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A Technical Proofs

A.1 Some details of Lemma 2.1

Since matrix K is positive definite, we can transform α in (4) using θ = Kα, therefore α = K−1θ.
We can then rewrite the minimization problem (4) with respect to θ:

θ̂
[−j]

l = argmin
θ∈IRn

[
1

n

n∑
i=1

(
1− ỹ[j]i θi

)
+
+ λlθ

′K−1θ

]
. (21)

Once θ̂
[−j]

l is obtained, we can compute α̂
[−j]
l = K−1θ̂

[−j]

l . The optimality condition of problem
(21) with respect to θ is

0 ∈ 1

n
ỹ
[j]
i ∂L

(
ỹ
[j]
i θ̂

[−j]
i,l

)
+ 2λl(K

−1θ̂
[−j]

l )i,∀i = 1, . . . , n,

which yields the optimality condition (2.2) after applying α̂
[−j]
l = K−1θ̂

[−j]

l .

A.2 Proof of Theorem 2.2

We first prove inequality (6) for j = 0, namely, the bound for yiK′
iα̂l. When j = 0, problem (4) re-

duces to problem (2), whose sub-gradient optimality condition (aka, Karush–Kuhn–Tucker condition)
with respect to each K′

iαl gives

0 ∈ 1

n
yi∂L(K

′
iα̂l) + 2λlα̂i,l, ∀i, (22)

where ∂L is the subgradient of the hinge loss. For any α, define g(α) = 1
n

∑n
i=1 [1− yiK′

iα]+.
The convexity of g implies

g(α̂l−1) ≥ g(α̂l) +
1

n

n∑
i=1

yiviK
′
i(α̂l − α̂l−1), (23)

for any vi ∈ ∂L(yiK′
iα̂l). Expression (22) indicates vi = −2λlnyiα̂i,l ∈ ∂L(yiK′

iα̂l). By using
vi = −2λlnyiα̂i,l in expression (23) we see

g(α̂l−1) ≥ g(α̂l)− 2λlα̂
′
lK(α̂l−1 − α̂l). (24)

Likewise we have

g(α̂l) ≥ g(α̂l−1)− 2λl−1α̂
′
l−1K(α̂l − α̂l−1). (25)

By summing up inequalities (24) and (25), we have

λl−1α̂
′
l−1K(α̂l − α̂l−1) + λlα̂

′
lK(α̂l−1 − α̂l) ≥ 0,

which is equivalent to(
α̂l −

λl−1 + λl
2λl

α̂l−1

)′

K

(
α̂l −

λl−1 + λl
2λl

α̂l−1

)
≤ (λl−1 − λl)2

4λ2l
α̂′

l−1Kα̂l−1. (26)
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Thus inequality (26) serves as a bound for α̂l when α̂l−1 is known. Let δ = α̂l − λl−1+λl

2λl
α̂l−1. For

each i, inequality (26) gives

yiK
′
iα̂l ≤ max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂′
l−1Kα̂l−1

} yiK′
i

(
λl−1 + λl

2λl
α̂l−1 + δ

)

≤ λl−1 + λl
2λl

yiK
′
iα̂l−1 + max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂′
l−1Kα̂l−1

} |K′
iδ|

=
λl−1 + λl

2λl
yiK

′
iα̂l−1 + max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂′
l−1Kα̂l−1

}
∣∣∣〈K′

iK
− 1

2 ,K
1
2 δ

〉∣∣∣
≤ λl−1 + λl

2λl
yiK

′
iα̂l−1 +

λl−1 − λl
2λl

√
B
√

α̂′
l−1Kα̂l−1,

(27)

where the last inequality is due to Cauchy-Schwartz inequality. Similarly we can show that

yiK
′
iα̂l ≥ min{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂′
l−1Kα̂l−1

} yiK′
i

(
λl−1 + λl

2λl
α̂l−1 + δ

)

≥ λl−1 + λl
2λl

yiK
′
iα̂l−1 − max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂′
l−1Kα̂l−1

} |K′
iδ|

≥ λl−1 + λl
2λl

yiK
′
iα̂l−1 −

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1, ∀i.

(28)

By observing B/(2nλl) > 0 in the definition of a−i,l and a+i,l, inequalities (27) and (28) give
inequality (6) for j = 0, i.e.,

a−i,l ≤ yiK
′
iα̂l ≤ a+i,l.

For j = 1, 2, . . . , n, we define g[j](α) = 1
n

∑n
i=1(1− ỹ

[j]
i K′

iα)+. By using the similar approach of
getting inequality (24), we have

g[j](α̂l) ≥ g[j](α̂[−j]
l )− 2λlα̂

[−j]′

l K(α̂l − α̂
[−j]
l ),

g(α̂
[−j]
l ) ≥ g(α̂l)− 2λlα̂

′
lK(α̂

[−j]
l − α̂l).

By adding the two inequalities above together, we see

(α̂
[−j]
l − α̂l)

′K(α̂
[−j]
l − α̂l) ≤

1

2nλl

∣∣∣∣(1− yjK′
jα̂

[−j]
l

)
+
−

(
1− yjK′

jα̂l

)
+

∣∣∣∣ .
Let ξ = α̂

[−j]
l −α̂l. Due to the Lipschitz continuity of the hinge loss and Cauchy-Schwartz inequality,

we further have

ξ′Kξ ≤ 1

2nλl

∣∣K′
jξ
∣∣ ≤ 1

2nλl

∣∣∣〈K′
jK

− 1
2 ,K

1
2 ξ

〉∣∣∣ ≤ √B
2nλl

√
ξ′Kξ,

which implies
√
ξ′Kξ ≤

√
B/(2nλl). For any i ̸= j,

yiK
′
iα̂

[−j]
l = yiK

′
i(α̂l + ξ)

≤ yiK′
iα̂l + max

ξ:
√

ξ′Kξ≤
√
B/(2nλl)

yiK
′
iξ

≤ yiK′
iα̂l +

B

2nλl

≤ λl−1 + λl
2λl

yiK
′
iα̂l−1 +

λl−1 − λl
2λl

√
B
√

α̂′
l−1Kα̂l−1 +

B

2nλl

= a+i,l,
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where the second to last inequality is from Cauchy-Schwartz inequality and the last inequality is due
to inequality (27). We can similarly show yiK

′
iα̂

[−j]
l ≥ a−i,l for each i ̸= j and thus complete the

proof of inequality (6).

For i = j, α̂[−j]
i,l = 0. For i ̸= j, by the definition of L andR we have yiK′

iα̂
[−j]
l < 1 when i ∈ L

and yiK′
iα̂

[−j]
l > 1 when i ∈ R, thus the proof is completed due to expression (5).

A.3 Proof of Lemma 3.1

The proof of Lemma 3.1 is similar to the proof of Theorem 2.2. For each j = 0, 1, . . . , n, the
sub-gradient optimality condition of problem (13) with respect to β[−j]

0,l and each K′
iα

[−j]
l gives

0 ∈
n∑

i=1

ỹ
[j]
i ∂L

(
ỹ
[j]
i (β̂

[−j]
0,l +K′

iα̂
[−j]
l )

)
,

0 ∈ 1

n
ỹ
[j]
i ∂L

(
ỹ
[j]
i (β̂

[−j]
0,l +K′

iα̂
[−j]
l )

)
+ 2λlα̂

[−j]
i,l , ∀i.

(29)

For any β0 and α, define g̃j(β0,α) = 1
n

∑n
i=1[1− ỹ

[j]
i (β0 +K′

iα)]+. The convexity of g̃j implies

g̃j(β̂
[−j]
0,l−1, α̂

[−j]
l−1 ) ≥ g̃j(β̂

[−j]
0,l , α̂

[−j]
l ) +

1

n

n∑
i=1

ỹ
[j]
i vij(β̂

[−j]
0,l−1 − β̂

[−j]
0,l ) +

1

n

n∑
i=1

ỹ
[j]
i vijK

′
i(α̂

[−j]
l−1 − α̂

[−j]
l ),

(30)
for any vij ∈ ∂L(ỹ[j]i (β̂

[−j]
0,l +K′

iα̂
[−j]
l )). From expressions (29), we let vij = −2λlnỹ[j]i α̂

[−j]
i,l and

then
∑n

i=1 ỹ
[j]
i vij = 0 for each j. Subsequently inequality (30) implies

g̃j(β̂
[−j]
0,l−1, α̂

[−j]
l−1 ) ≥ g̃j(β̂

[−j]
0,l , α̂

[−j]
l )− 2λlα̂

[−j]′

l K(α̂
[−j]
l−1 − α̂

[−j]
l ).

Similarly we have

g̃j(β̂
[−j]
0,l , α̂

[−j]
l ) ≥ g̃j(β̂[−j]

0,l−1, α̂
[−j]
l−1 )− 2λl−1α̂

[−j]′

l−1 K(α̂
[−j]
l − α̂

[−j]
l−1 ).

By adding the above two inequalities, we have(
α̂

[−j]
l − λl−1 + λl

2λl
α̂

[−j]
l−1

)′

K

(
α̂

[−j]
l − λl−1 + λl

2λl
α̂

[−j]
l−1

)
≤ (λl−1 − λl)2

4λ2l
α̂

[−j]′

l−1 Kα̂
[−j]
l−1 .

Let δ = α̂
[−j]
l − λl−1+λl

2λl
α̂

[−j]
l−1 , and then we see for each i ̸= j,

yiK
′
iα̂

[−j]
l ≤ max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂
[−j]′
l−1 Kα̂

[−j]
l−1

} yiK′
i

(
λl−1 + λl

2λl
α̂

[−j]
l−1 + δ

)

≤ λl−1 + λl
2λl

yiK
′
iα̂

[−j]
l−1 + max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂
[−j]′
l−1 Kα̂

[−j]
l−1

} |K′
iδ|

=
λl−1 + λl

2λl
yiK

′
iα̂

[−j]
l−1 + max{

δ:δ′Kδ≤
(λl−1−λl)

2

4λ2
l

α̂
[−j]′
l−1 Kα̂

[−j]
l−1

}
∣∣∣〈K′

iK
− 1

2 ,K
1
2 δ

〉∣∣∣
≤ λl−1 + λl

2λl
yiK

′
iα̂

[−j]
l−1 +

λl−1 − λl
2λl

√
B

√
α̂

[−j]′

l−1 Kα̂
[−j]
l−1

≤ max
j=0,1,...,n

j ̸=i

{
λl−1 + λl

2λl
yiK

′
iα̂

[−j]
l−1 +

λl−1 − λl
2λl

√
B

√
α̂

[−j]′

l−1 Kα̂
[−j]
l−1

}
= c+i,l.

Likewise we can show yiK
′
iα̂

[−j]
l ≥ c−i,l and we thus prove inequality (15).
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A.4 Proof of Lemma 3.2

Proof of (1). Denote by |S| cardinality of a set S. The definition of S1(b) and n+(b) gives

ψ+(b) =

 ∑
i∈S1(b)

yi

+ n+(b) + 1

=− |{i : −b+ c+i,l < 1, yi = −1}|+ |{i : b+ c+i,l < 1, yi = 1}|
+ |{i : b+ c+i,l ≥ 1, b+ c−i,l ≤ 1, yi = 1}|+ 1

=− |{i : −b+ c+i,l < 1, yi = −1}|+ |{i : b+ c+i,l < 1, yi = 1}|
− |{i : b+ c+i,l < 1, yi = 1}|+ |{i : b+ c−i,l ≤ 1, yi = 1}|+ 1

=− |{i : −b+ c+i,l < 1, yi = −1}|+ |{i : b+ c−i,l ≤ 1, yi = 1}|+ 1,

which is non-increasing in b. We also find ψ−(b) non-increasing because

ψ−(b) =

 ∑
i∈S1(b)

yi

− n−(b)− 1

=− |{i : −b+ c+i,l < 1, yi = −1}|+ |{i : b+ c+i,l < 1, yi = 1}|
− |{i : −b+ c+i,l ≥ 1,−b+ c−i,l ≤ 1, yi = −1}| − 1

=− |{i : −b+ c+i,l < 1, yi = −1}|+ |{i : b+ c+i,l < 1, yi = 1}|
+ |{i : −b+ c+i,l < 1, yi = −1}| − |{i : −b+ c−i,l ≤ 1, yi = −1}| − 1

=− |{i : −b+ c−i,l ≤ 1, yi = −1}|+ |{i : b+ c+i,l < 1, yi = 1}| − 1.

Proof of (2). For any j = 0, 1, . . . , n, from inequality (15) and the definition of S1(b) and S2(b),
we have ∂L(yi(b+K′

iα̂
[−j]
l )) = −1 if i ∈ S1(b), and ∂L(yi(b+K′

iα̂
[−j]
l )) = 0 if i ∈ S2(b). Also

by the definition of each ỹ[j]i , we see

ỹ
[j]
i ∂L(ỹ

[j]
i (b+K′

iα̂
[−j]
l )) =

{
−ỹ[j]i if i ∈ S1(b),
0 if i ∈ S2(b).

Hence
n∑

i=1

ỹ
[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
=

∑
i∈S1(b)

ỹ
[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
+

∑
i∈S2(b)

ỹ
[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
+

∑
i∈(S1(b)∪S2(b))C

ỹ
[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
=

∑
i∈S1(b)

(−ỹ[j]i ) +
∑

i∈(S1(b)∪S2(b))C

ỹ
[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
.

When i ∈ (S1(b) ∪ S2(b))C , ∂L(ỹ[j]i (b+K′
iα̂

[−j]
l )) ∈ [−1, 0], so∑

i∈(S1(b)∪S2(b))C

ỹ
[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
∈ [−n+(b), n−(b)],

which says ∑
i∈S1(b)

ỹ
[j]
i ∈ [−n+(b), n−(b)]

is a necessary condition for b = β̂
[−j]
0,l ; otherwise, 0 /∈

∑n
i=1 ỹ

[j]
i ∂L

(
ỹ
[j]
i (b+K′

iα̂
[−j]
l )

)
and the

sub-gradient optimality condition is violated.
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From the definition of ỹ[j]i , we see∑
i∈S1(b)

yi ∈ [−n+(b)− 1, n−(b) + 1] (31)

is a necessary condition for b = β̂
[−j]
0,l for any j. This says that the violation of condition (31) implies

that b ̸= β̂
[−j]
0,l for any j = 0, 1, . . . , n.

Therefore, if ψ+(b) = (
∑

i∈S1(b)
yi) + n+(b) + 1 < 0, then for any b′ > b, ψ+(b′) < 0, that is,∑

i∈S1(b′)
yi < −n+(b′)− 1. This says b > β̂

[−j]
0,l for any j by condition (31).

Proof of (3). If ψ−(b) = (
∑

i∈S1(b)
yi)− n−(b)− 1 > 0, then for any b′ < b, ψ−(b′) > 0, that is,∑

i∈S1(b′)
yi > n−(b

′) + 1. Condition (31) shows that b < β̂
[−j]
0,l for any j = 0, 1, . . . , n.

A.5 Proof of Lemma 3.3

The bi-section algorithm is detailed in Algorithm 2 in Section B. We first show ψ+(B+) < 0 and
ψ−(B−) > 0. By the definition of B+, we have B+ + c−i,l > 1 for all i such that yi = 1, and
−B+ + c+i,l < 1 for all i such that yi = −1. Thus we have n+(B+) = 0, |{i : B+ + c−i,l ≤ 1, yi =

1}| = 0, and then ψ+(B+) = −|{i : −B+ + c+i,l < 1, yi = −1}|+ 1 < 0. Likewise, the definition
of B− gives |{i : B− + c+i,l < 1, yi = 1}| − 1 > 0 and |{i : −B− + c−i,l ≤ 1, yi = −1}| = 0, and
thus the definition of ψ− implies ψ−(B−) > 0.

In Algorithm 2, a+ is initialized to be B+ and ψ+(a+) < 0 always holds when a+ is updated by
some b+ such that ψ+(b+) < 0. As β+

0,l is set to be a+ when the algorithm converges, ψ+(β+
0,l) < 0,

which shows β+
0,l > β̂

[−j]
0,l for any j by (2) of Lemma 3.2.

Likewise, c− is initialized to be B− and ψ−(c−) > 0 always holds when c− is updated by some b−

such that ψ+(b−) > 0. As β−
0,l is set to be c− when the algorithm converges, ψ−(β−

0,l) > 0, which

shows β−
0,l < β̂

[−j]
0,l for any j by (3) of Lemma 3.2.

A.6 Proof of Lemma 3.4

We first show inequality (18) for j = 0, which is equivalent to
c̃−i,l ≤ yiK

′
iα̂l ≤ c̃+i,l.

Denote by g(β0,α) = 1
n

∑n
i=1(1 − yi(β0 + K′

iα))+. The sub-gradient optimality condition of
problem (12) with respect to β0,l and Kαl gives

0 ∈ 1

n
yi∂L(yi(β̂0,l +K′

iα̂l)) + 2λlα̂i,l, ∀i,

0 ∈
n∑

i=1

yi∂L(yi(β̂0,l +K′
iα̂l)).

(32)

The convexity of g implies

g(β̂0,l−1, α̂l−1) ≥ g(β̂0,l, α̂l) +
1

n

n∑
i=1

yivi(β̂0,l−1 − β̂0,l) +
1

n

n∑
i=1

yiviK
′
i(α̂l−1 − α̂l), (33)

for any vi ∈ ∂L(yi(β̂0,l +K′
iα̂l)). By expressions (32) and (33), setting vi = −2λlnyiα̂i,l, we have

g(β̂0,l−1, α̂l−1) ≥ g(β̂0,l, α̂l)− 2λlα̂
′
lK(α̂l−1 − α̂l).

We then use the same approach of getting inequality (27) in the proof of Theorem 2.2 to give

yiK
′
iα̂l ≤

λl−1 + λl
2λl

yiK
′
iα̂l−1 +

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1, ∀i,

yiK
′
iα̂l ≥

λl−1 + λl
2λl

yiK
′
iα̂l−1 −

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1, ∀i.
(34)
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Thus inequality (18) is proved for j = 0.

We then define g[j](β0,α) = 1
n

∑n
i=1(1− ỹ

[j]
i (β0+K′

iα))+ for each j. By using the same approach
of getting inequality (24), we have

g[j](β̂0,l, α̂l) ≥ g[j](β̂[−j]
0,l , α̂

[−j]
l )− 2λlα̂

[−j]′

l K(α̂l − α̂
[−j]
l ),

g(β̂
[−j]
0,l , α̂

[−j]
l ) ≥ g(β̂0,l, α̂l)− 2λlα̂

′
lK(α̂

[−j]
l − α̂l).

By adding the two inequalities above together, we obtain

(α̂
[−j]
l − α̂l)

′K(α̂
[−j]
l − α̂l) ≤

1

2nλl

∣∣∣∣(1− yj β̂[−j]
0,l − yjK

′
jα̂

[−j]
l

)
+
−

(
1− yj β̂0,l − yjK′

jα̂l

)
+

∣∣∣∣ .
(35)

Let ϑ = α̂
[−j]
l − α̂l. Due to the Lipschitz continuity of the hinge loss and inequality (17), we see∣∣∣∣(1− yj β̂[−j]

0,l − yjK
′
jα̂

[−j]
l

)
+
−

(
1− yj β̂0,l − yjK′

jα̂l

)
+

∣∣∣∣
≤
∣∣∣(yj β̂[−j]

0,l + yjK
′
jα̂

[−j]
l

)
−

(
yj β̂0,l + yjK

′
jα̂l

)∣∣∣
≤|β̂[−j]

0,l − β̂0,l|+
∣∣K′

jϑ
∣∣

≤β+
0,l − β

−
0,l +

∣∣K′
jϑ

∣∣
≤β+

0,l − β
−
0,l +

∣∣∣〈K′
jK

− 1
2 ,K

1
2ϑ

〉∣∣∣
≤β+

0,l − β
−
0,l +

√
B
√
ϑ′Kϑ,

(36)

where the last inequality is from Cauchy-Schwartz inequality. Let cl = β+
0,l−β

−
0,l. By inequalities (35)

and (36), we see,

ϑ′Kϑ ≤ 1

2nλl
(cl +

√
B
√
ϑ′Kϑ),

which gives ϑ ∈ W where

W =

{
ϑ :

√
ϑ′Kϑ ≤

√
B

16n2λ2l
+

cl
2nλl

+

√
B

4nλl

}
.

It follows that

max
ϑ∈W

|yiK′
iϑ| ≤ max

ϑ∈W

∣∣∣〈K′
jK

− 1
2 ,K

1
2ϑ

〉∣∣∣ ≤ max
ϑ∈W

√
B
√
ϑ′Kϑ ≤

√
B2

16n2λ2l
+

clB

2nλl
+

B

4nλl
.

(37)

For any j ̸= i, from inequalities (34) and (37) we see

yiK
′
iα̂

[−j]
l = yiK

′
i(α̂l + ϑ) ≤ yiK′

iα̂l + max
ϑ∈W

|yiK′
iϑ| ≤ c̃+i,l,

yiK
′
iα̂

[−j]
l = yiK

′
i(α̂l + ϑ) ≥ yiK′

iα̂l − max
ϑ∈W

|yiK′
iϑ| ≥ c̃−i,l.

A.7 Proof of Theorem 3.5

The sub-gradient optimality condition of problem (13) with respect to β0,l and Kαl gives

0 ∈ 1

n
ỹ
[j]
i ∂L

(
ỹ
[j]
i (β̂

[−j]
0,l +K′

iα̂
[−j]
l )

)
+ 2λlα̂

[−j]
i,l , ∀i. (38)

For any j = 0, 1, . . . , n, we see α̂[−i]
i,l = 0 if i = j. Thus we focus on i ̸= j, where yi = ỹ

[j]
i by

its definition. If i ∈ L̃, then inequality (20) implies ỹ[j]i β̂
[−j]
0,l + ĉ+i,l < 1, then by expression (38),

∂L(ỹ
[j]
i (β̂

[−j]
0,l +K′

iα̂
[−j]
l )) = −1 and α̂[−j]

i,l = ỹ
[j]
i /(2nλl).

If i ∈ R̃, then inequality (20) implies ỹ[j]i β̂
[−j]
0,l + ĉ−i,l > 1, then expression (38) gives ∂L(ỹ[j]i (β̂

[−j]
0,l +

K′
iα̂

[−j]
l )) = 0 and α̂[−j]

i,l = 0.
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B Pseudocode

In Algorithm 3, we summarize the consolidated CV algorithm for solving the general SVM problems
with the bias term introduced in Section 3.

Algorithm 3 Consolidated cross-validation for general SVM problems

Input: λ1 > λ2 > ... > λL,K,y.

1: Obtain
(β̂01, α̂1) = argmin

β0∈IR,α∈IRn

1

n

n∑
i=1

(1− β0 − yiK′
iα)+ + λ1α

′Kα.

2: for l = 2, 3, . . . , L do
3: Obtain c−i,l and c+i,l from equations (14) for each i.
4: Call Algorithm 2 with c−i,l and c+i,l to obtain β+

0,l and β−
0,l.

5: Obtain c̃−i,l and c̃+i,l from Lemma 3.4 for each i.
6: Obtain ĉ−i,l and ĉ+i,l from equation (19) for each i.
7: Call Algorithm 2 with ĉ−i,l and ĉ+i,l to obtain β̃+

0,l and β̃−
0,l.

8: Construct the sets L̃ and R̃ according to Theorem 3.5. Let S = (L̃ ∪ R̃)C .
9: Construct the matrices Γ and Σ.

10: for j = 0, 1, . . . , n do
11: if j > 0 and α̂j,l = 0 then
12: Obtain (β̂

[−j]
0l , α̂

[−j]
l ) = (β̂0l, α̂l).

13: else
14: Construct the vector ȳ[j].
15: Obtain β̂[−j]

0l and η̂
[−j]
l by solving

min
β0∈IR,η∈IRns

[
1

n

n∑
i=1

(
1− ỹ[j]i (β

[−j]
0l + Γ′

iη +
1

2nλl
K′

iȳ
[j]

)
+

+
1

n
ȳ[j]′Γη + λlη

′Ση

]
.

16: Obtain α̂
[−j]
l from expression (7) with L̃ and R̃.

17: end if
18: end for
19: end for
Output: β̂0l, α̂l, β̂

[−j]
0l , and α̂

[−j]
l , for each j = 1, 2, . . . , n and l = 1, 2, . . . , L.

C Scaling Consolidated CV to Large-Scale Data Analysis

Although the kernel SVM is one of the most powerful nonlinear learning algorithms with diverse
applications, one of its computational challenges is that storage and computation of the kernel matrix
can be very expensive. To further improve scalability, we can incorporate kernel approximation into
the existing consolidated CV algorithm. Specifically, random features (Rahimi and Recht, 2007)
or Nyström subsampling (Rudi et al., 2015) can be applied in the exact leave-one-out formula of
the SVM to find a low-cost approximation of the kernel matrix. Integrating these approximation
techniques into our methods can further improve the numerical performance of ccvsvm.

C.1 Consolidated CV with Nyström approaches

In this section, we describe how to incorporate Nyström approaches into ccvsvm. Let f̂(x) be the
prediction function fitted on the training data. Let f̂ [−j](x) be the prediction function fitted on the
training data with the jth sample removed in the LOOCV procedure. For sake of presentation, we
define f̂ [−0](x) = f̂(x) to unify the notation of the training and the tuning of the SVM.

We have that f̂ [−j](x) =
∑

i ̸=j α̃
[−j]
i,l K(xi,x), where α̃

[−j]
l = (α̃

[−j]
1,l , . . . , α̃

[−j]
n,l )′ corresponds to

the solution of (3). According to Lemma 2.1, we know that alternatively f̂ [−j](x) can be obtained
by f̂ [−j](x) =

∑n
i=1 α̂

[−j]
i,l K(xi,x), where α̂

[−j]
l = (α̂

[−j]
1,l , . . . , α̂

[−j]
n,l )′ is obtained by solving a

7



surrogate problem (4) with the full dataset. This is due to the result of Lemma 2.1 that α̂[−j]
l =

(α̃
[−j]
1,l , . . . , α̃

[−j]
j−1,l, 0, α̃

[−j]
j,l , . . . , α̃

[−j]
n−1,l)

′.

We can perform Nyström approximation of f̂ [−j](x) to further improve the numerical performance.
Specifically, we have {x1, . . . ,xn} as n observations of the training set. Let {x̃1, . . . , x̃m} be a
subset of m randomly selected observations (m ≤ n) from the training set. Define an n×m matrix
Knm with (Knm)ij = K(xi, x̃j) and let Kmm be an m×m matrix with (Kmm)jk = K(x̃j , x̃k)

for i ∈ {1, . . . , n} and j, k ∈ {1, . . . ,m}. We can apply Nyström approximation f̂ [−j](x) ≈∑m
i=1 β̂

[−j]
i,l K(x̃i,x) where β̂

[−j]

l = (β̂
[−j]
1,l , . . . , β̂

[−j]
m,l )

′ is the solution of the minimization problem:

β̂
[−j]

l = argmin
β∈IRm

[
1

n

n∑
i=1

(
1− ỹ[j]i (Knm)′iβ

)
+
+ λlβ

′Kmmβ

]
, (39)

where (Knm)i is the ith row of Knm. Compared with (4) which involves the full kernel matrix
K, (39) involves smaller matrix Knm and Kmm. With the introduction of γ = (Kmm)1/2β and
zi = (Knm)′i(K

+
mm)1/2, where K+

mm is the Moore–Penrose inverse of matrix Kmm, problem (39)
can be further convert into a ridge penalized linear problem with the hinge loss:

γ̂
[−j]
l = argmin

γ∈IRm

[
1

n

n∑
i=1

(
1− ỹ[j]i ziγ

)
+
+ λl∥γ∥22

]
. (40)

As a remark, the above Nyström approach is achieved in a consolidated way for the complete data
solution f̂ and all LOOCV solutions f̂ [−j], because the kernel matrix is the same due to the exact
leave-one-out formula.

C.2 Consolidated CV with random features

Alternatively, one can use random features (Rahimi and Recht, 2007) to approximate the kernel
matrix. Suppose that we consider shift-invariant kernels that satisfy K(x,y) = K(x− y). In this
work we use the radial kernel K(x,y) = exp(−σ∥x − y∥22). The kernel can be approximated
by K(x,y) ≈ ⟨φ(x), φ(y)⟩, where an explicit randomized feature mapping φ : IRp → IRm is
obtained by sampling from a distribution defined by the inverse Fourier transformation. Specifically,
φ(x) = cos(ω′x + b) where ω is drawn from N(0, 2σ) and b is drawn uniformly from [0, 2π]. In
order to to achieve computational efficiency, the number of random features m is chosen to be larger
than the original sample dimension p but much smaller than the sample size n. We can use random
features to approximate the leave-one-out prediction function f̂ [−j](x) ≈ (γ̂

[−j]
l )′φ(x). Here the

coefficient γ̂[−j]
l can be obtained by solving the following approximate version of problem

γ̂
[−j]
l = argmin

γ∈IRm

[
1

n

n∑
i=1

(
1− ỹ[j]i ziγ

)
+
+ λl∥γ∥22

]
, (41)

where zi = φ(xi)
′ is the random features for the ith sample. We can see that (40) from the Nyström

approach and (41) from the random-feature approach essentially share the same form, except that
zi’s in the two problems represent different variables.

C.3 Consolidated algorithm for solving problem (40) and (41)

In the previous sections, we have shown that both Nyström approximation and random features
transform the original kernel SVM into linear SVM problems, i.e., (40) and (41). We now give a
consolidated algorithm to solve the problem for all j = 0, 1, 2, . . . , n.

With a given small τ , we first give the smoothed SVM loss,

Lτ (u) =

 0 u ≥ 1 + τ,
(u− (1 + τ))2/(4τ) 1− τ < u < 1 + τ,
1− u u ≤ 1− τ.
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For each j = 0, 1, 2, . . . , n, we develop a proximal gradient descent algorithm which updates
γ(−j,t+1) by

γ(−j,t+1) = γ(−j,t) − nτP−1(Z′s+ 2λlγ
(−j,t)),

for t = 0, 1, 2, . . . until convergence, where

P = Z′Z+ 2nλlτIm

and s is an n-vector whose ith entry is ỹ[j]i L′
τ

(
ỹ
[j]
i Z′γ(−j,t)

)
/n. We keep decreasing τ and repeat

the above procedure until all the solutions satisfy the KKT conditions of problem (40).

In this algorithm, note the matrix inversion does not depend on j, so the computational cost is shared
by all LOOCV computations.

D R Packages, Simulations, and Benchmark Data Sets

R packages:

1. ccvsvm:
https://myweb.uiowa.edu/boxwang/index.html#software

2. magicsvm:
https://myweb.uiowa.edu/boxwang/index.html#software

3. kernlab:
https://cran.r-project.org/web/packages/kernlab/index.html

4. LIBSVM:
https://cran.r-project.org/web/packages/e1071/index.html

Simulation code: https://anonymous.4open.science/r/2022-0764/

Data:

• arrhythmia:
http://archive.ics.uci.edu/ml//datasets/Arrhythmia

• australian:
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+
approval)

• chess:
https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.
+King-Pawn)

• heart:
https://archive.ics.uci.edu/ml/datasets/statlog+(heart)

• leuk:
https://rdrr.io/cran/MASS/man/leuk.html

• malaria:
https://www.nature.com/articles/npre.2011.5929.1.pdf?origin=ppub

• musk:
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)

• sonar:
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,
+Mines+vs.+Rocks)

• valley:
http://archive.ics.uci.edu/ml/datasets/hill-valley
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