527):1366–1381

Daouia A, Gijbels I, Stupfler G (2021) Extremile regression. Journal of the American Statistical Associa-
tion, 1–8

Efron B (1991) Regression percentiles using asymmetric squared error loss. Stat Sin 1:93–125
Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am 

Stat Assoc 96(456):1348–1360
Fan J, Peng H (2004) Nonconcave penalized likelihood with a diverging number of parameters. Ann Stat 

32(3):928–961
Fan J, Xue L, Zou H (2014) Strong oracle optimality of folded concave penalized estimation. Ann Stat 

42(3):819
Gu Y, Zou H et al (2016) High-dimensional generalizations of asymmetric least squares regression and 

their applications. Ann Stat 44(6):2661–2694
Hashem H, Vinciotti V, Alhamzawi R, Yu K (2016) Quantile regression with group lasso for classifica-

tion. Adv Data Anal Classif 10(3):375–390
Hertz JM, Schell G, Doerfler W (1999) Factors affecting de novo methylation of foreign dna in mouse 

embryonic stem cells. J Biol Chem 274(34):24232–24240
Hosmer Jr DW, Lemeshow S, Sturdivant RX (2013) Applied Logistic Regression vol. 398. John Wiley & 

Sons, ???
Huang J, Zhang C-H (2012) Estimation and selection via absolute penalized convex minimization and its 

multistage adaptive applications. J Mach Learn Res 13:1839–1864
Jiang C, Jiang M, Xu Q, Huang X (2017) Expectile regression neural network model with applications. 

Neurocomputing 247:73–86
Koenker R, Bassett G Jr (1978) Regression quantiles. Econom J Econom Soc 46:33–50
Koenker R, Zhao Q (1994) L-estimatton for linear heteroscedastic models. Journaltitle of Nonparametric 

Statistics 3(3–4):223–235



1312 M. Ouhourane et al.

Lakhal-Chaieb L, Greenwood CM, Ouhourane M, Zhao K, Abdous B, Oualkacha K (2017) A smoothed 
em-algorithm for dna methylation profiles from sequencing-based methods in cell lines or for a sin-
gle cell type. Statistical applications in genetics and molecular biology 16(5–6):333–347

Liao L, Park C, Choi H (2019) Penalized expectile regression: an alternative to penalized quantile regres-
sion. Ann Inst Stat Math 71(2):409–438

McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, Greenwood C (2016) An evalu-
ation of methods correcting for cell-type heterogeneity in dna methylation studies. Genome Biology 
17(84)

Meier L, Van De Geer S, Bühlmann P (2008) The group Lasso for logistic regression. J R Stat Soc Ser B 
(Methodol) 70(1):53–71

Meier L, Geer S, Bühlmann P et  al (2009) High-dimensional additive modeling. Ann Stat 
37(6B):3779–3821

Mitchell JA, Hakonarson H, Rebbeck TR, Grant SF (2013) Obesity-susceptibility loci and the tails of the 
pediatric BMI distribution. Obesity 21(6):1256–1260

Mkhadri A, Ouhourane M (2015) A group visa algorithm for variable selection. Statistical Methods & 
Applications 24(1):41–60

Mkhadri A, Ouhourane M, Oualkacha K (2017) A coordinate descent algorithm for computing penalized 
smooth quantile regression. Stat Comput 27(4):865–883

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econom J Econom Soc 
55:819–847

Ogutu JO, Piepho H-P (2014) Regularized group regression methods for genomic prediction: bridge, 
MCP, SCAD, group bridge, group Lasso, sparse group Lasso, group MCP and group SCAD. In: 
BMC proceedings. BioMed Central, p 7

Ouhourane M, Yang Y, Benedet AL, Oualkacha K (2021) Group penalized quantile regression. Statistical 
Methods & Applications, 1–35

Rudelson M, Vershynin R, et al (2013) Hanson-wright inequality and sub-gaussian concentration. Elec-
tronic Communications in Probability 18

Sobotka F, Kauermann G, Waltrup LS, Kneib T (2013) On confidence intervals for semiparametric 
expectile regression. Stat Comput 23(2):135–148

Spady DW, Atrens MA, Szymanski WA (1986) Effects of mother’s smoking on their infants’ body com-
position as determined by total body potassium. Pediatr Res 20(8):716–719

Tang S, Cai Z, Fang Y, Lin M (2021) A new quantile treatment effect model for studying smoking effect 
on birth weight during mother’s pregnancy. Journal of Management Science and Engineering 
6(3):336–343

Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B (Methodol) 
58:267–288

Turgeon M, Oualkacha K, Ciampi A, Miftah H, Dehghan G, Zanke BW, Benedet AL, Rosa-Neto P, 
Greenwood CM, Labbe A, et al (2016) Principal component of explained variance: an efficient and 
optimal data dimension reduction framework for association studies. Statistical methods in medical 
research, 0962280216660128

Venables WN, Ripley BD ( 2013) Modern Applied Statistics with S-PLUS. Springer, ???
Vershynin R (2010) Introduction to the non-asymptotic analysis of random matrices. arXiv preprint 

arXiv: 1011. 3027
Wang L, Wu Y, Li R (2012) Quantile regression for analyzing heterogeneity in ultra-high dimension. J 

Am Stat Assoc 107(497):214–222
Wei F, Zhu H (2012) Group coordinate descent algorithms for nonconvex penalized regression. Comput 

Stat Data Anal 56(2):316–326
Wilcox AJ (1993) Birth weight and perinatal mortality: the effect of maternal smoking. Am J Epidemiol 

137(10):1098–1104
Yang Y, Zou H (2015) Nonparametric multiple expectile regression via ER-boost. J Stat Comput Simul 

85(7):1442–1458
Yang Y, Zou H (2015) A fast unified algorithm for solving group-lasso penalize learning problems. Stat 

Comput 25(6):1129–1141
Yang Y, Zhang T, Zou H (2018) Flexible expectile regression in reproducing kernel Hilbert spaces. Tech-

nometrics 60(1):26–35
Ye F, Zhang C-H (2010) Rate minimaxity of the Lasso and Dantzig selector for the lq loss in lr balls. J 

Mach Learn Res 11:3519–3540

http://arxiv.org/abs/1011.3027


1313Group penalized expectile regression  

Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G, Relton CL (2022) Dna meth-
ylation-based predictors of health: applications and statistical considerations. Nat Rev Genet 
23:369–383

Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc 
Ser B (Methodol) 68(1):49–67

Zhang C-H et  al (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 
38(2):894–942

Zhao J, Zhang Y (2018) Variable selection in expectile regression. Commun Stat Theory Methods 
47(7):1731–1746

Zhao J, Yan G, Zhang Y (2022) Robust estimation and shrinkage in ultrahigh dimensional expectile 
regression with heavy tails and variance heterogeneity. Stat Pap 63(1):1–28

Zou H, Li R (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann Stat 
36(4):1509

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.


	Group penalized expectile regression
	Abstract
	1 Introduction
	2 Expectile regression and group penalizations
	2.1 Overview of the unconditional expectile
	2.2 GPER algorithm
	2.3 ER with group local linear approximation (GLLA) penalty
	2.4 Implementation
	2.5 Theory for GPER-GLasso
	2.6 Theory for non-convex penalized GPER
	2.7 Some solution paths of GPER methods

	3 Coupled group penalized expectile regression: COGPER
	3.1 Methodology: COGPER general algorithm
	3.2 Coupled expectile regression with GLLA penalty
	3.3 Implementation
	3.4 Theory for COGPER-GLasso
	3.5 Theory for non-convex penalized COGPER
	3.6 Some solution paths of COGPER method

	4 Numerical experiments
	4.1 Simulation setting
	4.2 Checking KKT condition
	4.3 Comparison of running times

	5 Real data
	5.1 The birth weight data
	5.2 Gene-based analysis of DNA methylation data near BLK gene

	6 Discussion
	Appendix 1: Proof of Proposition 1
	Appendix 2: Proof of Proposition 2
	Appendix 3: Proof of Proposition 5
	Appendix 4: Proof of Theorems 3, 4, 6, and 7
	Appendix 5: Checking KKT condition
	References




