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Abstract

We propose a consolidated cross-validation (CV) algorithm for training and tuning
the support vector machines (SVM) on reproducing kernel Hilbert spaces. Our
consolidated CV algorithm utilizes a recently proposed exact leave-one-out formula
for the SVM and accelerates the SVM computation via a data reduction strategy. In
addition, to compute the SVM with the bias term (intercept), which is not handled
by the existing data reduction methods, we propose a novel two-stage consolidated
CV algorithm. With numerical studies, we demonstrate that our algorithm is about
an order of magnitude faster than the two mainstream SVM solvers, kernlab and
LIBSVM, with almost the same accuracy.

1 Introduction

This paper concerns one of the most successful classifiers, the kernel support vector machine (SVM)
(Cortes and Vapnik, 1995; Vapnik, 1995, 1998), which has been popularly used on structured data
in the past two decades. The success of the SVM is mainly attributed to its appealing geometric
interpretation, solid theoretical foundation, and high predictive power. To assess the predictive
accuracy of the SVM, cross-validation (CV)(Wahba and Wold, 1975; Arlot and Celisse, 2010) is
perhaps the most commonly used method in practice. In a K-fold CV procedure, the training data is
randomly split into K equal-sized groups. Based on data splitting, part of the data is used for training
each competing model and the rest of the data is reserved for evaluating the prediction error. The
model with the smallest CV error is finally elected. Typical choices of K are 5, 10, or n (the sample
size), where K = n yields the so-called leave-one-out cross-validation (LOOCV).

LOOCV is generally less used than ten-fold and five-fold CV, largely because of the two popular
arguments: (1) high computational cost of LOOCV; (2) much larger variance than five-fold or ten-fold
CV. We must point out that while the first argument is true in some sense, the second argument is
not generally true about LOOCV. For instance, Kohavi (1995) and Hastie et al. (2009) argue that
leave-one-out is almost unbiased, but it has high variance, leading to unreliable estimates. A series of
revealing works, e.g., Burman (1989); Bengio and Grandvalet (2004); Molinaro et al. (2005); Zhang
and Yang (2015), have shown that, both empirically and theoretically, for modeling procedures with
low instability, LOOCV often has the smallest variability. For example, in the context of the kernel
SVM, Wang and Zou (2021) provided convincing numerical examples to show that (1) LOOCV has
almost no bias in estimating the generalization error; (2) LOOCV does not necessarily have higher
variance than ten-fold and five-fold CV. Consequently LOOCV results in a smaller overall error when
estimating the prediction error as compared with ten-fold and five-fold CV.

From the aforementioned arguments, we can see the only legitimate complaint of LOOCV would
arise from its expensive computation, as a typical approach needs to fit the models n times on the
leave-one-out data before evaluating their performance with each of the sample removed, so the
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computational cost is roughly n times as large as the cost of a single fit on the full data. To mitigate
the computational burden, Golub et al. (1979) proposed a shortcut formula of LOOCV for smoothing
splines such that the whole computation time is of the same order of fitting a single model, and the
shortcut formula later evolved into the generalized cross-validation (GCV) for ridge regression.

Nevertheless, for the kernel classifiers, how to efficiently compute the exact LOOCV is a long-
standing open problem. The shortcut cross-validation formula has been long considered as a unique
property of some linear smoothers, and many works such as the generalized approximated cross-
validation (GACV) (Wahba et al., 1999) resorted to approximating LOOCV, while there is no
theoretical guarantee that LOOCV can always be well approximated. To solve the exact (rather
than approximated) LOOCV, until very recently, Wang and Zou (2022) successfully proposed a
leave-one-out lemma extending the Golub-Heath-Wahba formula to the kernel classifiers. Specifically,
they showed the exact LOOCV error can be obtained by slightly varying the class labels without
literally leaving out some samples during the CV procedure. Since no sample is left out, all the folds
of LOOCV are using the same complete data and thus redundant computational efforts can be saved
to dramatically accelerate LOOCV. Based on the leave-one-out lemma, Wang and Zou (2022) unified
the training and tuning of the SVM and developed a new magicsvm algorithm, which often runs a
magnitude faster than the state-of-art SVM solvers, e.g., kernlab (Karatzoglou et al., 2004) and
LIBSVM (Chang and Lin, 2011).

In this work, the main contribution is to propose a consolidated CV algorithm via data reduction. The
data reduction method was first proposed by Ghaoui et al. (2010) for the lasso method (Tibshirani,
1996) and then extended to the SVM (Ogawa et al., 2013; Wang et al., 2014; Pan and Xu, 2018;
Hong et al., 2019). The key renovation of our proposal is to reduce all the cross-validated data
in a consolidated manner, thereby aiming to speedup the whole SVM procedure. Our method is
fundamentally different from the existing methods which isolate the model training and tuning.
Moreover, the existing data reduction methods cannot handle the SVM with the bias (intercept),
which is essentially useful for achieving high prediction accuracy. To handle the SVM with the bias,
we propose a novel two-stage consolidated CV; such an extension is highly non-trivial.

We implement the consolidate CV in a ccvsvm algorithm. Simulations and nine benchmark data
are used to demonstrate the superior performance of ccvsvm To give a quick demonstration, our
consolidated CV algorithm reduces the run time from more than 1.5 hours (by LIBSVM) to less than
one minute, when performing the exact LOOCV for the kernel SVM on a data set arrhythmia.

The remainder of this paper is organized as follows. In Section 2, we discuss the exact leave-one-out
lemma and then propose a consolidated CV algorithm via data reduction. Section 3 extends the
consolidated CV to handle the general SVM problems with the bias. In Section 4, we demonstrate
the computational advantages of fitting the kernel SVM using our proposed methods over the other
competitors with simulations and real data applications. The paper is concluded in Section 5 with
extensions through kernel approximations and discussions on future directions.

2 Methodology

2.1 SVM and the Exact Leave-One-Out Lemma

Since we need to work with the fundamentals of the SVM, we first review the SVM in this section.

We focus on binary classification. Let L(u) = (1− u)+ = max(1− u, 0) be the hinge loss. Suppose
there are n training samples, (xi, yi), i = 1, 2, . . . , n, where each xi ∈ IRp and yi = ±1. The SVM
can be formulated as a function estimation problem in a reproducing kernel Hilbert space (Wahba,
1990):

f̂l = argmin
f∈HK

[
1

n

n∑
i=1

(1− yif(xi))+ + λl∥f∥2HK

]
, (1)

where λl > 0 is a tuning parameter chosen from a decreasing sequence λ1 > λ2 > . . . > λL,HK ,
the RKHS, is generated by a bivariate kernel function K : X × X → IR, and the classifier f̂ is thus
dubbed kernel SVM. Throughout this paper, we consider the universal kernel, whose induced RKHS
HK is rich enough to yield arbitrarily accurate decision boundaries (Steinwart, 2001; Micchelli et al.,
2006). A commonly used universal kernel is the radial kernel K(xi,xj) = exp(−σ∥xi − xj∥22).
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By the representer theorem (Wahba, 1990), problem (1) has a finite-dimensional solution:

α̂l = argmin
α∈IRn

[
1

n

n∑
i=1

(1− yiK′
iα)+ + λlα

′Kα

]
, (2)

where K is the n× n kernel matrix with Kij = K(xi,xj) and is assumed to be positive definite; Ki

is its ith row. Thus problem (2) has a unique minimizer f̂(x) =
∑n

i=1 α̂iK(xi,x).

To tune the model, with the LOOCV procedure, the SVM is fitted on the training data with the jth
sample opted out: for each l = 1, 2, . . . , L and each j = 1, 2, . . . , n, let α̃[−j]

l be

α̃
[−j]
l = argmin

α∈IRn−1

 1

n

∑
i ̸=j

(
1− yi(K[−j]

i )′α
)
+
+ λlα

′K[−j]α

 , (3)

where K[−j] is the leave-one-out kernel matrix induced by the training data without the jth sample.
Problem (2) refers to the complete data problem, and problem (3) refers to the LOOCV problem.

The bottleneck of the LOOCV problem is mainly due to the computation involving n different
leave-one-out kernel matrices. To reduce the computational burden, this work is based on the exact
leave-one-out lemma (Wang and Zou, 2022) for the kernel SVM, and the key idea is to obtain the
exact LOOCV from the complete kernel matrix.

Lemma 2.1. (Exact leave-one-out lemma) For a given j, let ỹ[j]i = yi if i ̸= j and ỹ[j]j = 0. Define

α̂
[−j]
l = argmin

α∈IRn

[
1

n

n∑
i=1

(
1− ỹ[j]i K′

iα
)
+
+ λlα

′Kα

]
. (4)

Then the solution of problem (3) can be obtained as

α̃
[−j]
l = (α̂

[−j]
1,l , . . . , α̂

[−j]
j−1,l, α̂

[−j]
j+1,l, . . . , α̂

[−j]
n,l )′.

Although problem (3) can be transformed into problem (4), the solutions of the two problems have
different lengths. Lemma 2.1 indicates that α̂[−j]

l = (α̃
[−j]
1,l , . . . , α̃

[−j]
j−1,l, 0, α̃

[−j]
j,l , . . . , α̃

[−j]
n−1,l)

′, i.e.

α̂
[−j]
j,l , the jth element of the solution α̂

[−j]
l , is zero, and the solution of problem (3) can be retrieved

by knocking off the jth element from α̂
[−j]
l .

As a consequence of transforming problem (3) into problem (4), the same kernel matrix K is used in
all the folds during LOOCV, rather than the leave-one-out matrices K[−j], while slightly different
responses are crafted for different j. By sharing the same kernel matrix, some redundant calculations
can be saved and Wang and Zou (2022) developed the efficient algorithm magicsvm.

2.2 Consolidated CV via Data Reduction

On the basis of Lemma 2.1, we propose a data reduction strategy to accelerate the LOOCV computa-
tion of the kernel SVM, which is referred to as consolidated CV.

For notational convenience, the complete data problem (2) can be written as a special case of
problem (4) with j = 0, i.e., α̂l ≡ α̂

[−0]
l and

α̂
[−0]
l = argmin

α∈IRn

[
1

n

n∑
i=1

(
1− ỹ[0]i K′

iα
)
+
+ λlα

′Kα

]
,

where we define ỹ[0]i = yi for each i = 1, 2, . . . , n. By solving problem (4) for all j = 0, 1, . . . , n,
we both train the SVM through the complete data problem (2) and tune it using LOOCV.

The idea of consolidated CV is motivated by the sparsity of the solution α̂
[−j]
l in problem (4). To see

this, we check the optimality condition of problem (4) by taking the sub-differential of the objective
with respect to each K′

iα, for each j = 0, 1, . . . , n:

0 ∈ 1

n
ỹ
[j]
i ∂L

(
ỹ
[j]
i K′

iα̂
[−j]
l

)
+ 2λlα̂

[−j]
i,l , ∀i = 1, . . . , n,
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where ∂L(t) is the subgradient of the hinge loss function: ∂L(t) = −1, if t < 1; ∂L(t) = 0, if t > 1;
and ∂L(t) ∈ [−1, 0] if t = 1. It follows that

α̂
[−j]
i,l =

 ỹ
[j]
i

2nλl
, if ỹ[j]i K′

iα̂
[−j]
l < 1,

0, if ỹ[j]i K′
iα̂

[−j]
l > 1.

By translating ỹ[j]i back to yi, we see

α̂
[−j]
i,l =


yi

2nλl
, if yiK′

iα̂
[−j]
l < 1 and i ̸= j,

0, if yiK′
iα̂

[−j]
l > 1 or i = j.

(5)

Expression (5) hints on a possible data reduction strategy: before invoking the actual calculation
of α̂[−j]

l , if we are advised that yiK′
iα̂

[−j]
l > 1 for some i, then we can directly set α̂[−j]

i,l to zero;

likewise, if yiK′
iα̂

[−j]
l < 1 is given, then α̂[−j]

i,l must be yi/(2nλl) unless i = j. We can pre-
determine the values of some coordinates and only need to focus on the calculation of the remaining
ones. Hence the dimension of problem (4) can be reduced.

The key to performing the data reduction through expression (5) is to know whether yiK′
iα̂

[−j]
l < 1

or > 1 for some i before α̂
[−j]
l is actually computed. We present the following theorem.

Theorem 2.2. For some l > 1, suppose we have solved

α̂l−1 = argmin
α∈IRn

[
1

n

n∑
i=1

(1− yiK′
iα)+ + λl−1α

′Kα

]
.

For each i = 1, 2, . . . , n, define

a+i,l =
λl−1 + λl

2λl
yiK

′
iα̂l−1 +

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1 +
B

2nλl
,

a−i,l =
λl−1 + λl

2λl
yiK

′
iα̂l−1 −

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1 −
B

2nλl
,

where B = maxiK(xi,xi). Then for each j = 0, 1, . . . , n, it holds

a−i,l ≤ yiK
′
iα̂

[−j]
l ≤ a+i,l, ∀i ̸= j. (6)

Further, let L = {i : a+i,l < 1} andR = {i : a−i,l > 1}. Then the solution of problem (4) satisfies that

α̂
[−j]
i,l =

 ỹ
[j]
i

2nλl
, if i ∈ L;

0, if i ∈ R.

In Theorem 2.2, for radial and Laplacian kernels, we can directly set B = 1; for some unbounded
kernels such as polynomial kernels, we calculate B = maxi∈{1,2,...,n}K(xi,xi) based on training
data.

Note that Theorem 2.2 holds for α̂[−j]
l , ∀j = 0, 1, . . . , n. By utilizing knowledge of α̂l−1, the

solution of the complete data problem with the tuning parameter λl−1, we can pre-determining
certain coordinates for both the complete data problem and all LOOCV problems with λl, i.e., α̂[−j]

l
for all j = 0, 1, . . . , n, through L andR, thus performing data reduction in a consolidated fashion.

To solve problem (4), Theorem 2.2 implies that α̂[−j]
i,l for i ∈ L and i ∈ R can be pre-determined, so

we only need to solve α̂[−j]
i,l , for i ∈ S where S ≡ (L ∪ R)C . Denote by τ a one-to-one mapping

from {1, 2, . . . , ns} to S , where ns is the cardinality of S . Let Γ be the n× ns sub-matrix of K such
that its ith column Γi = Kτ(i). Let Σ be the ns × ns matrix such that Σij = Kτ(i)τ(j).
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Algorithm 1 Consolidated cross-validation

Input: λ1 > λ2 > ... > λL,K,y.

1: Obtain
α̂1 = argmin

α∈IRn

1

n

n∑
i=1

(1− yiK′
iα)+ + λ1α

′Kα.

2: for l = 2, 3, . . . , L do
3: Construct the sets L andR according to Theorem 2.2. Let S = (L ∪R)C .
4: Construct the matrices Γ and Σ.
5: for j = 0, 1, . . . , n do
6: if j > 0 and α̂j,l = 0 then
7: Obtain α̂

[−j]
l = α̂l.

8: else
9: Construct the vector ȳ[j].

10: Obtain η̂
[−j]
l by solving problem (8). (If j > 0, initialize the algorithm by η̂l.)

11: Obtain α̂
[−j]
l from expression (7).

12: end if
13: end for
14: end for
Output: α̂l, α̂

[−j]
l , for each j = 1, 2, . . . , n and l = 1, 2, . . . , L.

For each j = 0, 1, . . . , n, let ȳ[j] be the n-vector with the ith element to be ỹ[j]i if i ∈ S, and 0 if
i /∈ S. The solution of problem (4) is obtained as

α̂
[−j]
i,l =


ỹ
[j]
i

2nλl
, if i ∈ L,

0, if i ∈ R,
η̂
[−j]
τ−1(i),l, if i ∈ S,

(7)

where η̂[−j]
τ−1(i),l is the τ−1(i)th element of

η̂
[−j]
l = argmin

η∈IRns

[
1

n

n∑
i=1

(
1− ỹ[j]i Γ′

iη −
1

2nλl
ỹ
[j]
i K′

iȳ
[j]

)
+

+
1

n
ȳ[j]′Γη + λlη

′Ση

]
. (8)

The dimension of problem (8) is ns, which is lower than n – the dimension of the original problem (4).
The matrices Γ and Σ are the same for each j = 0, 1, . . . , n. We shall introduce an optimization
algorithm for solving problem (8) in the next section.

In addition, by utilizing a fact that an SVM solution is unchanged if non-support-vector data are left
out, namely, α̂j,l = 0 for some j implies α̂[−j]

l = α̂l, we can directly obtain the jth LOOCV solution
from the complete data problem without solving problem (8). We summarize the consolidated CV
algorithm in Algorithm 1.

2.3 A Consolidated Algorithm for Solving Problem (8)

Due to Theorem 2.2, we can perform LOOCV by solving problem (8), a reduced-optimization
problem, for each j. To overcome the computational challenge caused by non-smoothness of the
hinge loss, we consider a smoothed loss,

Lτ (u) =

 0 u ≥ 1 + τ,
(u− (1 + τ))2/(4τ) 1− τ < u < 1 + τ,
1− u u ≤ 1− τ,

for some small τ > 0. One can show that Lτ has a Lipschitz continuous gradient,
|L′

τ (t1)− L′
τ (t2)| ≤ 1

2τ |t1 − t2| ,∀t1, t2 ∈ IR. Thus a smoothed surrogate of problem (8) is

η̂
[−j]
τ,l = argmin

η∈IRns

[
1

n

n∑
i=1

Lτ

(
ỹ
[j]
i Γ′

iη −
1

2nλl
ỹ
[j]
i K′

iȳ
[j]

)
+

1

n
ȳ[j]′Γη + λlη

′Ση

]
. (9)
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Problem (9) can be solved using the proximal gradient descent (PGD) algorithm (Parikh and Boyd,
2014). Specifically, the matrix inversion is computed first

P−1 =

(
2λlΣ+

1

nτ
Γ′Γ

)−1

. (10)

Then, for each j = 0, 1, . . . , n, we update

η[−j] ← η[−j] −P−1

(
Γ′z(k) +

1

n
Γ′ȳ[j] + 2λlΣη[−j]

)
(11)

until convergence, and then let η̂[−j]
τ,l ← η[−j]. We claim the above algorithm is consolidated since

the same matrix inversion P−1 obtained from equation (10) can be used in equation (11) for all j (all
folds.) By saving huge computational efforts in inverting n matrices, the consolidated CV algorithm
is much more efficient than the standard CV implementation. We also include the warm-start, say,
using η̂l to initialize η̂

[−j]
l in problem (8), and Nesterov’s acceleration to further boost the algorithm.

We just discussed the PGD algorithm for solving a smoothed SVM problem (9). Interestingly, the
exact SVM solution based on problem (8) can be obtained by iteratively solving problem (9) with
τ1 > τ2 > . . . where τ1 = 1 and τk = τk−1/8 for k > 1. The iteration is able to reach the exact
solution of problem (8) in a finite number of steps, following a simple projection step. To conserve
space, we omit details and refer interesting readers to Wang and Zou (2022).

3 Two-stage Consolidated CV for the General SVM Problems

The consolidated CV developed in Section 2 does not include the bias; nonetheless, the SVM without
the bias may have lower prediction accuracy and its use is limited in certain applications. Although a
regularized bias can be used by adding a constant feature to the data matrix, the standard practice
of the SVM does not regularize the bias term. Thus our goal is to compute the SVM with the bias,
namely, the general SVM problems. In this section, we extend the consolidated CV to handle the
general SVM problems. Such an extension turns out to be non-trivial.

The general SVM problem is formulated as follows,

(β̂0,l, α̂l) = argmin
β0∈IR, α∈IRn

1

n

n∑
i=1

[1− yi(β0 +K′
iα)]+ + λlα

′Kα, (12)

and the corresponding LOOCV problems are, j = 1, 2, . . . , n,

(β̂
[−j]
0,l , α̂

[−j]
l ) = argmin

β0∈IR, α∈IRn

1

n

n∑
i=1

[
1− ỹ[j]i (β0 +K′

iα)
]
+
+ λlα

′Kα. (13)

For notational convenience, we let ỹ[0]i = yi and let (β̂0,l, α̂l) = (β̂
[−0]
0,l , α̂

[−0]
l ), so we extend

problem (13) with j = 0 to include the complete data problem (12) as a special case.

The key difficulty of developing the consolidated CV procedure for the general SVM problems is
that |β̂0,l − β̂[−j]

0,l | is hard to bound. To this end, we propose a two-stage consolidated CV procedure,

where we give a consolidated bound of |β̂0,l − β̂[−j]
0,l | for all j in the first stage.

For l > 1, suppose we have found the solutions of problems (12) and (13) with the tuning parameter
λl−1. Denote these solutions by (β̂0,l−1, α̂l−1) and (β̂

[−j]
0,l−1, α̂

[−j]
l−1 ). In Lemma 3.1, for each i, we

give a consolidated bound of yiK′
iα̂

[−j]
l for all j = 0, 1, . . . , n and j ̸= i.

Lemma 3.1. For each i = 1, 2, . . . , n, define

c+i,l = max
j=0,1,...,n

j ̸=i

{
λl−1 + λl

2λl
yiK

′
iα̂

[−j]
l−1 +

λl−1 − λl
2λl

√
B

√
α̂

[−j]′

l−1 Kα̂
[−j]
l−1

}
,

c−i,l = min
j=0,1,...,n

j ̸=i

{
λl−1 + λl

2λl
yiK

′
iα̂

[−j]
l−1 −

λl−1 − λl
2λl

√
B

√
α̂

[−j]′

l−1 Kα̂
[−j]
l−1

}
,

(14)
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Algorithm 2 Bi-section algorithm to find β+
0,l and β−

0,l

Input: y, c−i,l, c
+
i,l, ϵ = 10−7

1: Compute B+ and B− as

B+ = max

{
max

{i:yi=−1}
{c+i,l − 1}, max

{i:yi=1}
{1− c−i,l}

}
+ ϵ,

B− = min

{
min

{i:yi=−1}
{c−i,l − 1}, min

{i:yi=1}
{1− c+i,l}

}
− ϵ.

2: Let a+ ← B+, c+ ← B−, b+ ← (a+ + c+)/2.
3: repeat
4: Compute ψ+(b+).
5: Let a+ ← b+ and b+ ← (b+ + c+)/2 if ψ+(b+) < 0.
6: Let c+ ← b+ and b+ ← (a+ + b+)/2 if ψ+(b+) ≥ 0.
7: until |a+ − c+| < ϵ.
8: Let β+

0,l ← a+.
9: Let a− ← B+, c− ← B−, b− ← (a− + c−)/2.

10: repeat
11: Compute ψ−(b−).
12: Let a− ← b− and b− ← (b− + c−)/2 if ψ−(b−) ≤ 0.
13: Let c− ← b− and b− ← (a− + b−)/2 if ψ−(b−) > 0.
14: until |a− − c−| < ϵ.
15: Let β−

0,l ← c−.

Output: β+
0,l and β−

0,l

where B = maxiK(xi,xi) and B = 1 for the radial kernel. Then for any i = 1, . . . , n, it holds that

c−i,l ≤ yiK
′
iα̂

[−j]
l ≤ c+i,l, ∀j ̸= i. (15)

On the basis of the bounds of yiK′
iα̂

[−j]
l given in Lemma 3.1, we next present Lemma 3.2 and

Lemma 3.3 to give bounds of β̂[−j]
0,l that are consolidated for all j = 0, 1, . . . , n.

Lemma 3.2. With c−i,l and c+i,l from Lemma 3.1, for a given constant b, define S1(b) = {i : yib +
c+i,l < 1} and S2(b) = {i : yib + c−i,l > 1}. Let n+(b) =

∑
i∈(S1(b)∪S2(b))C

I(yi = 1) and
n−(b) =

∑
i∈(S1(b)∪S2(b))C

I(yi = −1). Define ψ+(b) =
∑

i∈S1(b)
yi + n+(b) + 1 and ψ−(b) =∑

i∈S1(b)
yi − n−(b)− 1. Then we have

(1) both ψ+(b) and ψ−(b) are non-increasing in b;

(2) ψ+(b) < 0 implies b > β̂
[−j]
0,l for all j = 0, 1, . . . , n;

(3) ψ−(b) > 0 implies b < β̂
[−j]
0,l for all j = 0, 1, . . . , n.

Following Lemma 3.2, we develop a bi-section algorithm in Algorithm 2 to give consolidated bounds
for β̂[−j]

0,l for all j = 0, 1, . . . , n.

As shown in Lemma 3.3, Algorithm 2 yields consolidated bounds for β̂[−j]
0,l for all j = 0, 1, . . . , n.

Lemma 3.3. Suppose the input of Algorithm 2, c−i,l and c+i,l, satisfies inequality (15), then the output
of Algorithm 2, β+

0,l and β−
0,l, satisfies that

β−
0,l < β̂

[−j]
0,l < β+

0,l. ∀j = 0, 1, . . . , n. (16)
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It immediately follows from Lemma 3.3 that

|β̂0,l − β̂[−j]
0,l | < β+

0,l − β
−
0,l, (17)

for any j, achieving the goal of the first stage.

We have constructed the bounds in inequalities (15) and (16). However, these bounds are too loose
to develop data reduction rules in practice. The loose bounds are mainly caused by the maximum
and minimum operators that are involved in equations (14). To this end, in the second stage, we give
refined bounds, which are presented below.
Lemma 3.4. For each i = 1, 2, . . . , n, define

c̃+i,l =
λl−1 + λl

2λl
yiK

′
iα̂l−1 +

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1 +

√
B2

16n2λ2l
+
B(β+

0,l − β
−
0,l)

2nλl
+

B

4nλl
,

c̃−i,l =
λl−1 + λl

2λl
yiK

′
iα̂l−1 −

λl−1 − λl
2λl

√
B
√
α̂′

l−1Kα̂l−1 −

√
B2

16n2λ2l
+
B(β+

0,l − β
−
0,l)

2nλl
− B

4nλl
,

where β+
0,l and β−

0,l are produced by Algorithm 2. Then for any j = 1, . . . , n, it holds that

c̃−i,l ≤ yiK
′
iα̂

[−j]
l ≤ c̃+i,l, ∀j = 0, 1, . . . , n, and j ̸= i. (18)

Hence by Lemmata 3.1 and 3.4, we have

ĉ−i,l ≡ max{c−i,l, c̃
−
i,l} ≤ yiK

′
iα̂

[−j]
l ≤ min{c+i,l, c̃

+
i,l} ≡ ĉ

+
i,l, (19)

for any j = 0, 1, . . . , n, and j ̸= i. We then use max{c−i,l, c̃
−
i,l} and min{c+i,l, c̃

+
i,l} as the input in the

bi-section algorithm to yield the output β̃+
0,l and β̃−

0,l. By inequality (18) and Lemma 3.2, we have

β̃−
0,l < β̂

[−j]
0,l < β̃+

0,l. ∀j = 0, 1, . . . , n. (20)

Therefore, we glean inequalities (18) and (20), which are the refined bounds of inequalities (15) and
(16). Using the refined bounds, we now present the main theorem.
Theorem 3.5. The solution of problem (12), α̂l, satisfies:

α̂i,l =

{ yi
2nλl

, if i ∈ L̃;

0, if i ∈ R̃,

and for any j = 1, . . . , n, the solution of problem (13), α̂[−j]
l , satisfies:

α̂
[−j]
i,l =

{ yi
2nλl

, if i ∈ L̃ and i ̸= j;

0, if i ∈ R̃ or i = j,

where ĉ+i,l and ĉ−i,l are given in inequality (19) and

L̃ =
{
i : yi = 1 and β̃+

0,l + ĉ+i,l < 1
}
∪
{
i : yi = −1 and − β̃−

0,l + ĉ+i,l < 1
}
,

R̃ =
{
i : yi = 1 and β̃−

0,l + ĉ−i,l > 1
}
∪
{
i : yi = −1 and − β̃+

0,l + ĉ−i,l > 1
}
.

Thus by Theorem 3.5, problem (13) can be solved through some reduced-dimensional optimization
problems, which are similar to problem (8) where the bias is excluded. Therefore, we can follow the
discussions in Section 2.3 to employ the same PGD algorithm and the exact smoothing technique to
obtain the exact solution for problem (13). Details of the algorithm are omitted to conserve space.
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Table 1: Run time (in second), objective value, and test error of four kernel SVM solvers under
mixture Gaussian distributed data with p = {20, 200}, and n = {200, 400, 800, 1600}. The test
error is assessed on independently generated test data. The numbers are the average quantities over
50 independent runs and the standard errors are presented in parentheses.
p n method time (s) objective test error method time (s) objective test error

20 200 ccvsvm 5.1 0.814 (.005) 0.351 (.007) kernlab 73.4 0.814 (.005) 0.351 (.007)
magicsvm 7.7 0.814 (.005) 0.351 (.007) LIBSVM 144.4 0.828 (.014) 0.351 (.007)

400 ccvsvm 44.2 0.827 (.003) 0.332 (.005) kernlab 334.3 0.827 (.003) 0.332 (.005)
magicsvm 87.8 0.827 (.003) 0.332 (.005) LIBSVM 879.7 0.827 (.003) 0.332 (.005)

800 ccvsvm 446.8 0.846 (.002) 0.309 (.002) kernlab 2220.2 0.846 (.002) 0.309 (.002)
magicsvm 847.3 0.846 (.002) 0.309 (.002) LIBSVM 6519.7 0.846 (.002) 0.310 (.002)

1600 ccvsvm 3829.5 0.853 (.001) 0.297 (.001) kernlab 25530.5 0.853 (.001) 0.297 (.001)
magicsvm 7024.1 0.853 (.001) 0.297 (.001) LIBSVM 63886.1 0.853 (.001) 0.297 (.001)

200 200 ccvsvm 6.8 0.780 (.006) 0.337 (.015) kernlab 337.6 0.780 (.006) 0.339 (.015)
magicsvm 12.9 0.780 (.006) 0.337 (.015) LIBSVM 932.5 0.780 (.006) 0.342 (.015)

400 ccvsvm 66.0 0.794 (.003) 0.366 (.015) kernlab 2304.1 0.794 (.003) 0.366 (.015)
magicsvm 150.1 0.794 (.003) 0.366 (.015) LIBSVM 6641.9 0.794 (.003) 0.368 (.015)

800 ccvsvm 530.4 0.811 (.001) 0.346 (.015) kernlab 36771.4 0.811 (.001) 0.346 (.015)
magicsvm 996.1 0.811 (.001) 0.346 (.015) LIBSVM 109365.5 0.811 (.001) 0.346 (.015)

1600 ccvsvm 5489.2 0.821 (.001) 0.322 (.013) kernlab 461245.7 0.821 (.001) 0.322 (.013)
magicsvm 10803.9 0.821 (.001) 0.322 (.013) LIBSVM 1436416.1 0.821 (.001) 0.322 (.013)

4 Numerical Studies

In this section, we demonstrate the computational advantages of fitting the kernel SVM using ccvsvm
over the three other competitors, magicsvm, kernlab, and LIBSVM, with simulations and real data.

4.1 Simulations

A commonly used simulation data from mixture Gaussian distributions (Hastie et al., 2009) is
used. We generate mean vectors µk+

from N(µ+, Ip) where k = 1, 2, . . . , 10 in which µ+ =

(1, 1, . . . , 1, 0, 0, . . . , 0) with half of the coordinates to be zero. Each positive-class training sample is
independently generated from N(µk+

, 32) where k is drawn from the discrete uniform distribution on
{1, 2, . . . , 10}. Using the same procedure, we obtain the negative-class training data from N(µk−

, 32)

where k is also uniform on {1, 2, . . . , 10} and µ− = (0, 0, . . . , 0, 1, 1, . . . , 1). For each combination
of the feature dimension p = 20 and 200 and the sample size n = 200, 400, 800, and 1600, we fit
the kernel SVM using the four kernel SVM solvers, ccvsvm, magicsvm, kernlab, and LIBSVM, to
compute the entire solution paths at a sequence of 50 tuning parameters, uniformly distributed on the
logarithm scale between e−6 and e6. The radial kernel is used and the bandwidth is the default option
of kernlab, which generally performs well. We compared the run time, objective function value, and
test error of the four solvers, where the run time includes the whole computation process including
training and tuning the model. The objective function value is computed from equation (2). Test error
is assessed on 10, 000 test samples which are independently generated from the same distribution.
Computations were conducted on an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz.

Table 1 shows that, to reach the same objective value and the test error, our ccvsvm algorithm is
roughly twice as fast as magicsvm, and it is about an order of magnitude faster than kernlab and
LIBSVM. In addition, we observe that kernlab and LIBSVM significantly slow down as p increases,
e.g., LIBSVM is about 20 times slower when p grows from 20 to 200, whereas the speed of ccvsvm
and magicsvm is quite insensitive to the change of dimensions. Remarkably, for p = 200 and
n = 1600, our ccvsvm algorithm finishes training and tuning the SVM using LOOCV within two
hours, while with the same accuracy, LIBSVM spends about 400 hours, lasting over 16 days.

We exemplify the effect of data reduction using the simulation data with n = 800 and p = 20 and
profile the execution time for training and tuning the SVM with λ = 0.1. We observe magicsvm took
only 0.12 seconds for matrix inversions and 11.17 seconds for LOOCV through problem (4), whereas
ccvsvm spent 0.03 seconds on matrix inversions and 5.81 seconds on LOOCV via problem (8). The
advantage of ccvsvm over magicsvm is mainly attributed to the reduced dimension of problem (8)
compared with problem (4).
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Table 2: Run time (in second) of four SVM solvers for benchmark data, averaged over 50 runs.
data n p ccvsvm magicsvm kernlab LIBSVM

arrhythmia 452 191 48.076 113.099 1554.579 5061.881
australian 690 14 202.863 412.323 902.463 2178.644
chess 3196 37 21768.612 38942.348 > 240 hours > 240 hours
heart 270 13 8.464 16.466 89.373 168.477
leuk 72 7218 0.464 0.828 1548.724 4811.612
malaria 71 22283 0.504 0.819 4804.442 13835.143
musk 476 166 62.169 127.656 1563.262 4778.779
sonar 208 60 4.736 7.033 98.080 221.505
valley 606 100 149.034 311.147 2230.010 6428.014

4.2 Benchmark Data Applications

We test the performance on benchmark data applications. We study nine commonly used real data
applications from the UCI machine learning repository (Dua and Graff, 2017). The sample sizes
range from 208 to 3, 196. Two high-dimensional data sets with the number of features p = 7, 218
and 22, 283 are included. Each data set is split into a training set and a test set with the ratio 9 : 1.
The kernel SVM is trained and tuned by the four solvers on the training set, and the test error is
assessed on the test set. We adopt the training-test split-ratio 9 : 1 because we aim to assign most of
the samples to the training set and the computation time can be evaluated using relatively large data.

Table 2 exhibits the timing comparisons, where we discover our ccvsvm algorithm is clearly the
fastest. It is about as twice as fast as magicsvm and significantly faster than kernlab and LIBSVM.
Especially for the two high-dimensional examples, magicsvm is thousands or even tens of thousands
faster than kernlab and LIBSVM, and ccvsvm further cuts the run time of magicsvm into half.
Similar to the simulations, all the four kernel SVM solvers deliver almost the same objective values
and test errors on the real data applications; for sake of space limit, the accuracy results are omitted.

5 Discussions and Extensions

In this work, we have introduced a consolidated CV procedure and developed an algorithm called
ccvsvm for the kernel SVM, which is one of the most successful classifiers. Our work is built on
the recently proposed leave-one-out lemma and the magicsvm algorithm: the ccvsvm algorithm can
even double the speed of magicsvm, which has already shown remarkable computational advantages
over the mainstream SVM solvers, kernlab and LIBSVM.

Scaling ccvsvm to large data sets. For large-scale data, we suggest incorporating kernel approxima-
tion into the existing consolidated CV algorithm. Specifically, random features (Rahimi and Recht,
2007) or Nyström subsampling (Rudi et al., 2015) can be applied in the exact leave-one-out formula
of the SVM to find a low-cost approximation of the kernel matrix. Integrating these approximation
techniques into our methods can further improve the numerical performance. These strategies can
also improve generalization performances as they induce a form of implicit computational regu-
larization. In the supplemental materials (Section C), we develop consolidated CV methods with
kernel approximation, essentially converting the original consolidated kernel SVM to a consolidated
linear SVM, which then can be efficiently solved by the proposed ccvsvm algorithm. To give a quick
demonstration, we consider the simulation example in Section 4.1 with p = 20 and increase n to be
5, 000, 000. Averaged by 50 runs, the SVM with random features can be rapidly trained and tuned
in 831 seconds, giving test error 0.286 which is close to Bayes error, 0.260. The computation time
is only 15.7 seconds when n = 100, 000. However, when n is 800, the test error of the SVM with
random features is 0.351, which is well above 0.309, the test error of our exact kernel SVM solver
given in Table 1. We leave full investigations of this strategy to future works.

Limitation. The proposed method is only for LOOCV and SVM since it utilizes the special structure
of support vectors. However, in future works, it is interesting to explore if the consolidated CV can
be generalized to other K-fold CV or the hold-out validation more broadly. It is also interesting to
extended the idea of consolidated CV to solve the solution paths of other computationally expensive
machine learning methods such as support vector regression and kernel quantile regression.

Societal impact. This work does not present any foreseeable societal consequence.
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