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A B S T R A C T

Mixture-of-experts provide flexible statistical models for a wide range of regression (supervised
learning) problems. Often a large number of covariates (features) are available in many modern
applications yet only a small subset of them is useful in explaining a response variable
of interest. This calls for a feature selection device. In this paper, we present new group-
feature selection and estimation methods for sparse mixture-of-experts models when the number
of features can be nearly comparable to the sample size. We prove the consistency of the
methods in both parameter estimation and feature selection. We implement the methods using a
modified EM algorithm combined with proximal gradient method which results in a convenient
closed-form parameter update in the M-step of the algorithm. We examine the finite-sample
performance of the methods through simulations, and demonstrate their applications in a real
data example on exploring relationships in body measurements.

. Introduction

High-dimensional data arises in many research fields such as biology, medicine, engineering, social science and economet-
ics (Rish and Grabarnik, 2014; Wainwright, 2019). At the beginning of a study, data often consists of observations on a large number
f features, yet only a small subset of which is important in explaining the behavior of a response variable. Sparse regularization
an help select important features to form a more parsimonious model while alleviating overfitting brought by high-dimensionality,
hus improves interpretability and prediction accuracy of the resulting model (Simon et al., 2013). The seminal works of Tibshirani
1996) on the least absolute shrinkage operator (Lasso), Fan and Li (2001) on the smoothly clipped absolute deviation (scad), Zou
2006) on the adaptive Lasso (AdaLasso), and Yuan and Lin (2006) on the group Lasso have led to astonishing amounts of research
evelopments over the last two decades for estimation and feature selection in various high-dimensional supervised/unsupervised
earning problems; see the two books (Hastie et al., 2019) and Fan et al. (2020) for a comprehensive review of the topic.

Estimation and feature selection become even more complex when the relationship between a response variable and potential
eatures varies across multiple sub-populations – due to the existence of an unobservable heterogeneity in a population or data
eneration process. Mixture-of-experts (moe) models, originally introduced by Jacobs et al. (1991), are composed of several functions
hich are referred to as experts and a gating network which assigns observations to an expert with a certain probability. The moe
odels can be viewed as a decision tree with its branches as experts and the decision process governed by the gating network of e.g.
ultinomial logit probabilistic models. As a generalization of finite mixture of regression (fmr) models (McLachlan and Peel, 2000),
oes provide a rich class of statistical models to deal with unobserved heterogeneity in the data. These models were originally
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proposed in problem decomposition context, where a complex problem is divided into a set of simpler subproblems based on a
divide-and-conquer principle, and then one or more specialized problem-solving experts are assigned to each of the subproblems
(Yuksel et al., 2012). This supervised learning technique have been widely applied in many regression and classification problems
due to its flexibility in capturing complex relationship between variables of interest; see Nguyen and Chamroukhi (2018) and the
references therein. However, despite their popularity in applications, very limited studies are conducted on estimation and feature
selection in high-dimensional moes. This is the focus of our paper.

To the best of our knowledge, there are currently only a few statistical papers that study estimation and feature selection problems
in fmr models as a special case of moes. Städler et al. (2010) elegantly studied feature selection in Gaussian fmr models using Lasso
when the dimension of the parameter space exceeds the number of observations. Guo et al. (2010) introduced a pairwise variable
selection method for high-dimensional Gaussian mixture model, with simplification that the expectations of the mixture components
are not modeled as functions of covariates. Khalili and Lin (2013) proposed a general theory for feature selection in fmr models when
the number of features can grow similar to 𝑛 1

4 . Khalili and Chen (2007), Khalili (2010), and Chamroukhi and Huynh (2019) studied
feature selection problems in fmr and moes under the standard setting of fixed-𝑝-large-𝑛. Nguyen et al. (2020) studied statistical error
f the high-dimensional Lasso estimators in moes .

In this paper, we study estimation and feature selection in moes with potentially a large number of covariates using a grouped
regularization technique. Motivated by the regularization techniques in regression, we propose a computationally efficient estimation
and feature selection method for a general class of moes. In an moe model with more than 𝐾 = 2 mixture components and when
he number of features is large, the standard regularization of individual regression parameters, such as a penalty on the individual
xperts’ parameters, may result in different subsets of selected features for different mixing probabilities in the gating network,
endering the ending model difficult to interpret. To overcome this issue, we apply a group regularization on the gating network
arameters. As a result, the effects of a feature on different mixing probabilities {𝑔1,… , 𝑔𝑘},

∑𝐾
𝑘=1 𝑔𝑘 = 1, will share the same

parsity. Thus, the grouping is on all the regression parameters corresponding to each feature in the gating network, which results
n a more interpretable sparse moe model. We study conditions under which the proposed methods are consistent in estimation and
eature selection. We examine the finite-sample performance of the methods via simulations, and demonstrate their applications by
nalyzing a data on exploring relationships in body measurements.

The rest of the paper is organized as follows. In Section 2, we introduce moe models and their sparsity structure. In Section 3,
we outline our new estimation and feature selection method. We study theoretical properties of the proposed methods in Section 4.
Numerical algorithm and implementation details of the methods are given in Sections 5 and 6, respectively. Our simulation study
and a real data example are given in Sections 7 and 8, respectively. Some discussion and closing remarks are given in Section 9.
Regularity conditions, tables, and some figures are given in Appendix. The proofs are given in our Supplementary Material.

2. Mixture-of-experts (MOE) and their sparsity

Let 𝑌 ∈  ⊂ R be a response variable of interest and 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑝)⊤ ∈  ⊂ R𝑝 be a 𝑝-dimensional vector of features which
may be related to 𝑌 . Further, let  = {ℎ(𝑦; 𝜂 , 𝜙) ∶ 𝜂 ∈ R, and 𝜙 ∈ R+} be a known parametric family of probability (mass) density
functions with respect to a 𝜎-finite measure 𝜈. In an moe model with 𝐾 components, the conditional density (mass) function of 𝑌
given 𝒙 is

𝑓 (𝑦;𝒙,𝜽) =
𝐾
∑

𝑘=1
𝑔𝑘(𝒙;𝜶) ℎ(𝑦; 𝜂𝑘(𝒙), 𝜙𝑘) (1)

with 𝜂𝑘(𝒙) = 𝛽0𝑘 + 𝜷⊤𝑘𝒙, and 𝜷𝑘 = (𝛽𝑘1, 𝛽𝑘2,… , 𝛽𝑘𝑝)⊤, for 𝑘 = 1, 2,… , 𝐾. Here, ℎ is called expert and the mixing probabilities 𝑔𝑘 are
referred to as the gating network (Jacobs et al., 1991). The 𝑔𝑘 is commonly modeled using a conditional multinomial regression
function

log
(

𝑔𝑘(𝒙;𝜶)
𝑔𝐾 (𝒙;𝜶)

)

= 𝛼0𝑘 + 𝜶⊤𝑘𝒙 for 𝑘 = 1,… , 𝐾 − 1, (2)

and 𝑔𝐾 (𝒙;𝜶) = 1 − ∑𝐾−1
𝑘=1 𝑔𝑘(𝒙;𝜶), where 𝜶 = (𝛼01,𝜶1, 𝛼02,𝜶2,… , 𝛼0,𝐾−1,𝜶𝐾−1)⊤, with 𝜶𝑘 = (𝛼𝑘1, 𝛼𝑘2,… , 𝛼𝑘𝑝)⊤. The vector of all

parameters is denoted by

𝜽 = (𝛽01, 𝜷1, 𝛽02, 𝜷2,… , 𝛽0𝐾 , 𝜷𝐾 , 𝛼01,𝜶1, 𝛼02,𝜶2,… , 𝛼0,𝐾−1,𝜶𝐾−1,𝝓),

where 𝝓 = (𝜙1, 𝜙2,… , 𝜙𝐾 )⊤ is the vector of dispersion parameters. Note that dim(𝜽) = 𝑑 = (2𝐾 − 1)(𝑝+ 1) +𝐾, and 𝐾 is fixed. Denote
𝜣 ⊆ R𝑑 as the parameter space.

One may interpret an moe model as follows: given the input variable 𝒙, with probability 𝑔𝑘(𝒙;𝜶), the random variable 𝑌 is
enerated according to the distribution ℎ(𝑦; 𝜂𝑘(𝒙), 𝜙𝑘), 𝑘 = 1,… , 𝐾.

Identifiability is essential for statistical inference in moe models: if 𝑓 (𝑦;𝒙,𝜽1) = 𝑓 (𝑦;𝒙,𝜽2), for all (𝑦,𝒙) ∈  ×  , then we must
have 𝜽1 = 𝜽2, up to a mixture component permutation. The unique representation of an moe depends on the density ℎ(𝑦; 𝜂 , 𝜙),
the maximum possible order 𝐾, and the design matrix (𝒙1,𝒙2,… ,𝒙𝑛)⊤. Jiang and Tanner (1999b) studied the identifiability of moe

odels under a random design matrix, where 𝒙1,… ,𝒙𝑛 are a random sample from a marginal density 𝑚(𝒙) that does not depend on
. The density 𝑚(𝒙) must not have all of its mass concentrated in up to 𝐾 of (𝑝 − 1)-dimensional linear subspaces. We restate their
ain result as follows.
2 
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Proposition 1 (Jiang and Tanner, 1999b). Assume that {ℎ(𝑦; 𝜂𝑗 , 𝜙𝑗 ); 𝑗 = 1, 2,… , 2𝐾} are linearly independent functions of 𝑦, for any 2𝐾
distinct parameters 𝜂𝑗 and 𝜙𝑗 , referred to as non-degeneracy condition. If for any two parameter vectors 𝜽1,𝜽2 ∈ 𝜣, 𝑓 (𝑦;𝒙,𝜽1) = 𝑓 (𝑦;𝒙,𝜽2),
or all (𝑦,𝒙) ∈  ×  , then 𝜽1 = 𝜽2, up to permutation of the entries of the two parameter vectors.

The non-degeneracy condition is applicable to moe models based on Gaussian, Poisson, and Binomial with number of trials
𝑚 > 2𝐾− 1. Hennig (2000) showed that for fixed designs, in addition to the non-degeneracy condition on experts ℎ(𝑦; 𝜂 , 𝜙), a sufficient
ondition for identifiability is that the design points 𝒙𝑖 do not fall in the union of any 𝐾 linear subspaces of (𝑝 − 1)-dimension.
Sparse MOE models: In many applications of moes, there are often a large number of features present in the data. To avoid

over-parameterization when fitting an moe model to such data, it is necessary to assume certain structure for the model. A common
practice is to assume sparsity, under which many of the elements of the vectors 𝜶𝑘 and 𝜷𝑘 are zero, resulting in a parsimonious
and more interpretable moe model. Specifically, let  = {1, 2,… , 𝑝} be the index set representing the full feature vector 𝒙. For any
index subsets 𝐴1, 𝐴2,… , 𝐴𝐾 ⊂ , with cardinality |𝐴𝑘| for 𝑘 = 1, 2,… , 𝐾, denote 𝜷𝑘[𝐴𝑘] and 𝒙[𝐴𝑘] as subvectors of 𝜷𝑘 and 𝒙,
respectively, such that 𝛽𝑘𝑗 ≠ 0,∀𝑗 ∈ 𝐴𝑘, for 𝑘 = 1, 2,… , 𝐾. In regards to the sparsity of the gating network, for each 𝑗 = 1, 2,… , 𝑝,
let 𝜶⋅𝑗 = (𝛼1𝑗 , 𝛼2𝑗 ,… , 𝛼𝐾−1,𝑗 )⊤, which represents the grouping effect of a feature 𝑥𝑗 on the whole gating network. For any 𝐴∗ ⊂ ,
with cardinality |𝐴∗

|, denote 𝜶[𝐴∗] and 𝒙[𝐴∗] as subvectors of 𝜶 and 𝒙, respectively, such that for any 𝑗 ∈ 𝐴∗, we have 𝜶⋅𝑗 ≠ 0.
Equivalently, we assume that for any 𝑗 ∉ 𝐴∗, we have 𝛼𝑘𝑗 = 0, for all 𝑘 = 1, 2,… , 𝐾− 1. This formulation leads to the grouping effect
among the regression coefficients 𝛼𝑘𝑗 in the gating network 𝑔1,… , 𝑔𝑘. In Section 4, these subsets are referred to as active sets. For
1, 𝐴2,… , 𝐴𝐾 , 𝐴∗ ⊂ , we denote a sparse moe or submodel as

𝑓[𝐴1 ,…,𝐴𝐾 ;𝐴∗](𝑦;𝒙,𝜽) =
𝐾
∑

𝑘=1
𝑔𝑘(𝒙[𝐴∗];𝜶[𝐴∗]) ℎ(𝑦; 𝜂𝑘(𝒙[𝐴𝑘]), 𝜙𝑘). (3)

We assume that the true model underlying data is a sparse moe of the form in (3). The goal is to correctly recover the supports of
he nonzero coefficients in the true model and accurately estimate their values, based on the given data. Note that for a given value
f 𝐾 and 𝑝, the total number of moe submodels of the form (3) is 2[(𝐾+1)𝑝], which could be very large even for moderate values of 𝐾
nd 𝑝. Hence, all-subset selection methods such as aic, bic and their variants (Konishi and Kitagawa, 2008) are clearly not practical

in this scenario. In this paper, we investigate the use of regularization techniques for sparse learning in moes.

3. Simultaneous estimation and feature selection in sparse MOEs

Let (𝒙𝑖, 𝑦𝑖), 𝑖 = 1, 2,… , 𝑛, be an observed random sample from a true sparse moe defined in (3). The (conditional) log-likelihood
of the parameter vector 𝜽 based on the full model (1) is given by

𝑙𝑛(𝜽) =
𝑛
∑

𝑖=1
log

{ 𝐾
∑

𝑘=1
𝑔𝑘(𝒙𝑖;𝜶) ℎ(𝑦𝑖; 𝜂𝑘(𝒙𝑖), 𝜙𝑘)

}

. (4)

The maximum likelihood estimator (mle) of 𝜽, i.e. the maximizer of 𝑙𝑛(𝜽), when the dimension of 𝜽 is small relative to the sample
ize 𝑛, is well-studied in the literature (Jiang and Tanner, 1999a). However, the mle does not have the sparsity property as postulated

by (3) when the dimension of 𝜽 is large. Thus, we focus on a penalized maximum likelihood estimator of 𝜽 as outlined below.
To select features for each expert ℎ(𝑦; 𝜂𝑘(𝒙), 𝜙𝑘), we penalize individual regression coefficients 𝛽𝑘𝑗 ’s by introducing a Lasso-type

regularization function (to be described below). This allows potentially different subsets of features to be selected in different experts.
For the gating network {𝑔1, 𝑔2,… , 𝑔𝐾}, instead, we aim to select the same features across the gating network which also enhances
interpretability of the resulting model. More specifically, for each 𝑗 = 1, 2,… , 𝑝, let 𝜶⋅𝑗 = (𝛼1𝑗 , 𝛼2𝑗 ,… , 𝛼𝐾−1,𝑗 )⊤, which represents the
effect of a feature 𝑥𝑗 on the whole gating network, we hope that 𝑥𝑗 is selected when the corresponding 𝜶⋅𝑗 ≠ 𝟎. According to the
structural sparsity assumption of the true model defined in (3), we apply group penalization on the entire vector 𝜶⋅𝑗 instead of using
coordinate-separable penalization on 𝛼𝑘𝑗 ’s. Denote

‖𝜶⋅𝑗‖2 =
(𝐾−1
∑

𝑘=1
𝛼2𝑘𝑗

)1∕2
, 𝑗 = 1,… , 𝑝.

We can see that ‖𝜶⋅𝑗‖2 = 0 if and only if 𝛼𝑘𝑗 = 0, for all 𝑘 = 1, 2,… , 𝐾 − 1, thus can preserve (remove) the same features for (from)
he whole gating network.

We are now ready to tackle the feature selection problem in moes. We estimate 𝜽 by maximizing the penalized log-likelihood
function

𝐿𝑛(𝜽) = 𝑙𝑛(𝜽) −𝑹𝑛(𝜽), (5)

where

𝑹𝑛(𝜽) =
𝐾
∑

𝑘=1

𝑝
∑

𝑗=1
𝑟𝑛(𝛽𝑘𝑗 ; 𝜆) +

𝑝
∑

𝑗=1

{

𝑟𝑛(‖𝜶⋅𝑗‖2; 𝜆∗) + 𝜏∗

2
‖𝜶⋅𝑗‖

2
2

}

(6)

for some regularization function 𝑟𝑛 and tuning parameters (𝜆, 𝜆∗, 𝜏∗). The first regularization function allows for separate feature
selection for each expert 𝑘, while the second penalty enforces groupwise feature selection across the gating network by penalizing
the entire parameter vector 𝜶⋅𝑗 . The main purpose of using an additional ridge-type (quadratic) penalty is to improve the estimation
of the model with highly correlated covariates and thus avoiding unstable estimates of the gating network parameters. In addition,
3 
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it helps with numerical stability of the computational algorithm as pointed out by Friedman et al. (2010). Examples of the penalty
𝑟𝑛 are the Lasso, AdaLasso, scad, and mcp which are given in Appendix A.

The maximum penalized likelihood estimator (mple) of 𝜽 is then given by

�̂�𝑛 = ar g max
𝜽∈𝜣

𝐿𝑛(𝜽). (7)

By appropriate tuning of the parameters (𝜆, 𝜆∗) together with 𝜏∗ in (6), various elements of the vector estimator �̂�𝑛 turn into zero.
We achieve the goal of feature selection and estimation simultaneously, which is of a great computational advantage when fitting
an moe to data. In Sections 4.1 and 4.2, we discuss the selection of appropriate tuning parameters (𝜆, 𝜆∗, 𝜏∗) to ensure that the ridge
penalty does not overshadow the penalty 𝑟𝑛, thereby enabling the method to effectively carry out variable selection. Numerical
implementation of (7) is given in Section 5.

4. Large-sample study

We first introduce some notations. For each 𝑘, we assume that the parameter vectors in the experts are partitioned as 𝜷𝑘 =
(𝜷𝑘,1, 𝜷𝑘,2), such that each 𝜷𝑘,1 contains the non-zero coefficients and 𝜷𝑘,2 = 𝟎. Similarly, we assume the partitioning 𝜶 = (𝜶1,𝜶2)
such that 𝜶1 contains all the intercepts 𝛼0𝑘, 𝑘 = 1, 2,… , 𝐾 − 1 and non-zero vectors 𝜶⋅𝑗 , and 𝜶2 contains all those 𝜶⋅𝑗 = 𝟎. Without
oss of generality, we thus rearrange the elements of the master vector 𝜽 and write 𝜽 = (𝜽1,𝜽2) such that 𝜽2 contains all the zero
egression coefficients 𝜷𝑘,2, for 𝑘 = 1, 2,… , 𝐾, and 𝜶2 = 𝟎. Further, denote 𝜽0 = (𝜽01,𝜽02) as the true parameter-vector of the moe
odel such that 𝜽02 = 𝟎. We assume 𝜽0 is an interior point of the parameter space 𝜣. Also, denote the so-called active sets

𝐴𝑘𝑛 = {1 ≤ 𝑗 ≤ 𝑝𝑛; 𝛽0𝑘𝑗 ≠ 0} , 𝑘 = 1, 2,… , 𝐾 (8)

corresponding to the true non-zero regression parameters of the experts, and the active set

𝐴∗
𝑛 = {1 ≤ 𝑗 ≤ 𝑝𝑛;𝜶0

⋅𝑗 ≠ 0} (9)

corresponding to the true non-zero grouping parameters 𝜶0
⋅𝑗 of the gating network. Let 𝑠𝑘𝑛 = |𝐴𝑘𝑛|, 𝑘 = 1,… , 𝐾 − 1, and 𝑠∗𝑛 = |𝐴∗

𝑛|

be the cardinalities of the above active sets. Further, let 𝑠𝑛 = max{max1≤𝑘≤𝐾{𝑠𝑛𝑘}, 𝑠∗𝑛} be the maximum number of the non-zero
regression coefficients in the experts and the gating network.

The following quantities help us to state the regularity conditions on the penalty 𝑟𝑛. Denote

𝑎𝑛1 = max
1≤𝑘≤𝐾

max
𝑗∈𝐴𝑘𝑛

{|𝑟′𝑛(𝛽
0
𝑘𝑗 ; 𝜆𝑛)|∕

√

𝑛}, 𝑎𝑛2 = max
𝑗∈𝐴∗

𝑛
{|𝑟′𝑛(‖𝜶

0
⋅𝑗‖2; 𝜆

∗
𝑛)|∕

√

𝑛}, (10)

𝑏𝑛1 = max
1≤𝑘≤𝐾

max
𝑗∈𝐴𝑘𝑛

{|𝑟′′𝑛 (𝛽
0
𝑘𝑗 ; 𝜆𝑛)|∕𝑛}, 𝑏𝑛2 = max

𝑗∈𝐴∗
𝑛
{|𝑟′′𝑛 (‖𝜶

0
⋅𝑗‖2; 𝜆

∗
𝑛)|∕𝑛}, (11)

𝑎𝑛 = max(𝑎𝑛1, 𝑎𝑛2), 𝑏𝑛 = max(𝑏𝑛1, 𝑏𝑛2), (12)

where 𝑟′𝑛(⋅; 𝜆𝑛) and 𝑟′′𝑛 (⋅; 𝜆𝑛) are the first and second derivatives of 𝑟𝑛(𝜃; 𝜆𝑛) with respect to 𝜃. In what follows, the large-sample
behaviors of 𝜆𝑛 and 𝜆∗𝑛 are the same and thus we use 𝜆𝑛 to represent both when needed. We consider the following conditions on
𝑛, and the parameters (𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ).

0. For all 𝑛 and 𝜆𝑛, 𝑟𝑛(0; 𝜆𝑛) = 0, and 𝑟𝑛(𝜃; 𝜆𝑛) is symmetric and non-negative. It is non-decreasing and twice differentiable for all 𝜃
in (0,∞) with at most a few exceptions. In addition, there exists constants 𝐶1 and 𝐶2 such that when 𝜃1 > 𝐶1𝜆𝑛 and 𝜃2 > 𝐶1𝜆𝑛,
then 1

𝑛 |𝑟
′′
𝑛 (𝜃1; 𝜆𝑛) − 𝑟′′𝑛 (𝜃2; 𝜆𝑛)| ≤ 𝐶2|𝜃1 − 𝜃2|.

1. As 𝑛→ ∞, 𝜏∗𝑛
√

𝑛
max𝑗∈𝐴∗

𝑛
‖𝜶0

⋅𝑗‖2 = 𝑜(1 + 𝑎𝑛), 𝑎𝑛∕
√

𝑛
min𝑗∈𝐴∗𝑛 ‖𝜶

0
⋅𝑗‖2

= 𝑜(1), and 𝜏∗𝑛 = 𝑜(𝑛). Also,

min
𝑗∈𝐴∗

𝑛
‖𝜶0

⋅𝑗‖2∕𝜆
∗
𝑛 → ∞ , min

𝑗∈𝐴𝑛𝑘
|𝛽0𝑘𝑗 |∕𝜆𝑛 → ∞ , 𝑘 = 1, 2,… , 𝐾 .

2. As 𝑛→ ∞, 𝑏𝑛 = 𝑜(1).
3. For 𝑇𝑛 = {𝜃; 0 < 𝜃 ≤

√

𝑝𝑛
𝑛 log 𝑛}, lim𝑛→∞ inf𝜃∈𝑇𝑛

𝑟′𝑛(𝜃;𝜆𝑛)
√

𝑛𝑝𝑛
= +∞.

∗
3 . For 𝑇 ∗

𝑛 = {𝜃; 0 < 𝜃 ≤
√

𝑠𝑛𝑝𝑛
𝑛 log 𝑛}, lim𝑛→∞ inf𝜃∈𝑇 ∗

𝑛

𝑟′𝑛(𝜃;𝜆𝑛)
√

𝑛𝑠𝑛𝑝𝑛
= +∞.

Conditions 0-∗
3 guide us on the appropriate choice of 𝑟𝑛 and the tuning parameters (𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ) in order to achieve consistency in

oth estimation of the non-zero regression coefficients and feature selection. More specifically, 0 is a standard smoothness condition
n the penalty 𝑟𝑛 that facilitates obtaining estimators by differentiating the objective function 𝐿𝑛(𝜽) when solving (7) and for studying
he asymptotic properties of the estimators of the true non-zero regression coefficients. Conditions 1 and 2 are to control the
ontribution of 𝑟𝑛 with respect to the log-likelihood function 𝑙𝑛(𝜽) in (5) to guarantee the existence of consistent estimators of 𝜽0.

The second part of Condition 1 is often referred to as a minimum-signal assumption which is necessary to guarantee the selection
consistency; please see the last paragraph in Section 4.2 for more discussion. Under conditions 3 and ∗

3 , the penalty function 𝑟𝑛
grows sufficiently fast in a vanishing neighborhood of 𝜃 = 0 resulting in feature selection consistency (sparsity) property of the mple.
The implications of these conditions for the Lasso, AdaLasso, scad, and mcp are explained after each theorem in Sections 4.1 and 4.2.

To focus on the main results, regularity conditions R1-R5 on the family  = {ℎ(𝑦; 𝜂 , 𝜙) ∶ 𝜂 ∈ R, and 𝜙 ∈ R+} are given
n Appendix B. Condition 𝑅 is on identifiability of the model which makes the estimation problem of interest well-defined;
1
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see Section 2 for more on identifiability of moe models. Additionally, the common support condition facilitates interchanging
ifferentiation and integration operations on the density. 𝑅2 is a smoothness condition on the density required in Taylor’s expansions
or asymptotic analyses while 𝑅3 guarantees the asymptotic existence of the mple of the model parameters. 𝑅4 posits positive
efiniteness and finiteness of the Fisher information while 𝑅5 allows interchanging of the expectation and the limits due to the
ominant convergence theorem. The most popular moes that satisfy the conditions are with experts ℎ belonging to the exponential
amily including Gaussian, Poisson, and Binomial with number of trails 𝑚 > 2𝐾 − 1.

In what follows, we study asymptotic properties of the mple �̂�𝑛 under two scenarios when 𝑝𝑛 grows slowly as a function of the
sample size 𝑛 and when 𝑝𝑛 could be as large as 𝑛. The proofs are given in the Supplementary Material.

4.1. Dimension 𝑝𝑛 grows slowly with 𝑛

Theorems 1 and 2 extends the results of Fan and Peng (2004) for (generalized) linear regression models to moes with diverging
number of parameters, where we also perform group variable selection.

Theorem 1. Let (𝒙𝑖, 𝑌𝑖), 𝑖 = 1, 2,… , 𝑛, be a random sample with the conditional density in (1) and a joint density satisfying the regularity
onditions R1-R5 in Appendix B. Assume that the penalty 𝑟𝑛 and (𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ) satisfy Conditions 0-2. If

𝑝2𝑛
√

𝑛
→ 0, as 𝑛 → ∞, there exists a

ocal maximizer �̂�𝑛 of the penalized log-likelihood 𝐿𝑛(𝜽) in (5) such that ‖�̂�𝑛 − 𝜽0‖2 = 𝑂𝑝{
√

𝑝𝑛
𝑛 (1 + 𝑎𝑛)}, where 𝑎𝑛 is in given in (12).

Theorem 1 guaranties the existence of a √

𝑛∕𝑝𝑛-consistent estimator of the parameter-vector 𝜽0 of the sparse moe model, similar
o the ordinary mle, as long as 𝑟𝑛 and the tuning parameters (𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ) are chosen such that 𝑎𝑛 = 𝑂(1). This is also similar to
he result of Huber (1973) for M-estimators in the context of robust regression in which the number of parameters diverges.

For the Lasso, AdaLasso, scad, and mcp this translates into the choices of the parameters (𝜆𝑛, 𝜆∗𝑛) and 𝜏∗𝑛 according to Conditions
0-2. More specifically, for the Lasso, one could choose

√

𝑛max{𝜆𝑛, 𝜆∗𝑛} = 𝑂(1), 𝜏∗𝑛 max𝑗∈𝐴∗
𝑛
‖𝜶0

⋅𝑗‖2 = 𝑜(
√

𝑛) and 𝜏∗𝑛 = 𝑜(𝑛). For
cad and mcp, by the minimum-signal condition in 1, we have 𝑎𝑛 = 0 and 𝜏∗𝑛 has to satisfy the same conditions as above. For
daLasso, basically the weights 𝜔 and 𝜔∗ coupled with (𝜆𝑛, 𝜆∗𝑛) are to be chosen so that 𝑎𝑛 = 𝑂(1). This implies that we need
𝑛𝜆𝑛(max1≤𝑘≤𝐾 max𝑗∈𝐴𝑘𝑛 𝜔𝑘𝑗 ) = 𝑂𝑝(1) and

√

𝑛𝜆∗𝑛(max𝑗∈𝐴∗
𝑛
𝜔∗
𝑗 ) = 𝑂𝑝(1), where 𝜔𝑘𝑗 and 𝜔∗

𝑗 are (possibly random) weights in AdaLasso;
more details are provided in the discussion after Theorem 2 below.

Theorem 2 investigates even more interesting properties of the estimator �̂�𝑛 such as the consistency in feature selection and
lso asymptotic normality of the estimator �̂�𝑛 in estimating the true non-zero regression coefficients in both the gating network
nd the experts. Recall the partitioning 𝜽0 = (𝜽01,𝜽02) such that 𝜽02 = 𝟎. Also, consider the partitioning �̂�𝑛 = (�̂�𝑛1, �̂�𝑛2) such that
im(�̂�𝑛1) = dim(𝜽01) and dim(�̂�𝑛2) = dim(𝜽02). Let 𝑩𝑛 be a constant matrix of dimension 𝑙 × dim(�̂�𝑛1), 𝑙 < ∞, such that 𝑩𝑛𝑩⊤

𝑛 → 𝑩
nd 𝑩 is a positive definite symmetric matrix. Note that 𝑩𝑛�̂�𝑛1 has the fixed dimension 𝑙 × 1. Let 𝑹′

𝑛(𝜽) and 𝑹′′
𝑛 (𝜽) be the gradient

nd Hessian of 𝑹𝑛 in (6) with respect to 𝜽.

Theorem 2. Assume that the conditions of Theorem 1 are fulfilled, and let 𝑟𝑛 and (𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ) also satisfy Condition 3. If 𝑝2.5𝑛
√

𝑛
→ 0, then

or any √

𝑛∕𝑝𝑛-consistent estimator �̂�𝑛 = (�̂�𝑛1, �̂�𝑛2) of 𝜽0, we have that, as 𝑛→ ∞,

(i) Sparsity: 𝑃 (�̂�𝑛2 = 𝟎) → 1.
(ii) Asymptotic normality:

√

𝑛𝑩𝑛  −1∕2
𝑛1 (𝜽01)

{[

𝑛1(𝜽01) +
𝑹′′
𝑛 (𝜽01)
𝑛

]

(�̂�𝑛1 − 𝜽01) +
𝑹′
𝑛(𝜽01)
𝑛

}

𝑑
→ 𝑁(𝟎,𝑩),

where 𝑛1(𝜽01) is the Fisher information of the true moe with 𝜽02 = 𝟎.

The estimator �̂�𝑛 with properties in Theorems 1 and 2 is called an oracle estimator as defined in Fan and Peng (2004). The
estimators based on the penalty functions scad and mcp, and AdaLasso have the oracle property but not the one based on the Lasso.
To achieve sparsity for Lasso, scad, and mcp, according to condition 3 we require

√

𝑛∕𝑝𝑛𝜆𝑛 and
√

𝑛∕𝑝𝑛𝜆∗𝑛 → ∞, as 𝑛 → ∞. For
AdaLasso, we require

√

𝑛∕𝑝𝑛𝜆𝑛(min1≤𝑘≤𝐾 min𝑗∉𝐴𝑘𝑛 𝜔𝑘𝑗 ) and
√

𝑛∕𝑝𝑛𝜆∗𝑛(min𝑗∉𝐴∗
𝑛
𝜔∗
𝑗 ) → ∞, as 𝑛 → ∞. For Lasso, the required choices

f (𝜆𝑛, 𝜆∗𝑛) lead to an explosive bias for the non-zero estimators �̂�𝑛1 as described in Theorem 2-(ii). More specifically, the bias term
𝑹′
𝑛(𝜽01)∕𝑛 ∼ (𝜆𝑛, 𝜆∗𝑛) will go to zero slower than 𝑛−

1
2 in the Lasso case. On the other hand, for scad and mcp penalties, we have

𝑹′
𝑛(𝜽01)∕𝑛 = 0, for any 𝑛 ≥ 1, and hence the aforementioned choices of (𝜆𝑛, 𝜆∗𝑛) guarantees the oracle property of the mple, as long

as 𝜆𝑛, 𝜆∗𝑛 → 0, as 𝑛 → ∞. For AdaLasso, if we choose the weights such that for all 𝑘 = 1,… , 𝐾 , 𝑗 ∈ 𝐴𝑘𝑛, 𝜔𝑘𝑗 = 𝑂(1), and 𝜔∗
𝑗 = 𝑂(1),

for all 𝑗 ∈ 𝐴∗
𝑛, and for all 𝑘 = 1,… , 𝐾 , 𝑗 ∉ 𝐴𝑘𝑛, 𝜔𝑘𝑗∕

√

𝑝𝑛 → ∞, and 𝜔∗
𝑗 ∕
√

𝑝𝑛 → ∞, for all 𝑗 ∉ 𝐴∗
𝑛, then 𝜆𝑛, 𝜆∗𝑛 ∼ 𝑛−1∕2 suffices to

achieve the oracle property. In practice, we may use the weights 𝜔𝑘𝑗 = (𝛽𝑘𝑗 )−1 and 𝜔∗
𝑗 = (�̃�⋅𝑗 )−1, where (𝛽𝑘𝑗 , �̃�⋅𝑗 ) are the mle of the

arameters obtained by maximizing the log-likelihood 𝑙𝑛(𝜽) in (4). The weights satisfy the required conditions. Note that the ridge
tuning parameter 𝜏∗ is chosen according to condition  as explained after Theorem 1 above.
𝑛 1
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4.2. Dimension 𝑝𝑛 is comparable to the sample size 𝑛

In this section, we extend the results of Theorems 1 and 2 to the case where the dimension 𝑝𝑛 grows much faster than 𝑛1∕4 and
comparable to the sample size 𝑛. Consequently, as shown below, the rate of consistency of the mple in this case will depend on the
sparsity factor 𝑠𝑛. Recall that 𝑠𝑛 is defined as the maximum number of the true non-zero regression coefficients in the experts and
the gating network of an sparse moe model.

Theorem 3. Assume that the conditions of Theorem 1 hold. If 𝑠2𝑛
√

𝑛
→ 0 and 𝑠𝑛(𝑝𝑛 − 𝑠𝑛) = 𝑜(𝑛), as 𝑛 → ∞, then there exists a local

aximizer �̂�𝑛 of the penalized log-likelihood 𝐿𝑛(𝜽) in (5) such that ‖�̂�𝑛 − 𝜽0‖2 = 𝑂𝑝{
√

𝑠𝑛
𝑛 (1 + 𝑎𝑛)}, where 𝑎𝑛 is given in (12).

Note that the rate of consistency of the mple under the conditions of Theorem 3 is
√

𝑛∕𝑠𝑛, as long as 𝑎𝑛 = 𝑂(1), while the dimension
𝑝𝑛 grows faster than what is considered in Section 4.1. In Theorem 1, however, the rate of consistency is √

𝑛∕𝑝𝑛. It is worth noting
that the growth rate of 𝑝𝑛, as a function of the sample size 𝑛, in Theorem 1 is similar to that of 𝑠𝑛 in Theorem 3. For example, in
Theorem 3, we could have 𝑝𝑛 = 𝑜(𝑛𝛾1 ) and 𝑠𝑛 = 𝑂(𝑛𝛾2 ), where 𝛾1 > 𝛾2 > 0, 𝛾2 < 1∕4 and 𝛾1 + 𝛾2 ≤ 1. The discussion provided after
Theorem 1 on the choices of the tuning parameters (𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ), and the weights (𝜔𝑘𝑗 , 𝜔∗

𝑗 ), to assure 𝑎𝑛 = 𝑂(1) for the four penalties
still holds here.

Theorem 4 that follows investigates the conditions under which the mple has the oracle property. Let 𝑫𝑛 be a constant matrix
of dimension 𝑙∗ × 𝑑 𝑖𝑚(�̂�𝑛1), 𝑙∗ < ∞, such that 𝑫𝑛𝑫⊤

𝑛 → 𝑫, and 𝑫 is a positive definite matrix. Theorem 4 seeks the asymptotic
istribution of the finite linear transformation 𝑫𝑛�̂�𝑛1, which has the fixed dimension 𝑙∗ × 1.

Theorem 4. Assume that the conditions of Theorem 3 hold, and let (𝑟𝑛, 𝜆𝑛, 𝜆∗𝑛 , 𝜏∗𝑛 ) satisfy Condition ∗
3 . If

𝑠2.5𝑛
√

𝑛
→ 0, then for any

√

𝑛∕𝑠𝑛-consistent estimator �̂�𝑛 = (�̂�𝑛1, �̂�𝑛2) of 𝜽0, as 𝑛→ ∞,
(i) Sparsity: 𝑃 (�̂�𝑛2 = 𝟎) → 1.
(ii) Asymptotic normality:

√

𝑛𝑫𝑛  −1∕2
𝑛1 (𝜽01)

{[

𝑛1(𝜽01) +
𝑹′′
𝑛 (𝜽01)
𝑛

]

(�̂�𝑛1 − 𝜽01) +
𝑹′
𝑛(𝜽01)
𝑛

}

𝑑
→ 𝑁(𝟎,𝑫),

where 𝑛1(𝜽01) is the Fisher information of the true sparse moe with 𝜽02 = 𝟎.

Note that Condition ∗
3 in Theorem 4 is to ensure sparsity of the mple. The discussion provided after Theorem 3 in Section 4.1

regarding the choices of tuning parameters for the penalties under our consideration applies here except that 𝑝𝑛 is to be replaced
by 𝑠𝑛𝑝𝑛. Hence, theoretically the estimator �̂�𝑛 based on the Lasso does not have the oracle property while the one based on the
AdaLasso, scad, or mcp does. Nevertheless, the mple based on all these penalties preserves the sparsity property which is important
in high dimensions. It is worth noting that, as expected, Condition ∗

3 in Theorem 4 compared to Condition 3 in Theorem 3 for
sparsity requires (asymptotically) larger choices of (𝜆𝑛, 𝜆∗𝑛) compared to the low-dimensional case discussed in Section 4.1.

Condition 1 is commonly referred to as a minimum-signal condition in the variable selection literature. Basically, it implies
that together with condition 3 or ∗

3 , those non-zero regression coefficients that satisfy 𝛽0𝑘𝑗 > 𝜆𝑛 or 𝜶0
⋅𝑗 > 𝜆∗𝑛, where (𝜆𝑛, 𝜆∗𝑛) → 0

as 𝑛→ ∞, are detectable by the proposed regularization method and will be estimated non-zero, i.e. variable selection consistency
property. On the other hand, those coefficients that are below the thresholds, the weak signals, will most likely be estimated as zero
by the regularization method. Without this condition, it may be possible to establish certain estimation error bounds but not really
selection consistency as those weak-signal regression parameters most likely will be estimated as zero; see also Roy et al. (2023)
for a recent work on weak signal recovery in high-dimensional regression. Fang et al. (2021) proposed a two-step procedure based
on both variable selection and ridge regression estimators in linear regression models that were shown to be capable of detecting
weak signals and providing an estimation of both strong and weak signal. This is a future research direction worthy of investigation
in the context of moe models.

According to Theorems 1 and 4, for large 𝑛, the approximate distribution of linear transformations of the sub-vector �̂�𝑛1, which
stimates linear transformations of 𝜽01 (the true non-zero regression coefficients), is normal. For penalties such as scad and mcp,
he terms 𝑹′

𝑛(𝜽01)∕𝑛 and 𝑹′′
𝑛 (𝜽01)∕𝑛 can be ignored. Therefore, by estimating the information matrix 𝑛1(𝜽01)–typically done in moe

odels using the empirical information matrix derived from the complete log-likelihood function in (14) (McLachlan and Peel,
2000)–one may attempt to perform further statistical inference, such as hypothesis testing and constructing confidence intervals
for the regression coefficients of the selected model. However, such inference referred to as naive inference is reserved as the true
sparse structure (oracle’s perspective) of the model is not known in advance and it is estimated by the penalization method. Hence, in
practice due to the variable selection stage the dimension of the sub-vector �̂�𝑛1 is random and may not be equal to the dimension of
the sub-vector 𝜽01, and hence asymptotically normal distribution may be distorted. The extra variability due to the variable selection
needs to be taken into account for a further inference and is referred to as post-selection inference (PoSI, Berk et al. (2013)). There
has been a surge of research on PoSI in recent years for (generalized) linear regression models (Zhang et al., 2022). The topic of
PoSI in mixture of regression models, considered as a special case of moe with the gating network 𝑔𝑘(𝒙;𝜶) = 𝑔𝑘 assumed to be
ndependent of features 𝒙, was studied by Khalili and Vidyashankar (2018); PoSI in general moes requires a careful study and is a
opic of future research.
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5. Numerical algorithm

To solve the optimization problem presented in (7), we develop a modified em algorithm (Dempster et al., 1977) that features
a coordinate descent type M-step adapted to our penalized likelihood. The previous studies have shown successful application of
oordinate descent methods combined with the em algorithm in fmr models. For example, Städler et al. (2010) used the coordinate

descent together with the em algorithm in high-dimensional Gaussian fmr models with the Lasso penalty. Friedman et al. (2010)
developed algorithms that make use of the coordinate descent along a regularization path for variable selection problems in
generalized linear models with convex penalties. These methods are especially efficient for solving high-dimensional models. In
addition, due to the complexity of moes, the adjusted version of the em algorithm applies the proximal gradient descent algorithm
in each coordinate descent circle of the M-step to obtain an approximation to the optimization problem. We proceed as follows.

The complete log-likelihood function (McLachlan and Peel, 2000) of an moe model is given by

𝑙𝑐𝑛(𝜽) =
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝑧𝑖𝑘

{

log 𝑔𝑘(𝒙𝑖;𝜶) + logℎ(𝑦𝑖; 𝜂𝑘(𝒙𝑖), 𝜙𝑘)
}

,

where 𝑧𝑖𝑘 is an unobservable indicator variable showing that, given 𝒙𝑖, the observation 𝑦𝑖 is generated from the 𝑘th expert density
ℎ(𝑦𝑖; 𝜂𝑘(𝒙𝑖), 𝜙𝑘). The complete penalized log-likelihood is given by

𝐿𝑐𝑛(𝜽) = 𝑙𝑐𝑛(𝜽) −𝑹𝑛(𝜽). (13)

For fixed 𝐾 and the tuning parameters (𝜆, 𝜆∗, 𝜏∗), the em algorithm maximizes (13) iteratively in two steps as follows.
ata-adaptive selections of 𝐾 and the tuning parameters are discussed in Section 6.

E-step: At the (𝑚 + 1)th iteration, given the data and current estimate 𝜽(𝑚), we compute the conditional expectation of 𝐿𝑐𝑛(𝜽) with
espect to the unobservable random variables 𝑍𝑖𝑘’s. Thus,

𝐸
{

𝐿𝑐𝑛(𝜽)|data,𝜽(𝑚)
}

= 𝑄(𝜽;𝜽(𝑚))

=
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝜏(𝑚)𝑖𝑘

{

logℎ(𝑦𝑖; 𝜂𝑘(𝒙𝑖), 𝜙𝑘) + log 𝑔𝑘(𝒙𝑖;𝜶)
}

−𝑹𝑛(𝜽)

= 𝑄1(𝜽;𝜽(𝑚)) +𝑄2(𝜶;𝜽(𝑚)) −𝑹𝑛(𝜽), (14)

where

𝜏(𝑚)𝑖𝑘 = 𝑬
(

𝑍𝑖𝑘|𝜽(𝑚),𝒙𝑖, 𝑦𝑖
)

=
𝑔𝑘(𝒙𝑖;𝜶(𝑚))ℎ(𝑦𝑖; 𝜂

(𝑚)
𝑘 (𝒙𝑖), 𝜙(𝑚)

𝑘 )
∑𝐾
𝑘=1 𝑔𝑘(𝒙𝑖;𝜶(𝑚))ℎ(𝑦𝑖; 𝜂

(𝑚)
𝑘 (𝒙𝑖), 𝜙(𝑚)

𝑘 )
. (15)

The leading functions in (14) are

𝑄1(𝜽;𝜽(𝑚)) =
𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
{𝜏(𝑚)𝑖𝑘 logℎ(𝑦𝑖; 𝜂𝑘(𝒙𝑖), 𝜙𝑘)} =

𝐾
∑

𝑘=1
𝑄1𝑘(𝜽𝑘;𝜽(𝑚))

with 𝜽𝑘 = (𝜷𝑘, 𝜙𝑘), and 𝑄1𝑘(𝜽𝑘;𝜽(𝑚)) are the inner sums ∑𝑛
𝑖=1{⋅}. Also, using (2), we have

𝑄2(𝜶;𝜽(𝑚)) =
𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝜏(𝑚)𝑖𝑘 log 𝑔𝑘(𝒙𝑖;𝜶)

=
𝐾−1
∑

𝑘=1

𝑛
∑

𝑖=1
𝜏(𝑚)𝑖𝑘 �̃�⊤𝑖 �̃�𝑘 −

𝑛
∑

𝑖=1
log

(

1 +
𝐾−1
∑

𝑘=1
exp(�̃�⊤𝑖 �̃�𝑘)

)

,

where �̃�𝑖 = (1,𝒙⊤𝑖 )⊤ and �̃�𝑘 = (𝛼0𝑘,𝜶⊤𝑘 )⊤. In summary, the E-step boils down to the computation of the weights in (15).

M-step: In this step, we maximize the function 𝑄(𝜽;𝜽(𝑚)) in (14) with respect to 𝜽. The maximization can be done using either the
proximal gradient or Newton–Raphson-type algorithms in which the leading terms 𝑄1 and 𝑄2 in (14) are locally approximated by
quadratic functions of 𝜽 (Nesterov, 2004). To handle the folded concave penalties such as scad and mcp, we develop a proximal
gradient method combined with the local linear approximation (LLA), inspired by Zou and Li (2008). This algorithm can avoid
computation of the Hessian matrix as required in the local quadratic approximation method (LQA) (Fan and Li, 2001), which is
particularly slow for large dimensional vectors (𝜶, 𝜷𝑘), 𝑘 = 1,… , 𝐾. On the other hand, for AdaLasso, we use the regular gradient
descent method. In what follows, we only focus on the regression parameters, as the updates for the dispersion parameters 𝜙𝑘 can
also be obtained by maximizing 𝑄1𝑘(𝜽𝑘;𝜽(𝑚)) with respect to 𝜙𝑘 at each iteration of the EM.

Thus, in the M-step by using the LLA to 𝑟𝑛 when necessary, the updates of 𝜷𝑘 are obtained separately for each 𝑘 = 1,… , 𝐾, by
minimizing the following function with respect to 𝜷𝑘,

1𝑘(𝜷𝑘;𝜽(𝑚)) +
𝑝
∑

𝜔(𝑚)
𝑘𝑗 |𝛽𝑘𝑗 |, (16)
𝑗=1

7 
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with 1𝑘(𝜷𝑘;𝜽(𝑚)) = −𝑄1𝑘(𝜷𝑘;𝜽(𝑚))∕𝑛. Also, the updates of 𝜶 are obtained by minimizing

2(𝜶;𝜽(𝑚)) +
𝑝
∑

𝑗=1

{

𝜔∗(𝑚)
𝑗 ‖𝜶⋅,𝑗‖2 +

𝜏∗

2𝑛
‖𝜶⋅,𝑗‖

2
2

}

(17)

with 2(𝜶;𝜽(𝑚)) = −𝑄2(𝜶;𝜽(𝑚))∕𝑛. The minimization is done as follows.
Given 𝜌1 > 0, we locally majorize the function in (16) by the regularized quadratic function

𝐺1(𝜷𝑘, 𝜌1) ∶= 1𝑘(𝜷
(𝑚)
𝑘 ;𝜽(𝑚)) +

[ 𝜕1𝑘(𝜷
(𝑚)
𝑘 ;𝜽(𝑚))
𝜕𝜷𝑘

]⊤
(𝜷𝑘 − 𝜷(𝑚)

𝑘 )

+
𝜌1
2
‖𝜷𝑘 − 𝜷(𝑚)

𝑘 ‖

2
2 +

𝑝
∑

𝑗=1
𝜔(𝑚)
𝑘𝑗 |𝛽𝑘𝑗 |. (18)

Minimizing function 𝐺1(𝜷𝑘, 𝜌1) with respect to 𝜷𝑘 results in the closed-form updates

𝜷(𝑚+1)
𝑘 = 𝑆(𝒛(𝑚)𝑘 ; 𝜌−11 𝝎(𝑚)

𝑘 ), (19)

for all 𝑘 = 1,… , 𝐾, where

𝒛(𝑚)𝑘 = 𝜷(𝑚)
𝑘 − 𝜌−11

( 𝜕1𝑘(𝜷
(𝑚)
𝑘 ;𝜽(𝑚))
𝜕𝜷𝑘

)

and 𝑆(𝒛;𝐰) = [𝑆(𝑧1;𝑤1),… , 𝑆(𝑧𝑝;𝑤𝑝)]⊤ with 𝑆(𝑧;𝑤) = (1 − 𝑤
|𝑧| )+𝑧 as the soft-thresholding operator (Breheny and Huang, 2015;

Donoho and Johnstone, 1994). The weights in (16) are for scad, mcp, the weights are 𝜔(𝑚)
𝑘𝑗 = 𝑟′(𝛽(𝑚)𝑘𝑗 ; 𝜆)∕𝑛, where 𝑟′𝑛 is the first

derivative of 𝑟𝑛 with respect to 𝛽𝑘𝑗 . For the Lasso and AdaLasso, we do not need to use the LLA procedure. Hence, we fix the weight
(𝑚)
𝑘𝑗 = 𝜆 for the lasso. For AdaLasso, the weights are chosen as 𝜆 multiplied by the reciprocal of the absolute value of the MLE of
𝑘𝑗 ’s, as suggested by Zou (2006). When the dimension of 𝒙 is large and the MLE is not feasible, one may use ridge-type estimates
f 𝛽𝑘𝑗 ’s to construct the weights.

A similar method is used to obtain updates of 𝜶 in the M-step. Given 𝜌2 > 0, we locally majorize the function in (17) by the
regularized quadratic function (up to some constants)

𝐺2(𝜶⋅,𝑗 , 𝜌2) ∶= 2(𝜶(𝑚);𝜽(𝑚)) +
𝑝
∑

𝑗=1

{ [
𝜕2(𝜶;𝜽(𝑚))

𝜕𝜶⋅,𝑗

]⊤(

𝜶⋅,𝑗 − 𝜶(𝑚)
⋅,𝑗

)

+
𝜌2
2
‖𝜶⋅,𝑗 − 𝜶(𝑚)

⋅,𝑗 ‖
2
2

}

+
𝑝
∑

𝑗=1

{

𝜔∗(𝑚)
𝑗 ‖𝜶⋅,𝑗‖2 +

𝜏∗

2𝑛
‖𝜶⋅,𝑗‖

2
2

}

. (20)

Minimizing this function with respect to 𝜶⋅,𝑗 results in the closed form updates

𝜶(𝑚+1)
⋅,𝑗 = 𝑆(𝒛(𝑚)𝑗 ; (𝜌2 + 𝜏∗∕𝑛)−1𝜔∗(𝑚)

𝑗 ), 𝑗 = 1,… , 𝑝, (21)

where

𝒛(𝑚)𝑗 = (𝜌2 + 𝜏∗∕𝑛)−1
[

𝜌2𝜶
(𝑚)
⋅,𝑗 −

(

𝜕2(𝜶;𝜽(𝑚))
𝜕𝜶⋅,𝑗

)

]

and 𝑆(𝒛;𝜔∗) = (1 − 𝜔∗

‖𝒛‖2
)+𝒛 is the multivariate soft-thresholding operator (Breheny and Huang, 2015; Donoho and Johnstone, 1994)

for group Lasso. Note that the weights 𝜔∗(𝑚)
𝑗 in (20) are chosen in a similar fashion to the weights 𝜔(𝑚)

𝑘𝑗 as described above where 𝜆
is replaced by 𝜆∗.

Line-search In each iteration of the EM, the two parameters 𝜌1 and 𝜌2 in the M-step are chosen using a backtracking line search
(Boyd and Vandenberghe, 2004) such that the functions in (16) and (17), when evaluated at the updating values using the chosen
stepsizes, are less than or equal to, respectively, their majorizing functions in (18) and (20).

Specifically, to determine step size 𝜌1 in (18), we first initialize 𝜌1 with some 𝜌max
1 > 0 and repeatedly shrink 𝜌1 with 𝜌1 ← 𝜖−1𝜌1

for some pre-chosen 0 < 𝜖 < 1 until the following condition holds

𝐺1(𝜷
(𝑚+1)
𝑘 , 𝜌1) ≤ 𝐺1(𝜷

(𝑚)
𝑘 , 𝜌1), (22)

where 𝐺1 is defined in (18) and 𝜷(𝑚+1)
𝑘 is given in (19). For determining step size 𝜌2 in (20), we initialize 𝜌2 with some 𝜌max

2 > 0 and
repeatedly shrink 𝜌2 with 𝜌2 ← 𝜖−1𝜌2 for some pre-chosen 0 < 𝜖 < 1 until the following condition holds

𝐺2(𝜶(𝑚+1), 𝜌2) ≤ 𝐺2(𝜶(𝑚), 𝜌2), (23)

where 𝐺2 is defined in (20) and 𝜶(𝑚+1) is given in (21). We summarize our algorithm in Algorithm 1.
8 
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Algorithm 1: Modified EM Algorithm.
1 Initialization: Choose initial values 𝜽(0) = (𝜷(0),𝜶(0),𝝓(0)); Set tuning parameters (𝜆, 𝜆∗, 𝜏∗); Set 𝑚 = 0 and convergence

criterion (𝛿 ,max.iter);
2 while |𝑝𝑙𝑛(𝜽(𝑚+1)) − 𝑝𝑙𝑛(𝜽(𝑚))| ≥ 𝛿 and 𝑚 ≤ max.iter do
3 E-step: Compute weights 𝜏(𝑚)𝑖𝑘 in (15), for all 𝑖, 𝑘;
4 M-step:
5 for 𝑘 = 1, 2,…𝐾 and 𝑗 = 1, 2,… 𝑝 do
6

𝜷(𝑚+1)
𝑘 ← 𝑆(𝒛(𝑚)𝑘 ; 𝜌−11 𝝎𝑘).

𝜶(𝑚+1)
⋅,𝑗 ← 𝑆(𝒛(𝑚)𝑗 ; (𝜌2 + 𝜏∗∕𝑛)−1𝜔∗

𝑗 )

𝜙(𝑚+1)
𝑘 ← ar g max

𝜙𝑘
𝑄1𝑘(𝜽𝑘; 𝜷

(𝑚+1)
𝑘 ,𝜶(𝑚+1)).

7 end
8 Update the iteration counter 𝑚 = 𝑚 + 1;
9 end

6. Implementation details

Initialization In our study, we adopt the following procedure for initialization: Firstly, we perform univariate clustering on the
response variable to partition the data into 𝐾 groups, corresponding to the number of components of the mixture model. For
initialization of the regression coefficient vectors (𝛽01, 𝜷1,… , 𝛽0𝐾 , 𝜷𝐾 ), we fit separate (generalized) linear regression models to each
cluster using the data points assigned to that cluster. This ensures that the initial means are informed by the actual distribution of the
data. Regarding the initialization of the coefficient vectors (𝛼01,𝜶1,… , 𝛼0,𝐾−1,𝜶𝐾−1) for the mixing probabilities, we use the cluster
memberships of all the data points as a categorical response variable and fit a multinomial logistic regression model to the data.
This provides a starting point for the EM algorithm by reflecting the preliminary groupings of the data. To initialize the variance
parameters (𝜙1, 𝜙2,… , 𝜙𝐾 ), we employ the estimated variances of the response variable within each cluster.

Convergence of the M-step using the LLA procedure During the M-step of the EM algorithm, the iterative procedure using the LLA
provides convergence guarantees. Within the M-step, we encounter two convex optimization sub-problems: the minimization of
(16) and (17) with respect to 𝜷1,… , 𝜷𝐾 and 𝜶, respectively. Both are convex problems. We perform this by first majorizing the
aforementioned two objective functions by the two convex functions (18) and (20), respectively. This majorization process involves
applying quadratic majorization to the leading (likelihood) terms and employing LLA majorization for the penalty function. This
approach is an instance of the majorization-minimization (MM) algorithm, the convergence of which has been extensively studied
in the literature, as demonstrated by Heiser (1995) and Lange et al. (2000).

Selection of tuning parameters As discussed in Section 3, the main purpose of the ridge penalty on 𝜶 is to help improving stability of
the numerical algorithm. For the ridge tuning parameter, we use 𝜏∗ = 𝐶 log 𝑛, for some constant 𝐶 > 0 which was taken 𝐶 = 0.01 in
our simulations. This value satisfies the conditions required in our theory and it further works in our simulations. We next discuss
data-driven selection of (𝜆, 𝜆∗) and the mixture order 𝐾.

For a fixed mixture order 𝐾, we use a bic-type criterion (Wang et al., 2007) to choose (𝜆, 𝜆∗) from a two-dimensional grid
expanded over [0, 𝜆max]2 for some pre-specified value 𝜆max. More specifically, let 𝑎1,… , 𝑎𝐿 be a grid of the interval [0, 𝜆max].
For each pair (𝑎𝑙 , 𝑎𝑙′ ), 𝑙 , 𝑙′ = 1,… , 𝐿, corresponding to (𝜆, 𝜆∗), let �̂�𝑙 𝑙′ be the mple in (7). Due to the group selection of the gating
arameters, we calculate the total number of estimated non-zero regression parameters in �̂�𝑙 𝑙′ as df(𝑙 , 𝑙′) = ∑𝐾

𝑘=1
∑𝑝
𝑗=1 1{𝛽𝑘𝑗 (𝑙 , 𝑙′) ≠

} +∑𝐾−1
𝑘=1

∑𝑝
𝑗=1 1{𝛼𝑘𝑗 (𝑙 , 𝑙′) ≠ 0}. We compute the bic value

bic1(𝑙 , 𝑙′) = −2𝑙𝑛(�̂�𝑙 𝑙′ ) + (log 𝑛) df(𝑙 , 𝑙′) (24)

where 𝑙𝑛 is the log-likelihood in (4). We choose a pair (𝑎𝑙 , 𝑎𝑙′ ) over the two-dimensional discrete grid as the optimal value of (𝜆, 𝜆∗)
hat minimizes the bic, that is, (𝜆, 𝜆∗) = argmin{(𝑎𝑙 ,𝑎𝑙′ )∶𝑙 ,𝑙′=1,…,𝐿} bic1(𝑙 , 𝑙′). Let �̂�(𝐾) be the final parameter estimate corresponding to
(𝜆, 𝜆∗), for any given mixture order 𝐾.

We estimate the mixture order as follows. The above process is repeated for each 𝐾 = 1,… ,, for some pre-specified upper
bound . We then compute the total number of non-zero elements of �̂�(𝐾) as df(𝐾) = ∑𝐾

𝑘=1
∑𝑝
𝑗=1 1{𝛽𝑘𝑗 ≠ 0} +∑𝐾−1

𝑘=1
∑𝑝
𝑗=1 1{𝛼𝑘𝑗 ≠ 0}.

e compute the bic value

bic2(𝐾) = −2𝑙𝑛(�̂�(𝐾)) + (log 𝑛)(df(𝐾) + 3𝐾 − 1) , 𝐾 = 1,… ,, (25)

where 3𝐾 − 1 is the total number of estimated intercepts and dispersion parameters (𝛼0𝑘, 𝛽0𝑘, 𝜙𝑘). The estimated order is 𝐾 =
argmin bic (𝐾). Its performance is studied in the next section.
1≤𝐾≤ 2
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7. Simulation study

We carry out a simulation study to examine the finite-sample performance of the proposed methods. Each feature vector 𝒙 is
generated from a 𝑝-variate Gaussian distribution with mean zero and a covariance matrix with (𝑖, 𝑗)-th element being .5|𝑖−𝑗|. The
corresponding design matrix will remain fixed throughout the data generation process. Given 𝒙, the response 𝑦 is generated from
he moe

𝑓 (𝑦;𝒙,𝜽) =
3
∑

𝑘=1
𝑔𝑘(𝒙;𝜶)  (𝑦;𝜇𝑘(𝒙), 𝜎2𝑘),

where  (⋅;𝜇 , 𝜎2) is the density function of Gaussian distribution with mean 𝜇 and variance 𝜎2. Here, we have 𝜇𝑘(𝒙) = 𝛽0𝑘 + 𝜷⊤𝑘𝒙,
or 𝑘 = 1, 2, 3, and the gating network

log
(

𝑔𝑘(𝒙;𝜶)
𝑔3(𝒙;𝜶)

)

= 𝛼0𝑘 + 𝜶⊤𝑘𝒙, 𝑘 = 1, 2, and
3
∑

𝑘=1
𝑔𝑘(𝒙;𝜶) = 1.

We have considered the following parameter settings with dimensions 𝑝𝑛 = 𝑛𝛾 for 𝛾 = .5, .6, .7, and the sample sizes 𝑛 =
200, 300, 400. In all the cases, we set 𝜎2𝑘 = 1 for 𝑘 = 1, 2, 3.

Setting (I): 𝑛 = 200, 𝑝𝑛 = {15, 24, 42}
�̃�1 = (𝛼01,𝜶1

⊤)⊤ = (−1, 0, 0,−1.5, 0, 0,−1.9,… , 0)⊤

�̃�2 = (𝛼02,𝜶2
⊤)⊤ = (−1.5, 0, 0, 1.8, 0, 0, 1.2,… , 0)⊤

𝜷1 = (2.5, 0, 0, 2.4, 0, 0,… , 0)⊤ , 𝜷2 = (−2, 1.9, 0, 0, 1.5, 0,… , 0)⊤,

𝜷3 = (0, 0,−2.0, 1.8, 0, 0,… , 0)⊤.

Setting (II): 𝑛 = 300, 𝑝𝑛 = {17, 30, 60}
�̃�1 = (𝛼01,𝜶1

⊤)⊤ = (−1, 0, 0,−1.5, 0, 0,−1.9,… , 0)⊤

�̃�2 = (𝛼02,𝜶2
⊤)⊤ = (−1.5, 0, 0, 1.8, 0, 0, 1.2,… , 0)⊤

𝜷1 = (2.5, 0, 0, 2.4, 0,−1.5,… , 0)⊤ , 𝜷2 = (−2, 1.9, 0, 0, 1.5, 0, 2.0,… , 0)⊤,

𝜷3 = (0, 0,−2.0, 1.8, 0, 0,−1.9,… , 0)⊤.

Setting (III) : 𝑛 = 400, 𝑝𝑛 = {20, 36, 70}
�̃�1 = (𝛼01,𝜶1

⊤)⊤ = (−1, 0, 0,−1.5, 0, 0,−1.9, 0, 1.0,… , 0)⊤

�̃�2 = (𝛼02,𝜶2
⊤)⊤ = (−1.5, 0, 0, 1.8, 0, 0, 1.2, 0,−1.0,… , 0)⊤

𝜷1 = (2.5, 0, 0, 2.4, 0,−1.5, 0, 1.5,… , 0)⊤ , 𝜷2 = (−2, 1.9, 0, 0, 1.5, 0, 2.0,−1.8,… , 0)⊤

𝜷3 = (0, 0,−2.0, 1.8, 0, 0,−1.9, 1.8,… , 0)⊤.

The total number of true non-zero regression coefficients in the above three settings are respectively 11,14 and 19. The dimension
of the parameter vector 𝜽 is 𝑑𝑛 = (2𝐾 − 1)(𝑝𝑛 + 1) +𝐾, see Section 2. The values of 𝑑𝑛 corresponding to each of the settings are given
in Tables 1 and 2 in the Appendix.

In the discussion below, let CIZ = # Correctly Identified Zero, CIN = # Correctly Identified Nonzero, IIZ = # Incorrectly Identified
Zero and IIN = # Incorrectly Identified Nonzero regression coefficients. The specificity (SP) and sensitivity (SE) are respectively
defined as SP = CIZ/(CIZ+IIN) and SE = CIN/(CIN+IIZ). We also report the empirical mean squared error (mse) for each estimated
regression parameter vector. Our results are based on 𝑅 = 200 simulated samples from each of the above models, and are summarized
in Tables 1 and 2 in the Appendix. We report the results based on the Lasso, AdaLasso, and scad; the mcp results were similar to scad
nd thus not reported here.

From Table 1, we can see that for each sample size and setting, as the dimension 𝑑𝑛 as a function of 𝑝𝑛 = 𝑛𝛾 with 𝛾 = .5, .6, .7,
increases, the mse also increases which is expected. The mse, corresponding to the same dimension 𝑑𝑛 when fixing 𝛾 at each value
5, .6, .7 and increasing 𝑛, decreases. Estimation of the gating parameters 𝜶𝑘’s is more difficult than that of the experts parameters
𝑘’s, which is mainly due to the multinomial nature of the gating network. Overall, the method based on the scad performs better
han the Lasso and AdaLasso in terms of the mse.

From Table 2, we can see that the method based on all the three penalties performs well in terms of both specificity (SP) and
sensitivity (SE). For the largest dimension considered, corresponding to 𝑝𝑛 = 𝑛.7, the Lasso outperforms the other two penalties
in terms of both (SP, SE) corresponding to the experts parameters. For the smaller dimensions corresponding to 𝑝𝑛 = 𝑛.5 or .6, the
three penalties perform more or less similarly. When the SE values are low, the corresponding mse tends to be higher which is
also expected. In summary, the performance of the proposed method shows that it provides a reliable new estimation and feature
selection method for moes when the number 𝑝 of features is comparable to the sample size.

Finally, we assess the performance of the bic in (25) for estimation of the mixture order 𝐾. For each simulated sample from
he above model with correct order 𝐾 = 3, we fit moe models with 𝐾 = 1,… , 5, and estimate the order using the bic. Our results
10 
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are averaged over 𝑅 = 200 simulated samples and are reported in Table 3. For the sample size 𝑛 = 200, we can see that the bic
ased on scad outperforms the other two penalties by detecting the correct 𝐾 = 3 about 76% of times for all the three dimensions
𝑑𝑛 = 83, 128, 218. As the sample size increases to 𝑛 = 300, 400, the bic based on the three penalties performs well corresponding
to dimensions 𝑑𝑛 = 93,108, by detecting the correct mixture order about 86% to 98%. For 𝑑𝑛 = 158, 188, the Lasso and AdaLasso
utperform scad, and as dimension increases to 𝑑𝑛 = 308, 358 the bic based on Lasso is the winner but clearly the order estimation
ecomes much harder for higher dimensions unless the sample size 𝑛 increases.

8. Real data analysis

In this section we demonstrate the proposed methodology by analyzing a dataset available at http://jse.amstat.org/jse_data_
archive.htm. The data contains trunk and limb body girth measurements at 12 well-defined sites, skeletal diameter measurements
at nine well-defined body sites, as well as age, weight, height, and sex for 507 individuals; see Fig. 1, and the list of variables are
iven in Table 4. Heinz et al. (2003) used linear regression models to analyze relationship between weight (the response variable)
nd the aforementioned covariates. We re-analyze the data using sparse moes, as a generalization of linear models, allowing for
otential heterogeneity of the effects of the covariates (𝑝 = 24) on the response variable weight. To avoid numerical issues, we

standardize all the covariates to mean zero and variance one. We fit the sparse Gaussian moes with 𝐾 = 1, 2, 3, 4 components and
ompare the fitted models using the bic. Note that 𝐾 = 1 corresponds to a linear model as fitted in Heinz et al. (2003) with more

covariates. The bic values for models with 𝐾 = 3, 4 are larger than the ones corresponding to the models with 𝐾 = 1, 2 components.
On the other hand, the former models are not very different and thus we report the selected sparse moe with 𝐾 = 3. The selected

odel is based on the scad penalty which results in a more interpretable and spare model compared to the other penalties. The
itted Gaussian moe model is

𝑓 (𝑦;𝒙, �̂�) =
3
∑

𝑘=1
𝑔𝑘(𝒙; �̂�)  (𝑦;𝜇𝑘(𝒙), ̂𝜎2𝑘),

where 𝜎1 = 1.68, ̂𝜎2 = 1.25, ̂𝜎3 = 1.23, and

𝜇1(𝒙) = 68.3 + 5.12𝑥12 + 2.43𝑥15 + 2.81𝑥17 + 1.57𝑥19 + 3.18𝑥23 (26)

𝜇2(𝒙) = 68.3 + 3.35𝑥10 + 2.37𝑥11 + 1.70𝑥12 + 3.57𝑥14 + 2.87𝑥18 + 2.96𝑥23
𝜇3(𝒙) = 68.3 − 2.77𝑥1 + 2.05𝑥5 + 5.47𝑥10 + 4.68𝑥12 + 4.07𝑥15 − 3.98𝑥16

+ 3.86𝑥17 + 3.87𝑥23
and the gating network

log
(

𝑔1(𝒙; �̂�)
𝑔3(𝒙; �̂�)

)

= 1.70 − .632𝑥2 − .970𝑥11 (27)

log
(

𝑔2(𝒙; �̂�)
𝑔3(𝒙; �̂�)

)

= .401 + .302𝑥2 − .302𝑥11.

We also compute the so-called posterior probabilities (15) of each observation belonging to any of the three groups (experts)
indicated by the fitted model. Based on these probabilities, approximately, 66.4% of individuals were classified to group 1, 22.2%
o group 2, and 11.4% to group 3. Fig. 2 shows the scatter plots of the probabilities versus the weight (response), and Fig. 3 shows

the boxplots of the weights of individuals classified to any of the three groups according to the posterior probabilities. The average
weights in the three groups are: 64.59, 81.46, and 90.57 kg, respectively, which shows significant differences between the three
groups in terms of weights. Also, the percentages of female and male in the three groups are: (62%, 38%), (22%, 78%), and (15%, 85%),
respectively. It thus makes sense why the average weight in group 1 is smaller than the other two groups as the majority in this
group are female, whereas in the other two groups male are the majority. Since one of the selected covariates affecting the mean
weight of the three groups is height (𝑥23), the average height of the three groups are respectively: 168.8, 179.2, and 177.6 cm. We
may conclude that, with respect to the weight and height, the individuals in group 1 which are the majority in this data are living
 healthy life, whereas those in group 2 may be considered as slightly overweight, and those in group 3 as obese.

We may interpret the selected covariates as follows. From (26), we can see that most of the selected covariates have positive
estimated effects on the mean response variable weight, and they are mostly girth measurements. The covariates Waist girth (𝑥12)
nd Height (𝑥23) with positive estimated effects are selected in all the three mixture components. The two covariates 𝑥1 and 𝑥16
re selected with negative effects in the third component which could be due to an artefact of their high correlation with the other

selected covariates in the model. From (27), the only two covariates selected in the gating network {𝑔1, 𝑔2, 𝑔3} are Biiliac diameter or
elvic breadth (𝑥2) and Chest girth (𝑥11). We can see that the larger the values of either (𝑥2, 𝑥11), the less likely that the corresponding
ndividual belongs to group 1, which is referred to as the group with a healthy life style. More specifically, individuals with larger
alues of 𝑥2 are more likely in group 2, and those with larger values of 𝑥11 are more likely in group 3 (obese) which makes sense
s 𝑥 shows the chest size.
11
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Fig. 1. Biacromial, Biiliac, and Bitrochanteric diameters (Heinz et al., 2003).

9. Discussion

We have introduced a penalized likelihood method for parameter estimation and feature selection in moe models together with a
grouped regularization technique for the gating network parameters. The proposed method is particularly useful when the number
of features is large. The grouping technique has provided a new perspective on how to obtain a sparse moe model, along with its
improved interpretability. We have established consistency of the methods in both estimation and feature selection. Numerically,
we have employed a modified em algorithm combined with the proximal gradient method and LLA (Nesterov, 2004), which results
in a convenient closed-form parameter update in the M-step of the algorithm.

As much as development has been made in this paper, there remains more work to be done in the study of sparse moes. Our
current theory studies conditions under which the proposed estimators are statistically optimal, i.e. consistency in both estimation
and feature selection. On the other hand, theoretical guarantees for converges of the EM algorithm is also an important research
question. Several seminal works have provided theoretical insights into the convergence of the EM algorithm. For example Xu and
Jordan (1996) studies convergence of the EM for Gaussian mixture models. Yi and Caramanis (2015) analyze the convergence and
consistency properties of a regularized EM algorithm toward understanding regularization techniques. Balakrishnan et al. (2017)
develops a theoretical framework for quantifying when and how fast EM-type iterates converge within a small neighborhood of a
global optimum of the population likelihood. Zhao et al. (2020) studies the convergence behavior of the EM algorithm in Gaussian
mixture models with an arbitrary number of mixture components and mixing weights. In our simulation study, we did not encounter
convergence issues of the proposed EM algorithm, and the results show reasonable performance of the algorithm. Nevertheless,
theoretical guarantees for converges of the proposed EM algorithm requires new theoretical tools beyond the scope of the current
work and is a topic of future research.

Extension of our theoretical results to high-dimensional settings when both 𝑝𝑛 and 𝑠𝑛 grow to infinity faster than the rates
𝑠4𝑛 = 𝑜(𝑛) and 𝑠𝑛𝑝𝑛 = 𝑜(𝑛) considered in Theorems 1–4, and growing values of the regression parameters (𝜷1,… , 𝜷𝐾 ,𝜶), as 𝑛 grows, are
subjects of future research. It is also valuable to investigate non-asymptotic error bounds (Städler et al., 2010) as well as minimax
rate of convergence of the proposed estimators. In addition, it is interesting to investigate estimation of the number of experts
𝐾 simultaneously with feature selection. Information criterion such as the bic is commonly used for estimation of 𝐾. Its finite
sample performance in our simulation study (Section 7) is satisfactory. Although this method theoretically does not underestimate
𝐾 (Leroux, 1992), its consistency in estimating 𝐾 is yet to be studied. Other potential future directions are statistical inference such
as hypothesis testing and confidence intervals for post-selection targets in sparse moes which is a topic of post-selection inference
12 
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(PoSI, Berk et al., 2013; Javanmard and Montanari, 2014; Zhang et al., 2022). These developments will contribute to the study of
moes and their applications in real data analysis in various fields.
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Appendix A. Examples of the penalty function 𝒓𝒏

Common choices of 𝑟𝑛(⋅) includes the Lasso, AdaLasso, scad, and mcp:

Lasso ∶ 𝑟𝑛(𝜃; 𝜆) = 𝑛𝜆|𝜃|

AdaLasso ∶ 𝑟𝑛(𝜃; 𝜆) = 𝑛𝜆𝜔|𝜃|

scad ∶ 𝑟𝑛(𝜃; 𝜆) =
⎧

⎪

⎨

⎪

⎩

𝑛𝜆|𝜃| , |𝜃| ≤ 𝜆
−𝑛(𝜃2 − 2𝑎𝜆|𝜃| + 𝜆2)∕[2(𝑎 − 1)] , 𝜆 < |𝜃| ≤ 𝑎𝜆
𝑛𝜆2(𝑎 + 1)∕2 , |𝜃| > 𝑎𝜆

mcp ∶ 𝑟𝑛(𝜃; 𝜆) =
{

𝑛𝜆(|𝜃| − |𝜃|2

2𝛾 𝜆 ) , |𝜃| < 𝛾 𝜆
𝑛𝜆2𝛾∕2 , |𝜃| ≥ 𝛾 𝜆

for some constants 𝑎 > 2, 𝛾 > 0, and 𝜆 ≥ 0 is a tuning parameter that controls how light or heavy the penalty is on 𝜃. Fan and Li
(2001) suggested that the value 𝑎 = 3.7 as a good choice in scad. The parameter 𝛾 in mcp controls the concavity of the penalty, such
hat when 𝛾 → ∞ the penalty becomes Lasso, and if 𝛾 → 0+ then it becomes the 𝐿0 penalty. In AdaLasso, 𝜔 is some pre-specified
possibly random) weights.

Appendix B. Regularity conditions

Let 𝑓 (𝒗;𝜽) be the joint density of 𝑽 = (𝒙, 𝑌 ), with the parameter space 𝜽 ∈ 𝜣. Note that the conditional density function of
𝑌 given 𝒙 follows the moe model (1). In the regularity conditions that follow we write 𝜽 = (𝜓1, 𝜓2,… , 𝜓𝑑𝑛 ), where 𝑑𝑛 is the total
umber of parameters in the model. The expected value 𝐸0 is with respect to the true distribution of 𝑽 with the corresponding
arameter of interest 𝜽0.

𝑅1 ∶ The density 𝑓 (𝒗;𝜽) has common support in 𝒗 for all 𝜽 ∈ 𝜣, and 𝑓 (𝒗;𝜽) is identifiable with respect to 𝜽.
𝑅2 ∶ There exists an open subset 𝜣∗ ⊂ 𝜣 containing the true parameter 𝜽0 such that for almost all 𝒗, 𝑓 (𝒗;𝜽) admits third partial

derivatives with respect to 𝜽 ∈ 𝜣∗.
𝑅3 ∶ For all 𝑗 , 𝑙 = 1, 2,… , 𝑑𝑛, the first and second derivatives of 𝑓 (𝒗;𝜽) satisfy:

𝐸0

{

𝜕
𝜕 𝜓𝑗

log 𝑓 (𝒗;𝜽)
|

|

|

|𝜽=𝜽0

}

= 0;

𝐸0

{

𝜕
𝜕 𝜓𝑗

log 𝑓 (𝒗;𝜽) 𝜕
𝜕 𝜓𝑙

log 𝑓 (𝒗;𝜽)
|

|

|

|𝜽=𝜽0

}

= 𝐸0

{

− 𝜕2

𝜕 𝜓𝑗𝜕 𝜓𝑙
log 𝑓 (𝒗;𝜽)

|

|

|

|𝜽=𝜽0

}

.

𝑅4 ∶ The Fisher information matrix is finite and positive definite at 𝜽 = 𝜽0:

𝑛(𝜽) = 𝐸0

{(

𝜕
𝜕𝜽

log 𝑓 (𝒗;𝜽)
)(

𝜕
𝜕𝜽

log 𝑓 (𝒗;𝜽)
)⊤}

,

and it has finite eigenvalues 0 < 𝑚 < 𝜌𝑚𝑖𝑛{𝑛(𝜽)} < 𝜌𝑚𝑎𝑥{𝑛(𝜽)} < 𝑀 < ∞, for some finite constant 𝑚 and 𝑀 . Furthermore,
for 𝑗 , 𝑙 = 1, 2,… , 𝑑𝑛, and for all 𝜽 ∈ 𝜣∗ in a neighborhood of 𝜽0,

𝐸0

{

𝜕2

𝜕 𝜓𝑗𝜕 𝜓𝑙
log 𝑓 (𝒗;𝜽)

}2
< 𝑀2 , 𝐸0

{

𝜕 log 𝑓 (𝒗;𝜽)
𝜕 𝜓𝑗

𝜕 log 𝑓 (𝒗;𝜽)
𝜕 𝜓𝑙

}2
< 𝑀3

for some finite constants 𝑀2 and 𝑀3.
𝑅5 ∶ There exists integrable functions 𝑗 (𝒗),𝑗 𝑙(𝒗) and 𝑗 𝑙 𝑚(𝒗) (possibly depending on 𝜽0), such that ∫ ∞

−∞ 𝑗 𝑙 𝑚(𝒗)𝑓 (𝒗;𝜽0)𝑑𝒗 < ∞,
and for all 𝜽 ∈ 𝜣∗ in a neighborhood of 𝜽0, we have

|

|

|

|

𝜕 𝑓 (𝒗;𝜽)
𝜕 𝜓𝑗

|

|

|

|

≤ 𝑗 (𝒗),
|

|

|

|

𝜕2𝑓 (𝒗;𝜽)
𝜕 𝜓𝑗𝜕 𝜓𝑙

|

|

|

|

≤ 𝑗 𝑙(𝒗),
|

|

|

|

𝜕3 log 𝑓 (𝒗;𝜽)
𝜕 𝜓𝑗𝜕 𝜓𝑙𝜕 𝜓𝑚

|

|

|

|

≤ 𝑗 𝑙 𝑚(𝒗).

Appendix C. Tables and figures

See Tables 1–4 and Figs. 2 and 3.
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Table 1
Average empirical mean squared errors.

𝑑𝑛 Method �̂�1 �̂�2 𝜷1 𝜷2 𝜷3

Lasso 2.41 2.16 .090 .477 .514
𝑛 = 200 83 AdaLasso 1.54 1.37 .117 .563 .817

scad .497 .466 .036 .099 .194

Lasso 2.45 2.19 .108 .547 .666
Setting (I) 128 AdaLasso 2.19 1.78 .635 1.68 2.29

scad .690 .791 .038 .129 .664

Lasso 2.51 2.25 .160 .753 1.02
218 AdaLasso 2.20 2.41 .394 2.49 5.30

scad 1.39 1.70 .040 .183 1.99

Lasso 2.14 1.54 .156 .178 .313
𝑛 = 300 93 AdaLasso 1.05 .704 .061 .165 .476

scad .218 .187 .034 .068 .065

Lasso 2.15 1.53 .223 .185 .351
Setting (II) 158 AdaLasso 1.30 .918 .165 .646 1.83

scad .382 .262 .058 .070 .545

Lasso 2.38 1.57 .890 .220 .523
308 AdaLasso 2.48 2.48 1.62 2.26 2.43

scad 2.13 1.70 .387 .409 1.05

Lasso 3.04 2.46 .149 .246 .324
𝑛 = 400 108 AdaLasso 1.78 1.37 .063 .250 .259

scad .315 .275 .036 .071 .056

Lasso 3.06 2.46 .216 .270 .351
Setting (III) 188 AdaLasso 1.81 1.41 .228 .524 1.28

scad .471 .424 .036 .071 .106

Lasso 3.17 2.48 .597 .331 .448
358 AdaLasso 2.55 2.73 .544 4.75 3.28

scad 2.49 2.36 .080 .798 4.70

Table 2
Average specificity and sensitivity.

𝑑𝑛 Method �̂� = (�̂�1 , �̂�2) 𝜷1 𝜷2 𝜷3

sp se sp se sp se sp se

Lasso .990 1.00 .978 1.00 .912 1.00 .947 .985
𝑛 = 200 83 AdaLasso .986 .988 .952 .998 .896 .985 .919 .948

SCAD .985 .973 1.00 1.00 .998 1.00 .993 .988

Lasso .993 1.00 .984 1.00 .926 .998 .949 .975
Setting (I) 128 AdaLasso .981 .970 .938 .988 .900 .947 .929 .815

SCAD .985 .935 1.00 1.00 .997 .997 .987 .930

Lasso .995 .993 .987 .998 .932 .997 .953 .960
218 AdaLasso .986 .935 .914 .994 .922 .912 .950 .571

SCAD .990 .788 1.00 1.00 .996 .995 .980 .763

Lasso .999 1.00 .999 1.00 .977 1.00 .985 1.00
𝑛 = 300 93 AdaLasso .999 1.00 .986 1.00 .955 .998 .938 .995

SCAD .999 1.00 1.00 1.00 1.00 1.00 .999 1.00

Lasso .999 1.00 .998 1.00 .985 1.00 .985 1.00
Setting (II) 158 AdaLasso .999 1.00 .957 .998 .924 .988 .932 .920

SCAD .999 .980 .999 .997 1.00 1.00 .995 .962

Lasso .999 1.00 .999 .967 .985 1.00 .979 .997
308 AdaLasso .997 .922 .899 .942 .932 .844 .953 .370

SCAD .903 .997 .998 .977 .993 .984 .969 .585

Lasso .999 .962 .997 1.00 .988 1.00 .994 1.00
𝑛 = 400 108 AdaLasso 1.00 .980 .994 1.00 .973 .997 .966 1.00

SCAD .999 .982 1.00 1.00 1.00 1.00 1.00 1.00

Lasso 1.00 .963 .998 1.00 .992 1.00 .995 1.00
Setting (III) 188 AdaLasso 1.00 .987 .980 1.00 .942 .997 .960 .986

SCAD 1.00 .942 1.00 1.00 1.00 1.00 1.00 .998

Lasso 1.00 .943 1.00 .990 .992 1.00 .993 .998
358 AdaLasso .999 .908 .952 .994 .929 .911 .968 .497

SCAD .962 .977 1.00 .999 .998 .972 .980 .699
14 
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Table 3
Order selection based on BIC: 𝐾 = 3 is the correct mixture order.

𝑑𝑛 Method 𝐾

1 2 3 4 5

Lasso .000 .445 .515 .035 .005
𝑛 = 200 83 AdaLasso .005 .120 .675 .155 .045

SCAD .000 .115 .755 .120 .010

Lasso .000 .435 .520 .035 .010
Setting (I) 128 AdaLasso .010 .020 .695 .200 .075

SCAD .005 .115 .750 .130 .000

Lasso .005 .270 .600 .125 .000
218 AdaLasso .115 .095 .560 .170 .060

SCAD .040 .055 .765 .140 .000

Lasso .000 .000 .950 .040 .010
𝑛 = 300 93 AdaLasso .000 .010 .855 .110 .025

SCAD .000 .000 .940 .040 .020

Lasso .000 .035 .710 .100 .155
Setting (II) 158 AdaLasso .000 .055 .700 .100 .145

SCAD .005 .165 .480 .195 .155

Lasso .000 .050 .720 .185 .045
308 AdaLasso .090 .260 .200 .225 .225

SCAD .060 .475 .245 .190 .030

Lasso .000 .020 .960 .015 .005
𝑛 = 400 108 AdaLasso .000 .005 .900 .085 .010

SCAD .000 .000 .975 .010 .015

Lasso .000 .150 .780 .025 .045
Setting (III) 188 AdaLasso .000 .100 .650 .180 .070

SCAD .000 .075 .660 .180 .085

Lasso .000 .220 .455 .285 .040
358 AdaLasso .015 .070 .330 .325 .260

SCAD .005 .145 .300 .390 .160

Table 4
List of the variables in the real data example (Heinz et al., 2003).
Covariates Description

Skeletal measurements:
𝑥1 Biacromial diameter (see Fig. 1)
𝑥2 Biiliac diameter, or ‘‘pelvic breadth’’ (see Fig. 1)
𝑥3 Bitrochanteric diameter (see Fig. 1)
𝑥4 Chest depth between spine and sternum at nipple level, mid-expiration
𝑥5 Chest diameter at nipple level, mid-expiration
𝑥6 Elbow diameter, sum of two elbows
𝑥7 Wrist diameter, sum of two wrists
𝑥8 Knee diameter, sum of two knees
𝑥9 Ankle diameter, sum of two ankles

Girth measurements:
𝑥10 Shoulder girth over deltoid muscles
𝑥11 Chest girth, nipple line in males and just above breast tissue in females, mid-expiration
𝑥12 Waist girth, narrowest part of torso below the rib cage, average of contracted and relaxed position
𝑥13 Navel (or ‘‘Abdominal’’) girth at umbilicus and iliac crest, iliac crest as a landmark
𝑥14 Hip girth at level of bitrochanteric diameter
𝑥15 Thigh girth below gluteal fold, average of right and left girths
𝑥16 Bicep girth, flexed, average of right and left girths
𝑥17 Forearm girth, extended, palm up, average of right and left girths
𝑥18 Knee girth over patella, slightly flexed position, average of right and left girths
𝑥19 Calf maximum girth, average of right and left girths
𝑥20 Ankle minimum girth, average of right and left girths
𝑥21 Wrist minimum girth, average of right and left girths

Other measurements:
𝑥22 Age (years)
𝑥23 Height (cm)
𝑥24 Sex (male = 1, female = 0)
𝑦 Weight (kg)
15 
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Fig. 2. (a) Histogram of the weight; (b)–(d) Posterior probabilities of observations belonging to each of the three groups represented by the fitted moe model.
he blue vertical line indicates the average weight within each group. The red line shows probability value 0.5. (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Boxplots of the weights of the three identified groups.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2024.106250.
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