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The glmnet package by Friedman et al. [Regularization paths for generalized linear models via coordinate
descent, J. Statist. Softw. 33 (2010), pp. 1–22] is an extremely fast implementation of the standard coordinate
descent algorithm for solving �1 penalized learning problems. In this paper, we consider a family of
coordinate majorization descent algorithms for solving the �1 penalized learning problems by replacing
each coordinate descent step with a coordinate-wise majorization descent operation. Numerical experiments
show that this simple modification can lead to substantial improvement in speed when the predictors have
moderate or high correlations.

Keywords: coordinate decent; majorization–minimization; glmnet; lasso

1. Introduction

The lasso [1] is a very popular technique for high-dimensional modelling. A key contributor to
the tremendous popularity of the lasso is the celebrated least angle regression (LARS) algorithm
proposed by Efron et al. [2]. LARS efficiently produces the piecewise linear solution paths of
the lasso penalized least squares (PLS) with the computational cost of a single least squares
fit. Another efficient algorithm for solving the lasso is the cyclical coordinate descent algorithm.
Fu [3] developed the first working coordinate descent algorithm for solving the lasso. Some recent
papers have made coordinate descent a popular computational algorithm for sparse regression.
See [4–6], among others.

Zou and Hastie [7] proposed the elastic net penalty as an improved variant of the lasso to
better handle correlated variables and to stabilize the lasso solution paths. The �1 component of
the elastic net is responsible for achieving sparsity. Hence, one can regard the elastic net as a
member of the �1 penalized methods. Zou and Hastie [7] developed the LARS-EN algorithm
for computing the entire solution paths of the elastic net PLS. Friedman et al. [8] developed the
glmnet package to implement a coordinate descent algorithm for fitting the entire lasso or elastic
net regularization paths for generalized linear models. Numerical experiments in [8] showed that
glmnet is faster than the other publicly available packages for solving the �1 penalized models.

In this paper, we consider a family of coordinate majorization descent (CMD) algorithms
including the classical coordinate descent as a special case. The generalization is actually very
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straightforward. We simply replace each of the coordinate descent step with a CMD operation
and everything else in glmnet stays the same. Numerical experiments show that this simple
CMD trick can lead to substantial improvement in speed when the predictors have moderate or
high correlations.

2. Coordinate majorization descent

2.1. Review of glmnet

Because we present an improved glmnet algorithm, it is convenient and necessary to review
some key elements of glmnet first. Consider the PLS problem. Given a training data set with
N observations (xi, yi) where x denotes a p-dimensional predictor vector and y is a continuous
response. Without loss of generality, let us assume that the predictors are standardized:

∑N
i=1 xij =

0, (1/N)
∑N

i=1 x2
ij = 1 for j = 1, . . . , p. We use a linear function β0 + xᵀβ to predict y. Define a

penalized residual sum squares as follows:

R(β0, β) = 1

2N

N∑
i=1

(yi − β0 − xᵀ
i β)2 + Pλ,α(β), (1)

where Pλ,α(β) is the elastic net penalty [7] and it is defined as

Pλ,α(β) = λ

p∑
j=1

pα(βj) = λ

p∑
j=1

[
1

2
(1 − α)β2

j + α|βj|
]

. (2)

Then, the fitted model is obtained via (β̂, β̂0) = arg min(β0,β)∈Rp+1 R(β0, β). The elastic net with
α = 1 reduces to the lasso. When the predictors exhibit a strong correlation, using some α < 1
yields better prediction accuracy.

For each fixed λ, the cyclic coordinate descent can be easily implemented for solving the elastic
net. To keep our discussion concise, we refer interested readers to [8] for more details. We just
discuss the main ideas. Let ri = yi − β̃0 − xᵀ

i β̃ be the current residual. To update the estimate for
βj, we need to solve a univariate elastic net problem

β̂j = arg min
βj

R(βj|β̃0, β̃), (3)

where

R(βj|β̃0, β̃) = 1

2
(βj − β̃j)

2 − 1

N

N∑
i=1

rixij(βj − β̃j) + λpα(βj). (4)

It turns out that Equation (3) has a simple closed form solution [7]

β̂j = S((1/N)
∑N

i=1 xijri + β̃j, λα)

1 + λ(1 − α)
, (5)

where S(z, t) = (|z| − t)+sgn(z). We next set β̃j = β̂j as the new estimate. The operation is
sequentially conducted on each coordinate βj till convergence. See Algorithm 1.
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86 Y. Yang and H. Zou

Algorithm 1 The coordinate descent algorithm for the elastic net PLS

1. Initialize (β̃0, β̃).
2. Cyclic coordinate descent, for j = 1, 2, . . . , p: compute ri = yi − β̃0 − xᵀ

i β̃ and

β̂j = S((1/N)
∑N

i=1 xijri + β̃j, λα)

1 + λ(1 − α)
.

3. Set β̃j = β̂j.
4. Repeat steps 2–3 until convergence of β̂.

2.2. The majorization trick

We now introduce a family of generalized coordinate descent algorithms. We consider modifying
the update formula (5) as follows:

β̂B
j = S((1/N)

∑N
i=1 xijri + f · β̃j, λα)

f · 1 + λ(1 − α)
(f ≥ 1) (6)

and hence Algorithm 1 becomes Algorithm 2.

Algorithm 2 The CMD algorithm for the elastic net PLS

1. Initialize (β̃0, β̃).
2. Cyclic coordinate descent, for j = 1, 2, . . . , p: compute ri = yi − β̃0 − xᵀ

i β̃ and

β̂B
j = S((1/N)

∑N
i=1 xijri + f · β̃j, λα)

f · 1 + λ(1 − α)
. (f ≥ 1)

3. Set β̃j = β̂B
j .

4. Repeat steps 2–3 until convergence of β̂.

Comparing (5) and (6), one can see that the generalization lies in an extra constant factor f .
When f = 1, Equation (6) reduces to Equation (5). We will show that as long as f is greater
or equal to 1, Algorithm 2 is guaranteed to converge. We have verified that with f = 1 glmnet2
and glmnet not only give exactly identical solutions but also use the same timing. Interestingly,
when using some f greater than 1, Algorithm 2 can enjoy faster convergence than Algorithm 1.
In numerical experiments presented in this paper, we set f = 2 unless stated otherwise.

The convergence property of Algorithm 1 comes from the fact that each operation by
Equation (5) minimizes the objective function along the jth coordinate direction, which is the
basic idea of coordinate descent. We show that each operation by Equation (6) at least decreases
the objective function along the jth coordinate direction if f > 1. To appreciate this fact, we
invoke the majorization–minimization (MM) principle [9–11] which can be regarded as a more
generalized form of the famous expectation–maximization algorithm [12].
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Journal of Statistical Computation and Simulation 87

To apply the MM principle, define

Q(βj) = 1

2
f · (βj − β̃j)

2 − 1

N

N∑
i=1

rixij(βj − β̃j) + λpα(βj). (7)

Note that β̂B
j actually minimizes Q(βj), that is,

β̂B
j = arg min

βj

Q(βj). (8)

On the other hand, we have

Q(βj) − R(βj|β̃0, β̃) = 1
2 (f − 1)(βj − β̃j)

2. (9)

Therefore, for any f > 1, Q(βj) > R(βj|β̃0, β̃) unless βj = β̃j. Hence, we have

R(β̂B
j |β̃0, β̃) = Q(β̂B

j ) + R(β̂B
j |β̃0, β̃) − Q(β̂B

j ) (10)

≤ Q(β̃j) (11)

= R(β̃j|β̃0, β̃). (12)

Obviously, R(β̂B
j |β̃0, β̃) = R(β̃j|β̃0, β̃) if and only if β̂B

j = β̃j. The above arguments show that
Algorithm 2 retains the essential descent property of the original coordinate descent algorithm.
So, it is a genuine coordinate-wise descent algorithm. Because the MM principle is crucial to its
descent property, Algorithm 2 is named the CMD algorithm.

Unlike Algorithm 1, Algorithm 2 does not take the steepest descent step along each coordinate
direction. This seems counterintuitive, as we usually want to decrease the objective function as
much as we can at each iteration. In fact, when the predictors are uncorrelated, Algorithm 1
gives the exact solution after one cycle, while Algorithm 2 still needs to iterate. Thus, we expect
to see Algorithm 1 is faster than Algorithm 2 when the predictors are uncorrelated or nearly
uncorrelated. However, in high-dimensional data, the predictors often have strong correlations
or many moderate correlations. What we have found is that in such more complex situations,
Algorithm 2 can be substantially faster thanAlgorithm 1. In Section 3.4, we offer some explanation
to this interesting phenomenon.

2.3. Penalized weighted least squares and logistic regression

Often we need to assign a weight ωi (other than 1/N) to each observation in least squares.
For example, weighted least squares handles linear regression with heteroscedastic variance and
iterative weighted least squares is a classical algorithm for fitting many statistical models. Both
Algorithms 1 and 2 can be easily modified to deal with the elastic net penalized weighted least
squares (PWLS) in which the objective function is

min
(β0,β)∈Rp+1

1

2N

N∑
i=1

ωi(yi − β0 − xᵀ
i β)2 + Pλ,α(β). (13)

Algorithm 3 computes that the solution to Equation (13) [8]. Following the arguments in
Section 2.2, we derive a CMD algorithm for solving Equation (13). See Algorithm 4.
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88 Y. Yang and H. Zou

Algorithm 3 The coordinate descent algorithm for the elastic net PWLS

1. Initialize (β̃0, β̃).
2. Cyclic coordinate descent, for j = 1, 2, . . . , p: compute ri = yi − β̃0 − xᵀ

i β̃ and

β̂j = S((1/N)
∑N

i=1 ωixijri + ((1/N)
∑N

i=1 ωix2
ij)β̃j, λα)

(1/N)
∑N

i=1 ωix2
ij + λ(1 − α)

. (14)

3. Set β̃j = β̂j.
4. Repeat steps 2–3 until convergence of β̂.

Algorithm 4 The CMD algorithm for the elastic net PWLS

1. Initialize (β̃0, β̃).
2. Cyclic coordinate descent, for j = 1, 2, . . . , p: compute ri = yi − β̃0 − xᵀ

i β̃ and

β̂B
j = S((1/N)

∑N
i=1 ωixijri + f · ((1/N)

∑N
i=1 ωix2

ij)β̃j, λα)

f · (1/N)
∑N

i=1 ωix2
ij + λ(1 − α)

. (f > 1) (15)

3. Set β̃j = β̂B
j .

4. Repeat steps 2–3 until convergence of β̂.

In a logistic regression model, we have a binary response variable Y = {0, 1} and assume

Pr(Y = 1|x) = 1

1 + exp(−β0 + xᵀβ)
= pi.

We consider the elastic net penalized maximum likelihood estimate

(β̂0, β̂) = arg min
(β0,β)∈Rp+1

[
− 1

N

N∑
i=1

{yi log pi + (1 − yi) log(1 − pi)} + Pλ,α(β)

]
. (16)

The unpenalized logistic regression is often solved by using the Newton–Raphson algorithm in
many standard statistical packages. Glmnet uses a similar strategy and it is so far the fastest
algorithm for computing the elastic net penalized logistic regression with high-dimensional data.
Basically, glmnet uses coordinate descent within the iterative re-weighted least squares loop to
solve the penalized logistic regression problems. Let (β̃0, β̃) be the current estimate in the iterative
re-weighted least squares. As in the usual logistic regression, we define the following quantities:

ηi = β̃0 + xᵀ
i β̃, p̃i = 1

1 + exp(−η̃i)
,

zi(η̃i) = η̃i + yi − p̃i

p̃i(1 − p̃i)
, ωi(η̃i) = p̃i(1 − p̃i).
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Journal of Statistical Computation and Simulation 89

The Newton–Raphson algorithm finds the updated solution by solving

min
(β0,β)∈Rp+1

{
1

2N

N∑
i=1

ωi(η̃i)(zi(η̃i) − β0 − xᵀ
i β)2 + Pλ,α(β)

}
. (17)

Glmnet calls Algorithm 3 to solve Equation (17). The complete glmnet algorithm for penalized
logistic regression is given in Algorithm 5. Our package glmnet2 is almost identical to glmnet
except that we use Algorithm 4 to solve Equation (17).

Algorithm 5 Glmnet and Glmnet2 for penalized logistic regression

1. Initialize (β̃0, β̃), and set η̃i = β̃0 + xᵀ
i β̃ for i = 1, . . . , N .

2. Compute zi = zi(η̃i) and ωi = ωi(η̃i).
3. Glmnet calls Algorithm 3 and Glmnet 2 calls Algorithm 4 to solve

(β̂0, β̂) = arg min
(β0,β)∈Rp+1

1

2N

N∑
i=1

ωi(zi − β0 − xᵀ
i β)2 + Pλ,α(β).

4. Set β̃ = β̂, β̃0 = β̂0.
5. Repeat steps 2–4 until convergence of β̂.

3. Numerical experiments

Glmnet uses several tricks to boost its speed, including pathwise descent, warm start and active set
convergence. For the sake of space, we do not repeat the details of these tricks here. The readers
are referred to [8] for the warn start trick, which deals with initial values for the iterative coordinate
descent, and the active set trick. In the latest version of glmnet (version 1.7), glmnet further uses
the strong rule trick [13]. In order for us to show that the timing difference between glmnet and
glmnet2 is solely due to the extra factor f , we need to make sure that the two algorithms use the
same implementation tricks. To do so, we took the core Fortran routines used in glmnet and
added the extra f factor in those used for doing the soft-thresholding operation.

In the glmnet version 1.7, the convergence criterion is maxj(β̂
old
j − β̂new

j )2 < ε2. The same
convergence criterion is used in glmnet2. In this section, ε = 10−5. We compare the run times of
glmnet and glmnet2. All timings were carried out on an Intel Core 2 Duo 2.4 GHz processor.

3.1. Simulated data

To fix the main idea, we use f = 2 in this section. We further explore the effect of f on timing in
Section 3.3. Consider Friedman’s model for timing comparison [8]. We simulated data with N
observations and p predictors where each pair of predictors Xj and Xj′ have the same population
correlation ρ, with ρ ranges from zero to 0.95. We tried (N = 5000 and p = 100) and (N = 100
and p = 5000). The response variable was generated by

Y =
p∑

j=1

Xjβj + k · N(0, 1),
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90 Y. Yang and H. Zou

Table 1. Timings (in seconds) for glmnet and glmnet2 in the elastic net penalized (α = 1, 0.5)
regression and logistic regression. Total time for 100 λ values, averaged over 10 independent runs.

Correlation

0 0.1 0.2 0.5 0.8 0.95

Least squares α = 1
N = 5000, p = 100
glmnet 0.0719 0.0746 0.0787 0.0988 0.1641 0.3144
glmnet2 0.0752 0.0757 0.0764 0.0833 0.1094 0.1921

N = 100, p = 5000
glmnet 0.2222 0.2339 0.2979 0.4606 0.7919 1.9016
glmnet2 0.2533 0.2519 0.2886 0.3758 0.5450 1.0735

Logistics regression α = 1
N = 5000, p = 100
glmnet 1.4282 1.5591 1.9760 4.1573 8.9447 35.5548
glmnet2 1.8754 1.9002 2.0551 2.6598 5.2532 14.5804

N = 100, p = 5000
glmnet 0.2756 0.2734 0.2938 0.3940 0.8790 1.6118
glmnet2 0.2744 0.2734 0.2876 0.3302 0.5328 0.9422

Least squares α = 0.5
N = 5000, p = 100
glmnet 0.0718 0.0750 0.0802 0.1003 0.1704 0.5112
glmnet2 0.0750 0.0755 0.0770 0.0859 0.1145 0.2526

N = 100, p = 5000
glmnet 0.2107 0.2189 0.2356 0.3669 0.7765 2.1528
glmnet2 0.2225 0.2285 0.2414 0.2861 0.4876 1.3335

Logistics regression α = 0.5
N = 5000, p = 100
glmnet 1.5438 1.6540 2.0519 4.3477 11.9141 37.5434
glmnet2 2.0086 2.0039 2.1666 2.9319 6.1041 16.8284

N = 100, p = 5000
glmnet 0.3193 0.3573 0.4661 0.6217 1.1428 2.0621
glmnet2 0.3176 0.3253 0.3456 0.4042 0.5980 1.3126

where βj = (−1)j exp(−(2j − 1)/20) and k is set to make the signal-to-noise ratio equal 3. For
logistic regression, we used the same simulation setup as above, except we define p = 1/(1 +
exp(−Y)) and generate a two class response Y ′ is generated with Pr(Y′ = 0) = p Pr(Y′ =
+1) = 1 − p. For each data set, we computed its elastic net solution paths with α = 1 and α = 0.5
for 100 λ values. In Table 1, We report the average run time of glmnet and glmnet2 over 10
independent runs.

3.2. Real data

We also compared glmnet and glmnet2 on some benchmark data sets (Table 2). Colon [14] and
Prostate [15] are the typical examples of the p � N data. In the other three data sets, Wisconsin
Breast Cancer Diagnostic (WBCD) data, ionosphere data and sonar data [16], the original dimen-
sion is less than the sample size. We expanded the predictor set by including the second-order
polynomials and pairwise interactions of the original predictors. Then, the expanded dimension
becomes much larger or at least similar to the sample size; see row 2 of Table 2. We fit the
elastic net penalized logistic regression model on each data set and used 10-fold cross-validation
to choose α; see row 3 of Table 2. Fix α = αCV. We compared the running time of glmnet and
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Journal of Statistical Computation and Simulation 91

Table 2. Timings (in seconds) of glmnet and glmnet2 for some real data,
averaged over 10 runs.

Colon Prostate WBCD Ionosphere Sonar

N 62 102 569 351 208
p 2000 6033 495 (30) 560 (32) 1890 (60)
αCV 0.6 0.5 0.6 0.4 0.4
Test error 8.3% 5% 1.77% 2.86% 24.39%
glmnet 0.1166 0.3283 9.4039 0.5158 2.0828
glmnet2 0.0910 0.2938 4.9593 0.3667 1.0945
Improv. % +28% +11.7% +89.6% +40.6% +90.3%

glmnet2. The relative speed improvement is defined as (tglmnet − tglmnet2)/tglmnet2. We can see that
glmnet2 is noticeably faster than glmnet, especially on the WBCD and Sonar.

3.3. Exploring the factor size

We have fixed f = 2 in the previous numerical examples. Now, we further explore the effect of
f on timing. In Figure 1, we plotted the run time (in log scale) against f for different correlation
levels varying from 0 to 0.95. The dotted vertical reference line in each panel indicates the run
time of glmnet. We see that when ρ = 0 increasing f only slows down the convergence, which is
expected. However, when the correlation becomes stronger (ρ ≥ 0.2), the curve starts to have a
valley and using some f > 1 can reduce the computing time. From Figure 1, it seems that 2 is a
good default value for f . We also see that when the correlation is very high such as ρ = 0.8 or
higher, f = 4 or 6 can even work slightly better than f = 2. On the other hand, using f = 4 or 6
can have much bigger loss in speed when correlation is low compared to using f = 2. It would
be also interesting to decide f ’s value based on the empirical correlations. We tested this idea and
did not find this strategy works noticeably better than just using f = 2.

3.4. Some explanation of the acceleration effect

We have shown by numerical experiments that using f > 1 in the CMD could lead to faster
convergence than the ordinary coordinate descent using f = 1, especially when the predictors
are highly correlated. Now we attempt to provide some explanation to this acceleration effect.
To gain some insight, we consider a simpler case where we use the CMD to solve the ordinary
least squares problem with p predictors, defined as β̂ = arg minβ∈Rp(1/2N)‖y − xβT‖2. This
model is a special point on the �1 PLS solution path. Without loss of generality, assume all
predictors are standardized such that xj = (1/N)

∑N
i=1 xij = 0, s2

xj
= (1/N)

∑N
i=1(xij − xj)

2 = 1
for j = 1, . . . , p. To simplify the analysis, we further assume that the pairwise sample correlation
is a constant, that is, (1/N)

∑N
i=1 xijxik = ρ for j, k ∈ {1, . . . , p}.

Given below is the CMD algorithm for the least squares regression problem:

(1) Initialize β̃ = β(0).
(2) For k = 1, 2, 3, . . ., iterate step 3 until convergence of β̃.
(3) For j = 1, . . . , p, fix β̃ = (β

(k)
1 , . . . , β(k)

j−1, β(k−1)
j , β(k−1)

j+1 , . . . , β(k−1)
p ), we update the jth coor-

dinate of β̃

β̃
(k)
j = arg min

βj

1

2
f (βj − β

(k−1)
j )2 − 1

N
xᵀ

j (y − xβ̃ᵀ)(βj − β
(k−1)
j ) (18)
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92 Y. Yang and H. Zou

= β̃

⎛
⎜⎜⎜⎝−ρ

f
, . . . , −ρ

f︸ ︷︷ ︸
j−1

, 1 − 1

f
, −ρ

f
, . . . , −ρ

f︸ ︷︷ ︸
p−j

⎞
⎟⎟⎟⎠

ᵀ

+ xᵀ
j y

fN
. (19)

We have used the equal correlation assumption to simplify Equation (18) to get Equation (19).
Note that we can rewrite Equation (19) in step 3 as follows:

β̃new = β̃Wj + υj, (20)

−
1.
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Figure 1. The running time of glmnet2 for computing solution paths at 100 λs of the elastic net penalized regression
and logistic regression with α = 1 and α = 0.5, averaged over 10 independent runs. The factor size f varies from 1 to 10.
The data were generated from the simulation model in Section 3.1 with N = 100 and p = 5000. Each curve corresponds
to a different correlation level.

D
ow

nl
oa

de
d 

by
 [

Y
i Y

an
g]

 a
t 1

9:
59

 2
9 

D
ec

em
be

r 
20

13
 



Journal of Statistical Computation and Simulation 93

where

β̃new = (β
(k)
1 , . . . , β(k)

j−1, β(k)
j , β(k−1)

j+1 , . . . , β(k−1)
p ), υj =

(
0, . . . ,

xᵀ
j y

fN
, . . . , 0

)
.

Wj = Ip×p + [0p×(j−1) uj 0p×(N−j)], uj = (ukj)p×1 =

⎧⎪⎨
⎪⎩

−1

f
, k = j,

−ρ

f
, k �= j.

Using Equation (20), we find that after a complete cycle from j = 1 to j = p, we can write

β̃(k) = β̃(k−1)A + μ, (21)
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Figure 2. The CMD algorithm for the ordinary least squares problem with p = 10 predictors. ηmax((Ak)ᵀAk) (as defined
in Equation (25)) against the number of iterations (in logarithm scale) for five different factors (f = 1, 2, 3, 4, 5). Each
panel corresponds to a different correlation level.
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where

A =
p∏

j=1

Wj, μ =
p−1∑
s=1

⎛
⎝υs

p∏
j=s+1

Wj

⎞
⎠ + υp. (22)

Then by a simple transformation γ̃ (k) = β̃(k) + ω, where ω = (I − A)−1μ, we can express
Equation (21) in terms of γ̃ (k) and γ̃ (k−1) as follows:

γ (k) = Aγ (k−1), (23)

which means that

γ (k) = Akγ (0) (24)

and

‖γ (k)‖ = ‖Akγ (0)‖ ≤
√

ηmax((Ak)ᵀAk)‖γ (0)‖, (25)

where ηmax((Ak)ᵀAk) is the maximum eigenvalue of (Ak)ᵀAk .
From Equation (25), one can see that the convergence rate of the CMD algorithm for the least

squares problem is determined by ηmax((Ak)ᵀAk), which is affected by both f and ρ. Although we
do not find an explicit expression of ηmax((Ak)ᵀAk), we can compute its numerical values easily.
We did the calculation for p = 10 and Figure 2 displays the calculated ηmax((Ak)ᵀAk) as a function
of log(k) for different combinations of (f , ρ). It is not surprising to see that as k (the number of
iterations) increases, ηmax((Ak)ᵀAk) goes to zero, for all factors considered there. As shown in
Figure 2 panel (a), when the correlation is low, f = 1 has the fastest convergence. However, when
ρ = 0.5 as shown in Figure 2 panel (b), f = 2 starts to outperform f = 1. When the correlation
is even higher like in Figure 2 panels (c) and (d), f = 2, 3, 4, 5 clearly dominates f = 1.

The above theoretical results are derived for the least squares problem. The analysis is not
directly generalized to the more general �1 PLS or logistic regression. However, the analysis does
show us that in using the coordinate decent scheme to solve a multivariate optimization problem,
taking the steepest descent in each coordinate direction is not necessarily the best strategy for
achieving convergence in the multi-dimensional space.

4. Conclusions

Using the MM principle, we have developed a generalized coordinate descent algorithm called
CMD for solving the �1 penalized regression and logistic regression. The empirical examples
suggest that the CMD algorithm can be substantially faster than the original CD algorithm used
for the R package glmnet, as long as the correlations among predictors are not weak. The gain in
speed is solely due to the use of MM principle within the coordinate decent loop. The R package
glmnet2 and the functions used for the simulation in this paper are available at the following
publicly accessible webpage http://code.google.com/p/glmnet2.
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