
a

b

c

d
C
w
g
D
e
b
t
i
(
p

r

h
R

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

A graph decomposition-based approach for the graph-fused lasso✩

Feng Yu a,∗, Archer Yi Yang b, Teng Zhang c

University of Texas at El Paso, 500 W University Ave, El paso, TX 79968, USA
McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada
University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA

A R T I C L E I N F O

Keywords:
ADMM
Graph-fused lasso
Nonsmooth convex optimization
Total variation minimization
Graph decomposition

A B S T R A C T

We propose a new algorithm for solving the graph-fused lasso (GFL), a regularized model that
operates under the assumption that the signal tends to be locally constant over a predefined
graph structure. The proposed method applies a novel decomposition of the objective function
for the alternating direction method of multipliers (ADMM) algorithm. While ADMM has been
widely used in fused lasso problems, existing works such as the network lasso decompose the
objective function into the loss function component and the total variation penalty component.
In contrast, based on the graph matching technique in graph theory, we propose a new
method of decomposition that separates the objective function into two components, where one
component is the loss function plus part of the total variation penalty, and the other component
is the remaining total variation penalty. We develop an exact convergence rate of the proposed
algorithm by developing a general theory on the local convergence of ADMM. Compared with
the network lasso algorithm, our algorithm has a faster exact linear convergence rate (although
in the same order as for the network lasso). It also enjoys a smaller computational cost per
iteration, thus converges overall faster in most numerical examples.

1. Introduction

The graph-fused lasso (GFL) has a wide range of applications in machine learning and pattern recognition, including image
enoising and segmentation (Chopra and Lian, 2010), texture classification (Nelson, 2013), feature selection (Zhang et al., 2017;
ui et al., 2021), feature learning (Yang et al., 2021), signal processing and computer vision (Mu and Liu, 2020), etc. It offers a
ide range of variants based on different graph structures, for example, the chain graph (Nelson, 2013; Zhang et al., 2017), the grid
raph (Chopra and Lian, 2010; Mu and Liu, 2020), the complete graph (Yang et al., 2021), or a general graph (Cui et al., 2021).
ue to the popularity of GFL, there have been extensive studies on its computation. For the one-dimensional chain graph (Tibshirani
t al., 2005), there are taut-string method (Davies and Kovac, 2001), duality-based method (Condat, 2013), dynamic programming-
ased approach (Johnson, 2013), and modular proximal optimization method (Barbero and Sra, 2018). When the given graph is a
wo-dimensional grid, the corresponding fused lasso model is often as the total-variation denoising (Rudin et al., 1992), which has
mportant applications in image denoising and processing. A parametric max-flow algorithm proposed in Chambolle and Darbon
2009) can be used to efficiently solve this variant. When the given graph is a tree, one can apply a dynamic programming approach
roposed in Kolmogorov et al. (2016) to solve the corresponding fused lasso problem.

While all the aforementioned algorithms can find the exact solutions of different fused lasso problems in finite steps, they are
estricted to some specific graph structure and cannot work for general graphs. In addition, they cannot be naturally generalized to

✩ This document is the results of the research project funded by the National Science Foundation, CNS-1818500.
∗ Corresponding author.

E-mail addresses: fyu@utep.edu (F. Yu), archer.yang@mcgill.ca (A.Y. Yang), teng.zhang@ucf.edu (T. Zhang).
ttps://doi.org/10.1016/j.jspi.2024.106221
eceived 14 April 2023; Accepted 2 August 2024

https://www.elsevier.com/locate/jspi
https://www.elsevier.com/locate/jspi
mailto:fyu@utep.edu
mailto:archer.yang@mcgill.ca
mailto:teng.zhang@ucf.edu
https://doi.org/10.1016/j.jspi.2024.106221

F. Yu et al.

o
G

w
v

s
m
m
p
A
o
S
b
u
(
a
i
o
b

g
i
m
s
t
d
n
c
t
n

i
t
n

2

B
d

2

p
a

F
i

the setting with multi-dimensional signals, which is sometimes called group fused lasso (Vert and Bleakley, 2010). In this paper, we
consider a general graph-fused lasso problem based on the assumption that the signal tends to be locally constant over a predefined
graph structure. Given a graph  = ( , ), where  is the set of vertices and  is the set of edges, we let 𝑛 = || be the cardinality
f  and let 𝑑 = || be the cardinality of  . We let 𝐱𝑖 ∈ R𝑝 be the signal that is associated with the 𝑖th vertex of the graph, then the
FL is defined as the solution to the following optimization problem:

min
{𝐱𝑖}𝑖∈⊂R𝑝

∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈
‖𝐱𝑡 − 𝐱𝑠‖, (1)

here ‖ ⋅ ‖ is the 𝓁2 norm, the first component is a loss function for the observation 𝐱𝑖, and the second component uses the total
ariation norm to penalize the difference between the two signals on the edges in the graph.

Numerous iterative algorithms have been proposed to solve (1), including the projected gradient descent (Liu et al., 2010), the
moothing proximal gradient (SPG) (Chen et al., 2012), the alternating linearization method (Lin et al., 2014), the majorization–
inimization method (Yu et al., 2015), and many other types (Friedman et al., 2007; Tibshirani et al., 2011). Besides the above
ethods, the alternating direction method of multipliers (ADMM) has become increasingly popular for solving the fused lasso
roblems, due to its simplicity and competitive empirical performance (Ye and Xie, 2011; Wahlberg et al., 2012). However, in
DMM, there is a necessary step of solving a linear system for the 𝑛 × 𝑛 matrix 𝐈 + 𝜌𝐃𝑇𝐃, where 𝐃 represents the edge incidence
perator of size 𝑑 × 𝑛 such that all the nonzero elements are given as follows: for the 𝑘th edge (𝑖𝑘, 𝑗𝑘), 𝐃𝑘,𝑖𝑘 = 1 and 𝐃𝑘,𝑗𝑘 = −1.
olving this linear system costs 𝑂(𝑛2). The authors of Batson et al. (2013) improved it to nearly 𝑂(𝑛) using a graph-sparsification
ased method. The authors of Zhu (2017) proposed a modified ADMM algorithm that has a smaller computational cost of 𝑂(𝑛) in an
pdate step, but this modification generally converges slower. A special ADMM algorithm was proposed in Ramdas and Tibshirani
2015) that used dynamic programming in one of the update steps, which can be used in the trend filtering problem, or when 𝐃 has
diagonal structure. A method based on the Douglas–Rachford decomposition for the two-dimensional grid graph was proposed

n Barbero and Sra (2018), which can be considered as the dual algorithm of ADMM (Eckstein and Bertsekas, 1992). The authors
f Tansey and Scott (2015) leveraged fast one-dimensional fused lasso solvers in an ADMM method based on graph decomposition,
ut it can only be applied when 𝑝 = 1.

Among all ADMM type algorithms, the network lasso (Hallac et al., 2015) is particularly interesting since it is scalable to any
eneric graphs and can be applied to any dimension 𝑝 ≥ 1. Our paper follows the same direction and can be considered as an
mprovement of the network lasso algorithm. The main contributions of our paper are as follows: we propose a novel ADMM
ethod which decomposes the objective function into two parts based on the graph structures, such that one resulting subgraph

tructure does not contain any two adjacent edges simultaneously. This method can be applied to any graph and can be generalized
o some other problems such as trend filtering as well; We characterize the exact convergence rate for the proposed algorithm by
eveloping a general theory on the local convergence of ADMM, which can also be used for analyzing the convergence rate of the
etwork lasso (Hallac et al., 2015). Compared with the competitive network lasso algorithm, our algorithm has a faster exact linear
onvergence rate (although both are in the same order); We also study the computational cost of the proposed method and find
hat it enjoys a smaller computational cost per iteration compared to the network lasso, resulting in faster convergence in most
umerical examples.

The rest of this paper is organized as follows. In Section 2 we introduce our proposed method. In Section 3 we analyze
ts computational complexity per iteration as well as convergence rates and establish the advantage of the proposed algorithm
heoretically. Then we compare our algorithm with the alternative algorithm (Hallac et al., 2015) in Section 4 for solving the
etwork lasso, both in simulated data sets and a real-life data set, which verifies the advantage of the proposed method.

. Methodology

In this section, we first review the network lasso algorithm in Section 2.1, which can be considered as the motivation of this work.
ased on it, we propose our method in Section 2.2 and discuss its implementation in Section 2.3. A step-by-step implementation is
escribed in Algorithm 1.

.1. The network lasso algorithm

The authors of Hallac et al. (2015) introduced the following ‘‘Network Lasso’’ algorithm for solving (1): for any edge (𝑠, 𝑡) ∈  , a
air of auxiliary variables 𝐳𝑠𝑡, 𝐳𝑡𝑠 ∈ R𝑝 is introduced, which are the copies of 𝐱𝑡 and 𝐱𝑠 respectively. The problem (1) can be rewritten
s follows:

{𝐱̂𝑖}𝑖∈ = argmin
{𝐱𝑖}𝑖∈ ,

{𝐳𝑠𝑡 ,𝐳𝑡𝑠}(𝑠,𝑡)∈

∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈
‖𝐳𝑠𝑡 − 𝐳𝑡𝑠‖

s.t. 𝐱𝑠 = 𝐳𝑠𝑡 and 𝐱𝑡 = 𝐳𝑡𝑠 for all (𝑠, 𝑡) ∈  . (2)

or each edge (𝑠, 𝑡) ∈  , let 𝐮𝑠𝑡,𝐮𝑡𝑠 ∈ R𝑝 be the dual variables for 𝐱𝑠 − 𝐳𝑠𝑡 and 𝐱𝑡 − 𝐳𝑡𝑠 respectively, then the augmented Lagrangian
s (here 𝑥, 𝑧 and 𝑢 represent {𝐱𝑖}𝑖∈ , {𝐳𝑖}𝑖∈ , and {𝐮𝑠,𝑡}(𝑠,𝑡)∈ respectively):

𝐿𝜌(𝑥, 𝑧, 𝑢)=
∑

𝑖∈
𝑓𝑖(𝐱𝑖) +

∑

(𝑠,𝑡)∈

(

𝜆‖𝐳𝑠𝑡−𝐳𝑡𝑠‖ + 𝐮𝑇𝑠𝑡(𝐱𝑠 − 𝐳𝑠𝑡)

+ 𝐮𝑇 (𝐱 −𝐳) +
𝜌
‖𝐱 −𝐳 ‖

2+
𝜌
‖𝐱 −𝐳 ‖

2
)

, (3)
𝑡𝑠 𝑡 𝑡𝑠 2 𝑠 𝑠𝑡 2 𝑡 𝑡𝑠

F. Yu et al.

w

W
c

where 𝜌 > 0 is a parameter. Then the standard ADMM routine would apply:

𝑥(𝑘+1) = argmin
𝑥

𝐿𝜌(𝑥, 𝑧(𝑘), 𝑢(𝑘)) (4)

𝑧(𝑘+1) = argmin
𝑧

𝐿𝜌(𝑥(𝑘+1), 𝑧, 𝑢(𝑘)) (5)

𝐮(𝑘+1)𝑠𝑡 = 𝐮(𝑘)𝑠𝑡 + 𝜌(𝐱(𝑘+1)𝑠 − 𝐳(𝑘+1)𝑠𝑡) (6)

𝐮(𝑘+1)𝑡𝑠 = 𝐮(𝑘)𝑡𝑠 + 𝜌(𝐱(𝑘+1)𝑡 − 𝐳(𝑘+1)𝑡𝑠). (7)

The advantage of this algorithm is that, in each iteration, the optimization problem can be decomposed into smaller subproblems
with explicit solutions: the updates of 𝑥 requires solving problems, min𝐱𝑖 𝑓𝑖(𝐱𝑖) + ‖𝐱𝑖 − 𝐭‖2, which has explicit solutions for a large
range of 𝑓𝑖; and the updates of 𝑧 requires solving min𝐳𝑠𝑡 ,𝐳𝑡𝑠 ‖𝐳𝑡𝑠 − 𝐭1‖2 + ‖𝐳𝑠𝑡 − 𝐭2‖2 + 𝜆‖𝐳𝑡𝑠 − 𝐳𝑠𝑡‖, which also has explicit solutions.

2.2. Our proposed approach

Alternatively, in this paper we propose another ADMM algorithm for solving (1), based on the reformulation as follows: we
divide the set of edges  into 0 and 1, such that the set 0 does not contain two neighboring edges. We then solve the following
optimization problem:

argmin
{𝐱𝑖}𝑖∈ ,

{𝐳𝑠𝑡}(𝑠,𝑡)∈1

(

∑

𝑖∈
𝑓𝑖(𝐱𝑖) +𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖
)

+𝜆
∑

(𝑠,𝑡)∈1

‖𝐳𝑠𝑡 − 𝐳𝑡𝑠‖

s.t. 𝐱𝑠 = 𝐳𝑠𝑡 and 𝐱𝑡 = 𝐳𝑡𝑠 for all (𝑠, 𝑡) ∈ 1. (8)

Let 𝐮𝑠𝑡,𝐮𝑡𝑠 be the dual variables for 𝐱𝑠 − 𝐳𝑠𝑡 and 𝐱𝑡 − 𝐳𝑡𝑠 respectively, then the augmented Lagrangian is

𝐿̂𝜌(𝑥, 𝑧, 𝑢) =
∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖ (9)

+
∑

(𝑠,𝑡)∈1

(

𝜆‖𝐳𝑠𝑡 − 𝐳𝑡𝑠‖ + 𝐮𝑇𝑠𝑡(𝐱𝑠 − 𝐳𝑠𝑡)

+ 𝐮𝑇𝑡𝑠(𝐱𝑡−𝐳𝑡𝑠)+
𝜌
2
‖𝐱𝑠−𝐳𝑠𝑡‖2+

𝜌
2
‖𝐱𝑡 − 𝐳𝑡𝑠‖2

)

,

here 𝜌 > 0 is a parameter, and ADMM updates are

𝑥(𝑘+1) = argmin
𝑥

𝐿̂𝜌(𝑥, 𝑧(𝑘), 𝑢(𝑘)) (10)

𝑧(𝑘+1) = argmin
𝑧

𝐿̂𝜌(𝑥(𝑘+1), 𝑧, 𝑢(𝑘)) (11)

𝐮(𝑘+1)𝑠𝑡 = 𝐮(𝑘)𝑠𝑡 + 𝜌(𝐱(𝑘+1)𝑠 − 𝐳(𝑘+1)𝑠𝑡) (12)

𝐮(𝑘+1)𝑡𝑠 = 𝐮(𝑘)𝑡𝑠 + 𝜌(𝐱(𝑘+1)𝑡 − 𝐳(𝑘+1)𝑡𝑠). (13)

hile the update formula for 𝑥 in (10) is similar to that in (4), it requires solving a slightly different problem due to the additional
omponent 𝜆∑(𝑠,𝑡)∈0 ‖𝐱𝑠 − 𝐱𝑡‖. In particular, (10) can be divided into subproblems as follows

argmin
𝐱𝑠 ,𝐱𝑡∈R𝑝

𝑓𝑠(𝐱𝑠) + 𝑓𝑡(𝐱𝑡) +
𝜌
2
𝑑𝑠‖𝐱𝑠‖2 − 𝛼𝑇𝑠 𝐱𝑠

+
𝜌
2
𝑑𝑡‖𝐱𝑡‖2 − 𝛼𝑇𝑡 𝐱𝑡 + 𝜆‖𝐱𝑠 − 𝐱𝑡‖, (14)

for some 𝛼𝑠, 𝛼𝑡 ∈ R𝑝 and 𝑑𝑠, 𝑑𝑡 ∈ R with explicit expressions: 𝑑𝑠 is the degree of the vertex 𝑠 in the graph ( , 1) and 𝛼𝑠 =
∑

(𝑠,𝑡′)∈1 (𝐮𝑠𝑡′ − 𝜌𝐳𝑠𝑡′). For many choices of 𝑓𝑠 and 𝑓𝑡, this problem has an explicit solution. For example, if 𝑓𝑠 are squared functions
in the form of 𝑓𝑠(𝐱) = 𝑐𝑠‖𝐱 − 𝐚𝑠‖2, then the problem (14) has closed-form solutions by Lemma 2.

Intuitively, we expect our proposed algorithm would achieve a faster convergence rate than (2) because (a) (8) has fewer ‘‘dummy
variables’’ in the form of 𝐳𝑠𝑡 (2|1| instead of 2||); (b) (9) has fewer dual parameters than (8). This intuition is later verified by the
computational analysis discussed in Section 3 and the numerical examples in Section 4.

2.3. Implementation

To reduce the computational cost, we provide an equivalent form of (8) in terms of ADMM as follows,

argmin
{𝐱𝑖}𝑖∈ ,

{𝐳𝑠𝑡}(𝑠,𝑡)∈1

(

∑

𝑖∈
𝑓𝑖(𝐱𝑖) +𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖
)

+𝜆
∑

(𝑠,𝑡)∈1

‖𝐳𝑠𝑡‖

s.t. 𝐳𝑠𝑡 = 𝐱𝑠 − 𝐱𝑡. (15)

F. Yu et al.

T

T
i

L

v

w
𝐭
a

c

and its Lagrangian reads

𝐿̃𝜌(𝑥, 𝑧, 𝑢) =
∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖ +
∑

(𝑠,𝑡)∈1

(

𝜆‖𝐳𝑠𝑡‖ + 𝐮𝑇𝑠𝑡(𝐳𝑠𝑡 − 𝐱𝑠 + 𝐱𝑡) +
𝜌
2
‖𝐳𝑠𝑡 − 𝐱𝑠 + 𝐱𝑡‖2

)

. (16)

hen the preconditioned ADMM algorithm (Benning et al., 2016) can be applied,

𝑥(𝑘+1) = argmin
𝑥

𝐿̃𝜌(𝑥, 𝑧(𝑘), 𝑢(𝑘)) +
𝜌
2

∑

(𝑠,𝑡)∈1

‖𝐱𝑠 + 𝐱𝑡 − 𝐱(𝑘)𝑠 − 𝐱(𝑘)𝑡 ‖

2 (17)

𝑧(𝑘+1) = argmin
𝑧

𝐿̃𝜌(𝑥(𝑘+1), 𝑧, 𝑢(𝑘)) (18)

𝐮(𝑘+1)𝑠𝑡 = 𝐮(𝑘)𝑠𝑡 + 𝜌(𝐳(𝑘+1)𝑠𝑡 − 𝐱(𝑘+1)𝑠 + 𝐱(𝑘+1)𝑡). (19)

he following lemma shows that the algorithm based on (17)–(19) is equivalent to that based on (10)–(13). The proof of Lemma 1
s included in Appendix.

emma 1. For any 𝜌0 > 0, the update formulas in (17)–(19) with 𝜌 = 𝜌0 are equivalent to those in (10)–(13) with 𝜌 = 2𝜌0.

Compared with the updating formulas in (10)–(13), the computational costs of (17)–(19) are smaller since there are no ‘‘dummy
ariables’’ 𝐳𝑡𝑠 and its dual 𝐮𝑡𝑠. Specifically, problem (17) can be solved as follows:

(𝐱(𝑘+1)𝑠 , 𝐱(𝑘+1)𝑡) = argmin
𝐱𝑠 ,𝐱𝑡

𝑓𝑠(𝐱𝑠) + 𝑓𝑡(𝐱𝑡) + 𝜆‖𝐱𝑠 − 𝐱𝑡‖ + 𝜌(𝑑𝑠‖𝐱𝑠‖2 + 𝑑𝑡‖𝐱𝑡‖2)+𝐱𝑇𝑠 𝐭
(𝑘)
𝑠 + 𝐱𝑇𝑡 𝐭

(𝑘)
𝑡 , (20)

𝐱(𝑘+1)𝑖 = argmin
𝐱𝑖

𝑓𝑖(𝐱𝑖) + 𝜌𝑑𝑖‖𝐱𝑖‖2 + 𝐱𝑇𝑖 𝐭
(𝑘)
𝑖 . (21)

here the updates occur for any (𝑠, 𝑡) ∈ 0 and any 𝑖 ∈  and does not belong to any edges in 0. The vectors 𝐭(𝑘)𝑖 are defined as
(𝑘)
𝑖 =

∑

𝑗∶(𝑖,𝑗)∈1 [−(𝐮
(𝑘)
𝑖𝑗 + 𝜌𝐳(𝑘)𝑖𝑗) − 𝜌(𝐱(𝑘)𝑖 + 𝐱(𝑘)𝑗)] +

∑

𝑗∶(𝑗,𝑖)∈1 [(𝐮
(𝑘)
𝑗𝑖 + 𝜌𝐳(𝑘)𝑗𝑖) − 𝜌(𝐱(𝑘)𝑖 + 𝐱(𝑘)𝑗)]. The implementation details based on (17)–(19)

re described in Algorithm 1.
Algorithm 1 Proposed algorithm based on (17)–(19).

1: Input: Graph ( , ) and its partition  = 0 ∪ 1 (0 has not neighboring edges); loss functions {𝑓𝑖}𝑖∈ ; parameters 𝜌 and 𝜆.
2: for 𝑘 = 1, 2,⋯ do
3: Update (𝐱(𝑘+1)𝑠 , 𝐱(𝑘+1)𝑡) using (20) and (21).
4: For any (𝑠, 𝑡) ∈ 1, update

𝐳(𝑘+1)𝑠𝑡 = threshold
(

𝐱(𝑘+1)𝑠 − 𝐱(𝑘+1)𝑡 −
𝐮(𝑘)𝑠𝑡
𝜌

, 𝜆
𝜌

)

𝐮(𝑘+1)𝑠𝑡 = 𝐮(𝑘)𝑠𝑡 + 𝜌(𝐳(𝑘+1)𝑠𝑡 − 𝐱(𝑘+1)𝑠 + 𝐱(𝑘+1)𝑡).
5: stop until ‖𝐱(𝑘+1)𝑖 − 𝐱(𝑘)𝑖 ‖ < 𝜀
6: end for
7: Output: 𝐱̂𝑖 = 𝐱(𝑘+1)𝑖 .

As the performance of Algorithm 1 depends on how  is decomposed, 0 is called matching in graph theory and there are
numerous algorithms for finding a matching within a graph. It is related to the classic problem of graph matching in graph theory.
In practice, we choose greedy algorithm to find 0. First, label all edges in some arbitrary order and 0 be an empty set. Second,
cycle once through each edge and add it to 0 if it is not neighboring any existing edge in 0.

3. Computational analysis

While the ADMM algorithm and its convergence rate has been well studied, many existing works require very strong conditions
on the objective which are not necessarily satisfied in our problem. For example, Sections 4–5 in Goldstein et al. (2014) proved
that the standard ADMM algorithm for 𝑓 (𝐱) + 𝑔(𝐳) subject to 𝐀𝐱 + 𝐁𝐳 = 𝐜 converges with rate 𝑂(1∕𝑘), and an accelerated version
onverges with rate 𝑂(1∕𝑘2) in terms of the residue of the algorithm, when both 𝑓 and 𝑔 are strongly convex and 𝜌 is appropriately

chosen. However, it cannot be directly applied to our case since 𝑔 in (8) is not strongly convex. In addition, Theorem 7 in Nishihara
et al. (2015) proved that in minimizing 𝑓 (𝐱)+𝑔(𝐳) subject to 𝐀𝐱+𝐁𝐳 = 𝐜, if 𝑔 is convex, 𝑓 is strongly convex with convex parameter
𝑚 and ∇𝑓 is Lipschitz continuous with parameter 𝐿, then the algorithm has linear convergence rate when 𝜌 is appropriately chosen.
But again this result cannot be directly applied to our case, since in (8), ∇𝑓 is not Lipschitz continuous. The authors of Deng and
Yin (2016) proved the global convergence for ADMM under the assumptions of strong convexity and Lipschitz gradient on one of
the two functions, along with certain rank assumptions on 𝐀 and 𝐁, but in (8), neither ∇𝑓 or ∇𝑔 is Lipschitz continuous. Similarly, a
tight linear convergence rate bound was proved in Giselsson (2017) under the assumption that one of the two operators is strongly
convex and the other is Lipschitz continuous, which again does not apply to (8). On the other hand, some previous works can
handle the settings of our problem, but the established convergence rate is not optimal. For example, a sub-linear convergence rate
of 𝑂(1∕

√

𝑘) is obtained in Guo et al. (2017) for the Douglas–Rachford Splitting Method for solving min𝑥 𝑓 (𝑥)+𝑔(𝑥) when 𝑓 is strongly

convex and 𝑔 is weakly convex.

F. Yu et al.

a
l
a
t
A

T
A
i

R
r

𝐱
i
t

S

[

t
c
a

The only reference that proves the global linear convergence of our algorithm might be (Yang and Han, 2016), which proves
global linear convergence when both 𝜕𝑓 and 𝜕𝑔 are piecewise linear multifunctions. However, they only find a bound on the

inear convergence rate, and this rate is implicitly defined. In this paper, we provide an exact convergence rate of the proposed
lgorithm by developing a general theory on the local convergence of ADMM. Notably, this result can be applied to analyze both
he convergence rate of our algorithm and that of the network lasso algorithm. The proof of the following theorem is deferred to
ppendix.

heorem 1 (Local Convergence Rate of ADMM). Considering the problem of minimizing 𝑓1(𝐱1) + 𝑓2(𝐱2) subject to 𝐀1𝐱1 + 𝐀2𝐱2 = 𝐛.
ssume that around the solution (𝐱∗, 𝐲∗), 𝜕𝑓1(𝐱) = 𝐂1𝐱+ 𝐜1 and 𝜕𝑓2(𝐱) = 𝐂2𝐱+ 𝐜2, then the local convergence rate of the ADMM algorithm

s 𝑂(𝑐(𝜌)𝑘), where 𝑘 is the number of iterations and 𝑐(𝜌) is the largest real components among all eigenvalue of
1
2
[(𝐈 − 2(𝐈 + 𝜌𝐀2𝐂−1

2 𝐀𝑇
2)

−1)(𝐈 − 2(𝐈 + 𝜌𝐀1𝐂−1
1 𝐀𝑇

1)
−1) + 𝐈].

emark. We note that Theorem 1 is similar to França and Bento (2017) in the sense that both investigate the exact local convergence
ate. However, the objective function in França and Bento (2017) is quadratic and has no 𝓁2 component as in (8).

The convergence rate of Algorithm 1 follows from Theorem 1 with

𝑓1({𝐱𝑖}𝑖∈) =
∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖

𝑓2({𝐳𝑠𝑡}(𝑠,𝑡)∈1) = 𝜆
∑

(𝑠,𝑡)∈1

‖𝐳𝑠𝑡 − 𝐳𝑡𝑠‖.

That is, 𝐱1 in Theorem 1 is replaced by {𝐱𝑖}𝑖∈ , 𝐱2 in Theorem 1 is replaced by {𝐳𝑠𝑡}(𝑠,𝑡)∈1 , and 𝐀1𝐱1 + 𝐀2𝐱2 = 𝐛 is replaced by
𝑠 = 𝐳𝑠𝑡 and 𝐱𝑡 = 𝐳𝑡𝑠 for all (𝑠, 𝑡) ∈ 1. Therefore, we have 𝐀1 ∈ R𝑛𝑝×2𝑝|1|, defined such that 𝐀1(2𝑖 − 1, 𝑠𝑖) = 𝐈𝑝×𝑝 and 𝐀1(2𝑖, 𝑡𝑖) = 𝐈𝑝×𝑝
f (𝑠𝑖, 𝑡𝑖) is the 𝑖th edge in 1, and 𝐀2 = −𝐈2𝑝|1|×2𝑝|1|. The matrix 𝐂1 ∈ R𝑝𝑛×𝑝𝑛 can be generated by the following three steps. First,
he (𝑖, 𝑖)th 𝑝 × 𝑝 block is given by

𝐂1(𝑖, 𝑖) = Hessian𝑓𝑖(𝐱∗𝑖)

econd, for (𝑖, 𝑗) ∈ 0 we let 𝐓(𝑖, 𝑗) = 1
‖𝐱∗𝑖 −𝐱

∗
𝑗 ‖
𝐈 − 1

‖𝐱∗𝑖 −𝐱
∗
𝑗 ‖

3 (𝐱∗𝑖 − 𝐱∗𝑗)(𝐱
∗
𝑖 − 𝐱∗𝑗)

𝑇 if 𝐱∗𝑖 ≠ 𝐱∗𝑗 , and 𝐓(𝑖, 𝑗) = ∞𝐈 if 𝐱∗𝑖 = 𝐱∗𝑗 . Third, we update

the (𝑖, 𝑖), (𝑖, 𝑗), (𝑗, 𝑖), (𝑗, 𝑗)th 𝑝 × 𝑝 blocks of 𝐂1 by

𝐂1(𝑖, 𝑖) ← 𝐂1(𝑖, 𝑖) + 𝐓(𝑖, 𝑗),
𝐂1(𝑗, 𝑗) ← 𝐂1(𝑗, 𝑗) + 𝐓(𝑖, 𝑗),
𝐂1(𝑖, 𝑗) ← 𝐂1(𝑖, 𝑗) − 𝐓(𝑖, 𝑗),
𝐂1(𝑗, 𝑖) ← 𝐂1(𝑗, 𝑖) − 𝐓(𝑖, 𝑗).

The matrix 𝐂2 ∈ R2𝑝|1|×2𝑝|1| is generated as follows: for the 𝑖th edge in 1, (𝑠𝑖, 𝑡𝑖), the (𝑖, 𝑖)th 2𝑝 × 2𝑝 block of 𝐂2 is given by
𝐓(𝑠𝑖, 𝑡𝑖),−𝐓(𝑠𝑖, 𝑡𝑖); −𝐓(𝑠𝑖, 𝑡𝑖),𝐓(𝑠𝑖, 𝑡𝑖)]. The remaining 2𝑝 × 2𝑝 blocks are all zero matrices.

Note that the network lasso algorithm is equivalent to Algorithm 1 with 0 = ∅ and 1 =  , this result can also be used to analyze
he convergence rate of the network lasso algorithm. While it is difficult to compare their convergence rates in general due to the
omplexities of 𝐀𝑖 and 𝐂𝑖, we can calculate the convergence rate numerically for some specific examples. Here we assume two cases
s follows:

1. Let ( , ) be the one-dimensional chain graph defined by  = {1, 2,… , 100} and  = {(𝑘, 𝑘+1) ∣ 1 ≤ 𝑘 ≤ 99}, and the partition
such that 0 = {(1, 2), (3, 4),…} and 1 = {(2, 3), (4, 5),…}. In addition, 𝐱̂𝑖 ≠ 𝐱̂𝑖+1 when 𝑖 = 9, 18⋯ , 99, 𝜆 = 1.

2. Let ( , ) be the two-dimensional grid graph of size 10 × 10 and its partition  = 0 ∪ 1 as visualized in Fig. 3. In
addition, 𝐱̂ has the sparsity pattern such that if we index the 100 vertices by (𝑖, 𝑗)1≤𝑖,𝑗≤10, then 𝐱̂(𝑖, 𝑗) has the same value
if (𝑖 − 5)2 + (𝑗 − 5)2 ≤ 10 and has another value otherwise, and 𝜆 = 1.

The comparison of corresponding 𝑐(𝜌) defined in Theorem 1 for Algorithm 1 and the network lasso are visualized in Fig. 1, where
the 𝑦-axis represents − log(𝑐(𝜌)), in which larger values means faster convergence. From Fig. 1, Algorithm 1 consistently has a larger
− log(𝑐(𝜌)), which implies that it has a faster convergence rate than the network lasso algorithm.

3.1. Computational cost

In this section, we compare the computational cost per iteration of Algorithm 1 and the network lasso algorithm (Hallac et al.,
2015) in a common case that 𝑓𝑖(𝐱𝑖) = ‖𝐱𝑖 − 𝐲𝑖‖2. Under such setting, the solutions of (20) in Algorithm 1 can be characterized by
Lemma 2.

Lemma 2. For any 𝐚,𝐛 ∈ R𝑝,

argmin 𝑐1‖𝐱 − 𝐚‖2 + 𝑐2‖𝐲 − 𝐛‖2 + 𝜆‖𝐱 − 𝐲‖

𝐱,𝐲∈R𝑝

F. Yu et al.

3
t

e

t
e
t
t
g
a
p
w

a

Fig. 1. Comparison of the theoretical local convergence rates between Algorithm 1 and the network lasso.

=

⎧

⎪

⎨

⎪

⎩

(𝑐1𝐚+𝑐2𝐛𝑐1+𝑐2
, 𝑐1𝐚+𝑐2𝐛𝑐1+𝑐2

), if 2𝑐1𝑐2‖𝐚−𝐛‖≤ (𝑐1 + 𝑐2)𝜆

(𝐚 − 𝜆
2𝑐1

𝐚−𝐛
‖𝐚−𝐛‖ ,𝐛 − 𝜆

2𝑐2
𝐛−𝐚

‖𝐛−𝐚‖), otherwise.

Now let us investigate the computational complexity per iteration of Algorithm 1, by keeping track of the multiplications of a
scalar and a vector of R𝑝 (denoted as multiplications) and the additions of two vectors of R𝑝 (denoted as additions). In particular,
the calculation of 𝐭𝑠∕(1+𝜌𝑠) in step 3 requires 2|1|+𝑛 multiplications and 2|1|+𝑛 additions, and solving (20) requires an additional
cost of at most 2|0| multiplications and 2|0| additions, and |0| operations of finding the norm of a vector of length 𝑝 and |0|
operations of comparing two scalars. Solving (21) requires 3|1| additions, |1| multiplications and |1| comparisons. Step 4 requires
|1| additions and |1| multiplications. Therefore the total computational cost is 𝑝(13|1| + 7|0| + 2𝑛) = 𝑝(6|1| + 9𝑛) ≤ 15𝑛𝑝. On
he other hand, note that the network lasso algorithm is equivalent to the case where 0 = ∅ and 1 =  , we may also compute its

computational cost per iteration, which would be 15𝑛𝑝. It is clear that whenever |1| < ||, Algorithm 1 will always have a smaller
computational cost per iteration compared to the network lasso.

3.2. Comparison with other works

Decomposing a graph into edges or paths has been used in existing literature. However, we remark that our approach is different
from previous works. For instance, Tansey and Scott (2015) decomposes the graph into a set of trails (this idea is also explored
in Barbero and Sra (2018) for the two-dimensional grid graph), and then apply existing algorithms to solve each problem. In
particular, it decomposes  into 𝐾 sets ⋃𝐾

𝑘=1 𝑘 such that for each 1 ≤ 𝑘 ≤ 𝐾, 𝑘 is a trail, which is a walk in which all the
dges are distinct. By writing the optimization problem as

min
𝐱,𝐳

∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

1≤𝑘≤𝐾

∑

(𝑠,𝑡)∈𝑘

‖𝐳𝑘 ,𝑠 − 𝐳𝑘 ,𝑡‖,

s.t. 𝐳𝑘 ,𝑠 = 𝐱𝑠, ∀1 ≤ 𝑘 ≤ 𝐾 and 𝑠 in some edge of 𝑘,

hen the ADMM algorithm can be used to update 𝐱 and 𝐳 alternatively. For the case 𝑝 = 1, the update for 𝐳 in each trail can be solved
fficiently using the dynamic programming approach in Johnson (2013). We remark that there are two main differences between
heir method and ours: First, while ADMM algorithm requires decomposing the objective function into two components, they follow
he natural decomposition by the loss function 𝑓𝑖 and the total variation penalty term; while our partition is different and based on
raph decomposition. A comparison is summarized in Table 1. In this sense, Barbero and Sra (2018) and Tansey and Scott (2015)
re verysimilar to network lasso, but with the subproblem for the second component solved by graph decomposition and dynamic
rogramming. Second, these methods apply the dynamic programming approach (Johnson, 2013), which only works for the case
here 𝐱𝑖 are scalars (i.e., 𝑝 = 1). In comparison, our method can handle the multivariate observations, i.e., 𝐱𝑖 ∈ R𝑝 with 𝑝 > 1.

In fact, when 𝑝 = 1, the idea in this work can be combined with the idea in Barbero and Sra (2018) and Tansey and Scott (2015)
⋃𝐾1 1 ⋃𝐾0 0 0 1
s follows: first decompose  into sets (𝑘=1 𝑘) ∪ (𝓁=1 𝓁), such that all 𝓁 and 𝑘 are disjoint trails. Then we may write the

F. Yu et al.

W
o
s
b
f

2
t
𝑓
s
l
n

4

t
{

Table 1
Comparison of decomposition of the objective function (1) in various ADMM algorithms. The
second row refers Networks Lasso (Hallac et al., 2015), and Barbero and Sra (2018), Tansey and
Scott (2015), Zhu (2017) and Ramdas and Tibshirani (2015).

First component Second component

Proposed ∑

𝑖∈ 𝑓𝑖(𝐱𝑖) +𝜆
∑

(𝑠,𝑡)∈1
‖𝐱𝑡 − 𝐱𝑠‖ 𝜆

∑

(𝑠,𝑡)∈1
‖𝐱𝑡 − 𝐱𝑠‖

Others ∑

𝑖∈ 𝑓𝑖(𝐱𝑖) 𝜆
∑

(𝑠,𝑡)∈ ‖𝐱𝑡 − 𝐱𝑠‖

optimization problem as

min
𝐱,𝐳

(

∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

1≤𝑘≤𝐾0

∑

(𝑠,𝑡)∈0𝑘

‖𝐱𝑠 − 𝐱𝑡‖
)

+ 𝜆
∑

1≤𝑘≤𝐾1

∑

(𝑠,𝑡)∈1𝑘

‖𝐳1𝑘 ,𝑠 − 𝐳1𝑘 ,𝑡‖,

s.t. 𝐳1𝑘 ,𝑠 = 𝐱𝑠,

for all 1 ≤ 𝑘 ≤ 𝐾 − 1 and 𝑠 in some edge of 1
𝑘 , which would lead to another ADMM algorithm for solving (1) when 𝑝 = 1 (i.e., the

problem considered in Tansey and Scott (2015)) and the dynamic programming method (Johnson, 2013) can be applied. However,
we suspect that this algorithm is faster than Algorithm 1 when 𝑝 = 1, but we will leave it as a possible future investigation.

We remark that there are other methods for fused lasso and its related problems, including Zhu (2017) and Ramdas and Tibshirani
(2015). However, both of them are still based on the standard decomposition of loss function and regularizer, and only apply to the
setting 𝑝 = 1.

4. Numerical experiments

In this section, Algorithm 1 will be compared with the network lasso for solving the graph-fused lasso models under various
scenarios. We measure the convergence by the difference between the objective value at iteration 𝑘 and the optimal objective
value. We remark that all ADMM algorithms require an augmented Lagrangian parameter 𝜌, and the algorithms would converge
slowly when 𝜌 is too large or too small. While there have been many works on the choice of 𝜌 (for example, a simple varying
penalty strategy based on residual balancing is suggested in Section 3.4.1 of Boyd et al. (2011), and another choice based on the
Barzilai–Borwein spectral method for gradient descent is proposed in Xu et al. (2017)), there is no consensus on the optimal strategy
of the choice of 𝜌. As a result, we will test the performance of the algorithms on a range of 𝜌 and the optimal 𝜌 is picked inside the
chosen range.

4.1. Synthetic simulations

We first test our algorithm on the one-dimensional chain graph. Following Zhu (2017), we use the model that

𝐲∗𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[1, 1], if 1 ≤ 𝑖 ≤ 11
[−1, 1], if 12 ≤ 𝑖 ≤ 22
[2, 2], if 1 ≤ 23 ≤ 33
[−1,−1], if 34 ≤ 𝑖 ≤ 44
[0, 0], if 𝑖 ≥ 45.

e generate 𝐲𝑖 = 𝐲∗𝑖 + 0.5 ∗  (𝟎, 𝐈2×2) and 𝜆 ∈ {0.1, 1}. The loss function 𝑓𝑖(𝐱𝑖) = ‖𝐱𝑖 − 𝐲𝑖‖2 is used, so we can apply Lemma 2 to
btain the closed-form solutions in Algorithm 1. Comparison between Algorithm 1 and the network lasso in terms of convergence
peed under various choices of 𝜌 are shown in Fig. 2. The figures indicate that for both choices of 𝜆, Algorithm 1 always performs
etter with a good choice of 𝜌. In fact, if 𝜌 is chosen to be the optimal values for both algorithms, Algorithm 1 converges twice as
ast as the network lasso.

For the second simulation, we generate a set of data on a 10 by 10 grid graph; the true values at the center vertices with radius
are taken as (0.5, 0.5, 0.5) ∈ R3 and others are taken as 𝟎, and we add noise of 0.2 ∗  (𝟎, 𝐈3×3). We present a visualization of

his grid and a natural choice of 0 in Fig. 3. Since both of Algorithm 1 and network lass work for a general convex loss function
𝑖, we use the package cvx when updating 𝑥 in Algorithm 1 (network lasso as well has this feature). The convergence times are
hown in Fig. 4, which shows that Algorithm 1 takes a comparable or shorter time to reach the convergence than the network
asso algorithm. Combining it with the fact that Algorithm 1 has a smaller computational complexity per iteration, this implies the
umerical superiority of Algorithm 1.

.2. Real data example

A natural application of the graph fused lasso estimator is 2D image denoising (Chopra and Lian, 2010; Rudin et al., 1992) as
he estimator can be used to penalize the differences between neighboring pixels in an image. Suppose that 𝑓𝑖(𝐱𝑖) = (𝐲𝑖 − 𝐱𝑖)2 where

∑

𝐲𝑖}𝑖∈ represents the pixels in a noisy image and  is a grid graph as shown in Fig. 3 such that (𝑠,𝑡)∈ ‖𝐱𝑡 − 𝐱𝑠‖ measures the sum

F. Yu et al.
Fig. 2. Comparison of the convergence rates of Algorithm 1 and Network-Lasso Algorithm for 1D chain graph with 𝜆 = 0.1 (first row) and 𝜆 = 1 (second row).

Fig. 3. Visualization of a 10 by 10 grid graph (left) and an example of 0 (right).

of differences between neighboring pixels. Then the graph fused lasso estimator (1) can be applied to denoise images as a natural
image should be locally smooth. In this section, we apply our Algorithm 1 to two image-denoising examples, and compare it with
the Network Lasso Algorithm (Hallac et al., 2015) and the Trail Decomposition Algorithm (TrailDecomp) (Tansey and Scott, 2015).
While all three algorithms solve the graph fused lasso problem (1) based on ADMM, the Network Lasso algorithm is not based on
graph decomposition and the TrailDecomp is based on a different graph decomposition in the sense that the graph  is decomposed

F. Yu et al.

a
i
D
a
a
s
E
i

f

Fig. 4. Comparison of the convergence rates of Algorithm 1 and Network-Lasso Algorithm under the 2D grid graph setting with 𝜆 = 0.5 (first row) and 𝜆 = 10
(second row).

Table 2
MSEs of Algorithm 1, Network Lasso and TrailDecomp shown in Figs. 5 and 6.

Proposed Network Lasso TrailDecomp

Baboon 0.0544 0.0544 0.0567
Butterfly 0.1035 0.1035 N/A

into a set of ‘‘trails’’, a sequence of vertices that are connected by edges in  . We note that TrailDecomp does not apply to the case
𝑝 = 1.

The two examples are based on the baboon image and the butterfly images as shown in Figs. 5 and 6. We add i.i.d. Gaussian
noises of size 𝑁(0, 𝜎2) to each pixel and then apply algorithms to denoise the two images. The size of the baboon image is 64 × 64
nd each pixel is represented as a scalar based on the grayscale, and the size of the butterfly image is 128 × 128 and each pixel
s represented as a vector of length 3 in the RGB color model. The comparisons of Algorithm 1, Network Lasso Algorithm, Trail
ecomposition Algorithm are displayed in Figs. 5 and 6, and we do not include TrailDecomp in the butterfly example as it does not
pply to the case 𝑝 = 3. In addition, we measure the quality of the denoising by Average𝑖∈‖𝐱̂𝑖 − 𝐱𝑖‖2, the mean square error (MSE),
nd report the mean MSEs over 100 runs in Table 2. All algorithms stop at 50 iterations. It shows that our algorithm achieves the
ame error as Network Lasso and both of them have smaller MSEs than TrailDecomp. Both of our algorithm and Network Lasso
stimator converge to the global minimizer to the graph fused lasso problem (1) while TrailDecomp does not converge within 50
terations.

Lastly we model and test a real world problem in a reasonably large, geographically-defined underlying graph. The data comes
rom the police reports made publicly available by the city of Chicago, from 2001 until the present (Chicago Police Department

F. Yu et al.
Fig. 5. Comparison of Algorithm 1, Network Lasso Algorithm, TrailDecomp for image denoising. The noise level is 𝜎 = 0.1 and 𝜆 is set to be 0.08.

Fig. 6. Comparison of Algorithm 1 and Network Lasso Algorithm for image denoising. The noise level is 𝜎 = 0.15 and 𝜆 is set to be 0.25. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

2014) and is available as the supplementary files of Arnold and Tibshirani (2016). In this dataset, the vertices represent the census
blocks and the edges represent the neighboring blocks, and 𝑥𝑖 ∈ [0, 1] denotes the burglaries occurring rate in block 𝑖. The original
graph has 2162 vertices, 6995 edges and by running the greedy algorithm of the graph matching in the end of Section 2, we obtain
0 that contains 1025 edges with no sharing vertices. The convergence rates are shown in Fig. 7, which shows that Algorithm 1
converges faster than the network lasso algorithm. More results and discussions are in Appendix.

5. Conclusions

This paper proposes a new ADMM algorithm for solving graphic fused lasso, based on a novel method of dividing the objective
function and into two components based on graph decomposition. According to the theoretical analysis and numerical verification,
the proposed algorithm enjoys a smaller complexity per iteration and converges faster comparing with the standard ADMM algorithm
of the graph-fused lasso (GFL). Because of the universality of GFL, our method can be applied to a wide range of optimization
problems, and simulations show that our advantage is significant for the chain graph. However, finding a good graph decomposition

F. Yu et al.

i
t
b
c
∑

a

C

Z

D

t

A

A

Fig. 7. Comparison of the convergence rates for the Chicago crime dataset with 𝜆 = 0.05 (first row) and 𝜆 = 0.25 (second row).

s important to the success of the proposed algorithm. While there are existing approaches for decomposing the chain graph and
he grid graph, it remains a future direction to find the optimal graph decomposition for general graphs. Moreover, our idea can
e applied to broader settings that are not covered by (1). For example, the trending filtering (Ramdas and Tibshirani, 2015)
an be considered as a generalization of (1) to hypergraphs, and we may divide the regularization term into two components
𝑛
𝑖=1 𝑓𝑖(𝐱𝑖) + ‖𝐱1 − 2𝐱2 + 𝐱3‖ + ‖𝐱4 − 2𝐱5 + 𝐱6‖ +⋯ and ‖𝐱2 − 2𝐱3 + 𝐱4‖ + ‖𝐱3 − 2𝐱4 + 𝐱5‖ + ‖𝐱5 − 2𝐱6 + 𝐱7‖ + ‖𝐱6 − 2𝐱7 + 𝐱8‖ +⋯. The

nalysis of its performance and the comparison with standard algorithms would be another possible future direction.

RediT authorship contribution statement

Feng Yu: Writing – original draft, Visualization, Software. Archer Yi Yang: Methodology, Writing – review & editing. Teng
hang: Conceptualization, Methodology, Funding acquisition, Writing – original draft.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work was supported by the National Science Foundation, ATD-2318926.

ppendix A. Technical proofs

F. Yu et al.

I
𝐳

e

A.1. Proof of Lemma 1

Let us consider the problem

argmin
{𝐱𝑖}𝑖∈ ,

{𝐳𝑠𝑡}(𝑠,𝑡)∈1

(

∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖
)

+ 𝜆
∑

(𝑠,𝑡)∈1

‖𝐳𝑠𝑡‖ (A.1)

s.t. 𝐳𝑠𝑡 = 𝐱𝑠 − 𝐱𝑡, 𝐳𝑡𝑠 = 𝐱𝑠 + 𝐱𝑡.

and its associated Lagrangian

𝐿̄𝜌(𝑥, 𝑧, 𝑢) =
∑

𝑖∈
𝑓𝑖(𝐱𝑖) + 𝜆

∑

(𝑠,𝑡)∈0

‖𝐱𝑠 − 𝐱𝑡‖ +

∑

(𝑠,𝑡)∈1

(

𝜆‖𝐳𝑠𝑡‖ + 𝐮𝑇𝑠𝑡(𝐳𝑠𝑡 − 𝐱𝑠 + 𝐱𝑡) + 𝐮𝑇𝑡𝑠(𝐳𝑡𝑠 − 𝐱𝑠 − 𝐱𝑡)

+
𝜌
2
‖𝐳𝑠𝑡 − 𝐱𝑠 + 𝐱𝑡‖2 +

𝜌
2
‖𝐳𝑡𝑠 − 𝐱𝑠 − 𝐱𝑡‖2

)

, (A.2)

as well as the ADMM algorithm of

𝑥(𝑘+1) = argmin
𝑥

𝐿̄𝜌(𝑥, 𝑧(𝑘), 𝑢(𝑘)) (A.3)

𝑧(𝑘+1) = argmin
𝑧

𝐿̄𝜌(𝑥(𝑘+1), 𝑧, 𝑢(𝑘)) (A.4)

𝐮(𝑘+1)𝑠𝑡 = 𝐮(𝑘)𝑠𝑡 + 𝜌(𝐳(𝑘+1)𝑠𝑡 − 𝐱(𝑘+1)𝑠 + 𝐱(𝑘+1)𝑡) (A.5)

𝐮(𝑘+1)𝑡𝑠 = 𝐮(𝑘)𝑡𝑠 + 𝜌(𝐳(𝑘+1)𝑡𝑠 − 𝐱(𝑘+1)𝑠 − 𝐱(𝑘+1)𝑡). (A.6)

t can be verified that the update of (A.3)–(A.6) with 𝐿̄𝜌 is in fact identical to the update of (10)–(13) with 𝐿̂2𝜌: if we replace 𝐳𝑠𝑡,
𝑡𝑠, 𝜌 in (8) and (9) using 𝐳𝑠𝑡 = (𝐳′𝑠𝑡 + 𝐳′𝑡𝑠)∕2, 𝐳𝑡𝑠 = (𝐳′𝑠𝑡 − 𝐳′𝑡𝑠)∕2, and 𝜌 = 𝜌′∕2, then we obtain the formulations in (A.1) and (A.2), thus

the equivalency between (8)/(9) and (A.1)/(A.2). As a result, their ADMM algorithms (A.3)–(A.6) and (10)–(13) are equivalent as
well. Then Lemma 1 is proved by combining the previous analysis with Lemma 3, which shows that (A.3)–(A.6) are equivalent to
(17)–(19).

Lemma 3. The pre-conditioned ADMM procedure for solving min𝐱,𝐲 𝑓 (𝐱) + 𝑔(𝐲) subject to 𝐀𝐱 + 𝐁𝐲 = 𝐜

𝐱(𝑘+1) = argmin
𝐱

𝐿(𝐱, 𝐲(𝑘), 𝐯(𝑘)) + 𝜌
2
(𝐱 − 𝐱(𝑘))𝑇𝐂𝑇

1 𝐂1(𝐱 − 𝐱(𝑘)), (A.7)

𝐲(𝑘+1) = argmin
𝐲

𝐿(𝐱(𝑘+1), 𝐲, 𝐯(𝑘)) + 𝜌
2
(𝐲 − 𝐲(𝑘))𝑇𝐂𝑇

2 𝐂2(𝐲 − 𝐲(𝑘)), (A.8)

𝐯(𝑘+1) = 𝐯(𝑘) + 𝜌(𝐀𝐱(𝑘+1) + 𝐁𝐲(𝑘+1) − 𝐜), (A.9)

where 𝐿(𝐱, 𝐲, 𝐯) = 𝑓 (𝐱)+𝑔(𝐲)+𝐯𝑇 (𝐀𝐱+𝐁𝐲−𝐜)+ 𝜌
2‖𝐀𝐱+𝐁𝐲−𝐜‖2, is equivalent to the standard ADMM procedure applied to the augmented

problem

min
𝐱,𝐲

𝑓 (𝐱) + 𝑔(𝐲), s.t. [𝐀𝐱 + 𝐁𝐲,𝐂1𝐱,𝐂2𝐲] = [𝐜, 𝐳,𝐰].

Proof of Lemma 3. Applying the standard ADMM routine to optimize (𝐱,𝐰) and (𝐲, 𝐳) alternatively, the update formula for the
augmented ADMM is

𝐱(𝑘+1) = argmin
𝐱

𝐿(𝐱, 𝐲(𝑘), 𝐯(𝑘)) + 𝜌
2
‖𝐂0.5

1 𝐱 − 𝐳(𝑘)‖2 + 𝐯(𝑘) 𝑇1 (𝐂0.5
1 𝐱 − 𝐳(𝑘)), (A.10)

𝐰(𝑘+1) = 𝐶0.5
2 𝐲(𝑘) + 1

𝜌
𝐯(𝑘)2 , (A.11)

𝐲(𝑘+1) = argmin
𝐲

𝐿(𝐱(𝑘+1), 𝐲, 𝐯(𝑘))+

𝜌
2
‖𝐂0.5

2 𝐲 − 𝐰(𝑘+1)
‖

2 + 𝐯(𝑘) 𝑇2 (𝐂0.5
2 𝐲 − 𝐰(𝑘+1)), (A.12)

𝐯(𝑘+1) = 𝐯(𝑘) + 𝜌(𝐀𝐱(𝑘+1) + 𝐁𝐲(𝑘+1) − 𝐜), (A.13)

𝐳(𝑘+1) = 𝐶0.5
1 𝐱(𝑘+1) + 1

𝜌
𝐯(𝑘)1 (A.14)

𝐯(𝑘+1)1 = 𝐯(𝑘)1 + 𝜌(𝐂0.5
1 𝐱(𝑘+1) − 𝐳(𝑘+1)) (A.15)

𝐯(𝑘+1)2 = 𝐯(𝑘)2 + 𝜌(𝐂0.5
2 𝐲(𝑘+1) − 𝐰(𝑘+1)). (A.16)

Note that by plugging the definition of 𝐳(𝑘+1) in (A.13) to the definition of 𝐯(𝑘+1) in (A.16), we have 𝐯(𝑘+1)1 = 0 for all 𝑘. So (A.13)
implies that 𝐳(𝑘+1) = 𝐶0.5

1 𝐱(𝑘+1) and (A.10) is equivalent to (A.7). Plugging in the definition of 𝐰(𝑘+1) to (A.12), we obtain the
quivalence between (A.12) and (A.8). □

F. Yu et al.

w

a
n
v

s
t
h
c
c

R

A

B
B

B

B

C

A.2. Proof of Lemma 2

Let (𝐱̂, 𝐲̂) be the solution. If 𝑥̂ = 𝑦̂, then the minimizer is 𝑥̂ = 𝑦̂ = 𝑐1𝑎+𝑐2𝑏
𝑐1+𝑐2

.
If 𝑥̂ ≠ 𝑦̂, then the minimizer satisfies 2𝑐1(𝑥̂− 𝑎) + 𝜆 = 0 and 𝑥̂ = 2𝑐1𝑎−𝜆

2𝑐1
and similarly, 𝑦̂ = 2𝑐2𝑏+𝜆

2𝑐2
. So if 2𝑐2(2𝑐1𝑎− 𝜆) > 2𝑐1(2𝑐2𝑏+ 𝜆),

i.e., 2𝑐1𝑐2(𝑎 − 𝑏) > (𝑐1 + 𝑐2)𝜆, this is the solution.
If −2𝑐1𝑐2(𝑎 − 𝑏) > (𝑐1 + 𝑐2)𝜆, then 𝑥̂ = 2𝑐1𝑎+𝜆

2𝑐1
and similarly, 𝑦̂ = 2𝑐2𝑏−𝜆

2𝑐2
.

A.3. Proof of Theorem 1

By calculation, the ADMM algorithm is equivalent to the Douglas–Rachford splitting method applied to

max
𝐳

−𝐛𝑇 𝐳 − 𝑓 ∗
1 (−𝐀

𝑇
1 𝐳) − 𝑓 ∗

2 (−𝐀
𝑇
2 𝐳)

with two parts given by 𝑓 = 𝑓 ∗
2 (−𝐀

𝑇
2 𝐳) and 𝑔 = 𝐛𝑇 𝐳 + 𝑓 ∗

1 (−𝐀
𝑇
1 𝐳) respectively, and the Douglas–Rachford splitting method is an

iterative method that minimizes 𝑓 (𝐱) + 𝑔(𝐱) with the updating formula

𝐱(𝑘+1) = 1
2
[(𝐈 − 2prox𝜌𝑓)(𝐈 − 2prox𝜌𝑔) + 𝐈](𝐱(𝑘)).

Note that locally around the optimal solution2 we have

prox𝜌𝑓 = (𝐈 + 𝜌𝜕𝑓)−1, 𝜕𝑓 (𝐱) = 𝐀2𝐂−1
2 𝐀𝑇

2 𝐱 + 𝐜1,
prox𝜌𝑔 = (𝐈 + 𝜌𝜕𝑔)−1, 𝜕𝑔(𝐱) = 𝐀1𝐂−1

1 𝐀𝑇
1 𝐱 + 𝐜2

for some constants 𝐜1 and 𝐜2, each iteration of the algorithm is a linear operator in the form of
1
2

[

(𝐈 − 2prox𝜌𝑓)(𝐈 − 2prox𝜌𝑔) + 𝐈
]

(𝐱(𝑘+1) − 𝐜0)

=1
2

[

(𝐈 − 2(𝐈 + 𝜌𝐀2𝐂−1
2 𝐀𝑇

2)
−1)(𝐈 − 2(𝐈 + 𝜌𝐀1𝐂−1

1 𝐀𝑇
1)

−1) + 𝐈
]

(𝐱(𝑘) − 𝐜0),

here 𝐜0 is the fixed point of the iterative algorithm that depends on 𝐜1 and 𝐜2. As a result,

𝐱(𝑘+1) − 𝐜0 =
(1
2

[

(𝐈 − 2(𝐈 + 𝜌𝐀2𝐂−1
2 𝐀𝑇

2)
−1)(𝐈 − 2(𝐈 + 𝜌𝐀1𝐂−1

1 𝐀𝑇
1)

−1) + 𝐈
])𝑘

(𝐱(1)− 𝐜0),

which completes the proof.

Appendix B. Additional experiments

We append more results and discussions for the Chicago Crime experiment in Section 4.2. First of all, we present the fitting
results of Algorithm 1 in a geographical map of Chicago in Fig. B.1 for 𝜆 ∈ {0.013, 0.019, 0.024, 0.041, 0.07}.

A popular and common approach for solving classification and regression problems involving graph is the nearest neighbors
lgorithm (Hastie et al., 2001). Given a set of labeled data {(𝐱𝑖, 𝑦𝑖)} and an unlabeled data 𝐱, it assigns 𝐱 to a class based on its
earest neighbors. We apply the idea of 𝑘-NN algorithm and adapt it to Chicago Crime example as baseline algorithms. For any two
ertices 𝑖, 𝑗, we define the distance 𝑑(𝑖, 𝑗) as the length of the shortest path from 𝑖 to 𝑗. The first method, NN-average (average over

nearest neighbors), is to assign the value of the vertex 𝑖 is taking the averaged response values of its neighbors 𝑥̂𝑖 =
1

|𝐾 (𝑖)|
∑

𝑗∈𝐾 (𝑖) 𝑥𝑗
where 𝐾 (𝑖) ∶= {𝑗 ∣ 𝑑(𝑖, 𝑗) ≤ 𝐾}. The second method, NN-max (maximum vote over nearest neighbors), treat it as a classification
problem by first assigning each vertex 𝑖 to one of the 𝑀 classes by 𝐿𝑖 = ⌈𝑀𝑥𝑖∕max{𝑥1,… , 𝑥𝑛}⌉, where 𝑀 is total number of labels,
and then predict 𝑥̂𝑖 based on the majority vote of its neighbors in 𝐾 (𝑖), i.e., 𝑥̂𝑖 = max{𝑥1 ,…,𝑥𝑛}

𝑀 × argmax𝑣
∑

𝑗∈𝐾 (𝑥𝑖) 𝟏{𝑣=𝐿𝑗}. The
moothed burglaries occurring rates generated by NN-average and NN-max are reported in Figs. B.2 and B.3 respectively, where
he parameters are set by 𝐾 ≤ 4 and 𝑀 = 10. As predicted in Arnold and Tibshirani (2016), the graph fused lasso-based algorithms
ave the advantage over NN-average and NN-max in the sense of local adaptivity: By only tuning the parameter 𝜆, the size of a
luster given the measurements of a graph is automatically determined by our algorithm, while NN-average and NN-max tend to
reate roughly equal sized clusters.

eferences

rnold, T.B., Tibshirani, R.J., 2016. Efficient implementations of the generalized Lasso dual path algorithm. J. Comput. Graph. Statist. 25 (1), 1–27.
http://dx.doi.org/10.1080/10618600.2015.1008638, arXiv:https://doi.org/10.1080/10618600.2015.1008638.

arbero, À., Sra, S., 2018. Modular proximal optimization for multidimensional total-variation regularization. J. Mach. Learn. Res. 19 (1), 2232–2313.
atson, J., Spielman, D.A., Srivastava, N., Teng, S.-H., 2013. Spectral sparsification of graphs: Theory and algorithms. Commun. ACM 56 (8), 87–94.

http://dx.doi.org/10.1145/2492007.2492029.
enning, M., Knoll, F., Schönlieb, C.-B., Valkonen, T., 2016. Preconditioned ADMM with nonlinear operator constraint. In: Bociu, L., Désidéri, J.-A., Habbal, A.

(Eds.), System Modeling and Optimization. Springer International Publishing, Cham, pp. 117–126.
oyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers.

Found. Trends Mach. Learn. 3 (1), 1–122. http://dx.doi.org/10.1561/2200000016.
hambolle, A., Darbon, J., 2009. On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84 (3), 288.

http://dx.doi.org/10.1080/10618600.2015.1008638
https://doi.org/10.1080/10618600.2015.1008638
http://dx.doi.org/10.1145/2492007.2492029
http://dx.doi.org/10.1561/2200000016

F. Yu et al.

o

Fig. B.1. Sub-figure 1 (top left) shows observed proportions of reported burglaries per household between 2005–2009 in Chicago, IL. Sub-figure 2–6 show
solutions of our algorithm, corresponding to 𝜆 ∈ {0.013, 0.019, 0.024, 0.041, 0.07} respectively, along the fused lasso path that was fit to the observed proportions
f burglaries.

Fig. B.2. The smoothed of burglaries occurring rates by NN-average. The maximum distance of neighbors 𝐾 are set as 1 to 4 for the subplots.

Chen, X., Lin, Q., Kim, S., Carbonell, J.G., Xing, E.P., 2012. Smoothing proximal gradient method for general structured sparse regression. Ann. Appl. Stat. 6
(2), 719–752. http://dx.doi.org/10.1214/11-AOAS514.

http://dx.doi.org/10.1214/11-AOAS514

F. Yu et al.
Fig. B.3. The smoothed of burglaries occurring rates by NN-max. The maximum distance of neighbors 𝐾 are set as 1 to 4 for the subplots. The number of the
total class is set as 𝑀 = 10.

Chopra, A., Lian, H., 2010. Total variation, adaptive total variation and nonconvex smoothly clipped absolute deviation penalty for denoising blocky
images. Pattern Recognit. 43 (8), 2609–2619. http://dx.doi.org/10.1016/j.patcog.2010.03.022, URL https://www.sciencedirect.com/science/article/pii/
S0031320310001421.

Condat, L., 2013. A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20 (11), 1054–1057. http://dx.doi.org/10.1109/LSP.2013.2278339.
Cui, L., Bai, L., Wang, Y., Yu, P.S., Hancock, E.R., 2021. Fused Lasso for feature selection using structural information. Pattern Recognit. 119, 108058.

http://dx.doi.org/10.1016/j.patcog.2021.108058, URL https://www.sciencedirect.com/science/article/pii/S0031320321002454.
Davies, P.L., Kovac, A., 2001. Local extremes, runs, strings and multiresolution. Ann. Statist. 29 (1), 1–65. http://dx.doi.org/10.1214/aos/996986501.
Deng, W., Yin, W., 2016. On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66 (3), 889–916.

http://dx.doi.org/10.1007/s10915-015-0048-x.
Eckstein, J., Bertsekas, D.P., 1992. On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program.

55 (1), 293–318. http://dx.doi.org/10.1007/BF01581204.
França, G., Bento, J., 2017. How is distributed ADMM affected by network topology. Stat 1050, 2.
Friedman, J., Hastie, T., Höfling, H., Tibshirani, R., et al., 2007. Pathwise coordinate optimization. Ann. Appl. Stat. 1 (2), 302–332.
Giselsson, P., 2017. Tight global linear convergence rate bounds for Douglas–Rachford splitting. J. Fixed Point Theory Appl. 19 (4), 2241–2270.
Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R., 2014. Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7 (3), 1588–1623.

http://dx.doi.org/10.1137/120896219, arXiv:https://doi.org/10.1137/120896219.
Guo, K., Han, D., Yuan, X., 2017. Convergence analysis of Douglas–Rachford splitting method for ‘‘strongly+ weakly’’ convex programming. SIAM J. Numer.

Anal. 55 (4), 1549–1577.
Hallac, D., Leskovec, J., Boyd, S., 2015. Network Lasso: Clustering and optimization in large graphs. In: Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. pp. 387–396.
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R., 2001. The Elements of Statistical Learning. Springer New York.
Johnson, N.A., 2013. A dynamic programming algorithm for the fused Lasso and l 0-segmentation. J. Comput. Graph. Statist. 22 (2), 246–260. http:

//dx.doi.org/10.1080/10618600.2012.681238, arXiv:http://dx.doi.org/10.1080/10618600.2012.681238.
Kolmogorov, V., Pock, T., Rolinek, M., 2016. Total variation on a tree. SIAM J. Imaging Sci. 9 (2), 605–636.
Lin, X., Pham, M., Ruszczyundefinedski, A., 2014. Alternating linearization for structured regularization problems. J. Mach. Learn. Res. 15 (1), 3447–3481.
Liu, J., Yuan, L., Ye, J., 2010. An efficient algorithm for a class of fused Lasso problems. In: Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. KDD ’10, ACM, New York, NY, USA, pp. 323–332. http://dx.doi.org/10.1145/1835804.1835847, URL http:
//doi.acm.org/10.1145/1835804.1835847.

Mu, L., Liu, H., 2020. Noninvasive electrocardiographic imaging with low-rank and non-local total variation regularization. Pattern Recognit. Lett. 138, 106–114.
http://dx.doi.org/10.1016/j.patrec.2020.07.007, URL https://www.sciencedirect.com/science/article/pii/S0167865520302531.

Nelson, J., 2013. Fused Lasso and rotation invariant autoregressive models for texture classification. Pattern Recognit. Lett. 34 (16), 2166–2172. http:
//dx.doi.org/10.1016/j.patrec.2013.08.003, URL https://www.sciencedirect.com/science/article/pii/S0167865513002985.

Nishihara, R., Lessard, L., Recht, B., Packard, A., Jordan, M., 2015. A general analysis of the convergence of ADMM. In: International Conference on Machine
Learning. pp. 343–352.

Ramdas, A., Tibshirani, R.J., 2015. Fast and flexible ADMM algorithms for trend filtering. J. Comput. Graph. Statist. 25 (3), 839–858. http://dx.doi.org/10.1080/
10618600.2015.1054033, arXiv:1406.2082.

http://dx.doi.org/10.1016/j.patcog.2010.03.022
https://www.sciencedirect.com/science/article/pii/S0031320310001421
https://www.sciencedirect.com/science/article/pii/S0031320310001421
https://www.sciencedirect.com/science/article/pii/S0031320310001421
http://dx.doi.org/10.1109/LSP.2013.2278339
http://dx.doi.org/10.1016/j.patcog.2021.108058
https://www.sciencedirect.com/science/article/pii/S0031320321002454
http://dx.doi.org/10.1214/aos/996986501
http://dx.doi.org/10.1007/s10915-015-0048-x
http://dx.doi.org/10.1007/BF01581204
http://dx.doi.org/10.1137/120896219
https://doi.org/10.1137/120896219
http://dx.doi.org/10.1080/10618600.2012.681238
http://dx.doi.org/10.1080/10618600.2012.681238
http://dx.doi.org/10.1080/10618600.2012.681238
http://dx.doi.org/10.1080/10618600.2012.681238
http://dx.doi.org/10.1145/1835804.1835847
http://doi.acm.org/10.1145/1835804.1835847
http://doi.acm.org/10.1145/1835804.1835847
http://doi.acm.org/10.1145/1835804.1835847
http://dx.doi.org/10.1016/j.patrec.2020.07.007
https://www.sciencedirect.com/science/article/pii/S0167865520302531
http://dx.doi.org/10.1016/j.patrec.2013.08.003
http://dx.doi.org/10.1016/j.patrec.2013.08.003
http://dx.doi.org/10.1016/j.patrec.2013.08.003
https://www.sciencedirect.com/science/article/pii/S0167865513002985
http://dx.doi.org/10.1080/10618600.2015.1054033
http://dx.doi.org/10.1080/10618600.2015.1054033
http://dx.doi.org/10.1080/10618600.2015.1054033
http://arxiv.org/abs/1406.2082

F. Yu et al.

T
T

T
V
W

X

Y

Y

Y

Y

Z

Z

Rudin, L.I., Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D 60 (1), 259–268. http://dx.doi.org/10.1016/0167-
2789(92)90242-F, URL http://www.sciencedirect.com/science/article/pii/016727899290242F.

ansey, W., Scott, J.G., 2015. A fast and flexible algorithm for the graph-fused Lasso. arXiv preprint arXiv:1505.06475.
ibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K., 2005. Sparsity and smoothness via the fused Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (1),

91–108.
ibshirani, R.J., Taylor, J., et al., 2011. The solution path of the generalized Lasso. Ann. Statist. 39 (3), 1335–1371.
ert, J.-P., Bleakley, K., 2010. Fast detection of multiple change-points shared by many signals using group LARS. Adv. Neural Inf. Process. Syst. 23, 2343–2351.
ahlberg, B., Boyd, S., Annergren, M., Wang, Y., 2012. An ADMM algorithm for a class of total variation regularized estimation problems. IFAC Proc. Vol. 45

(16), 83–88.
u, Z., Figueiredo, M., Goldstein, T., 2017. Adaptive ADMM with spectral penalty parameter selection. In: Singh, A., Zhu, J. (Eds.), Proceedings of the

20th International Conference on Artificial Intelligence and Statistics. In: Proceedings of Machine Learning Research, vol. 54, PMLR, pp. 718–727, URL
https://proceedings.mlr.press/v54/xu17a.html.

ang, L., Ding, S., Zhou, F., Yang, X., Xiao, Y., 2021. Robust EEG feature learning model based on an adaptive weight and pairwise-fused Lasso. Biomed. Signal
Process. Control 68, 102728. http://dx.doi.org/10.1016/j.bspc.2021.102728, URL https://www.sciencedirect.com/science/article/pii/S1746809421003256.

ang, W.H., Han, D., 2016. Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM J. Numer.
Anal. 54 (2), 625–640. http://dx.doi.org/10.1137/140974237, arXiv:https://doi.org/10.1137/140974237.

e, G.-B., Xie, X., 2011. Split bregman method for large scale fused Lasso. Comput. Statist. Data Anal. 55 (4), 1552–1569. http://dx.doi.org/10.1016/j.csda.2010.
10.021, URL http://www.sciencedirect.com/science/article/pii/S0167947310004093.

u, D., Won, J.-H., Lee, T., Lim, J., Yoon, S., 2015. High-dimensional fused Lasso regression using majorization-minimization and parallel processing. J. Comput.
Graph. Statist. 24 (1), 121–153.

hang, Z., Tian, Y., Bai, L., Xiahou, J., Hancock, E., 2017. High-order covariate interacted Lasso for feature selection. Pattern Recognit. Lett. 87, 139–
146. http://dx.doi.org/10.1016/j.patrec.2016.08.005, URL https://www.sciencedirect.com/science/article/pii/S0167865516302045, Advances in Graph-based
Pattern Recognition.

hu, Y., 2017. An augmented ADMM algorithm with application to the generalized lasso problem. J. Comput. Graph. Statist. 26 (1), 195–204. http:
//dx.doi.org/10.1080/10618600.2015.1114491, arXiv:https://doi.org/10.1080/10618600.2015.1114491.

http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://www.sciencedirect.com/science/article/pii/016727899290242F
http://arxiv.org/abs/1505.06475
https://proceedings.mlr.press/v54/xu17a.html
http://dx.doi.org/10.1016/j.bspc.2021.102728
https://www.sciencedirect.com/science/article/pii/S1746809421003256
http://dx.doi.org/10.1137/140974237
https://doi.org/10.1137/140974237
http://dx.doi.org/10.1016/j.csda.2010.10.021
http://dx.doi.org/10.1016/j.csda.2010.10.021
http://dx.doi.org/10.1016/j.csda.2010.10.021
http://www.sciencedirect.com/science/article/pii/S0167947310004093
http://dx.doi.org/10.1016/j.patrec.2016.08.005
https://www.sciencedirect.com/science/article/pii/S0167865516302045
http://dx.doi.org/10.1080/10618600.2015.1114491
http://dx.doi.org/10.1080/10618600.2015.1114491
http://dx.doi.org/10.1080/10618600.2015.1114491
https://doi.org/10.1080/10618600.2015.1114491

	A graph decomposition-based approach for the graph-fused lasso
	Introduction
	Methodology
	The network lasso algorithm
	Our proposed approach
	Implementation

	Computational Analysis
	Computational cost
	Comparison with other works

	Numerical Experiments
	Synthetic simulations
	Real data example

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Technical Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	Appendix B. Additional Experiments
	References

